

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0336 of 17 July 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Tecfi Concrete Screw HXE

Concrete screw for use in concrete

Tecfi SpA Strada Statale Appia, Km. 193 81050 PASTORANO (CE) ITALIEN

Tecfi Plant 1

15 pages including 3 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330232-00-0601

ETA-11/0336 issued on 4 June 2015

European Technical Assessment ETA-11/0336

Page 2 of 15 | 17 July 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z26791.17 8.06.01-110/17

European Technical Assessment ETA-11/0336 English translation prepared by DIBt

Page 3 of 15 | 17 July 2017

Specific Part

1 Technical description of the product

The Tecfi concrete screw HXE is made of galvanised steel of sizes 8, 10, 12 or 16 mm. The anchor may be provided with different head configurations according to Annex A2. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead the assumption of working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Product performance for static and quasi static action and for seismic categories C1 and C2	See Annex C1 / C 2
Displacements	See Annex C 5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 3 / C 4

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z26791.17 8.06.01-110/17

European Technical Assessment ETA-11/0336

Page 4 of 15 | 17 July 2017

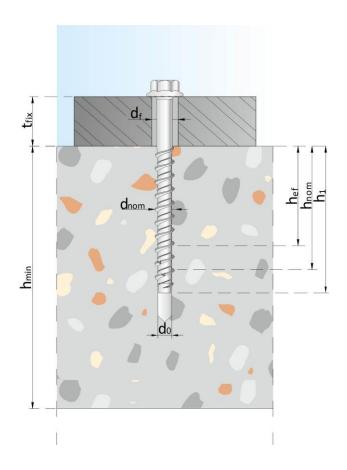
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 17 July 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Lange

Z26791.17 8.06.01-110/17

Installed conditions

Installation for static, quasi-static and seismic performance category C1 and C2

Designation

d_{nom}	Outside diameter of the anchor
d_{cut}	Maximum cutting diameter of the drill bit
t _{fix}	Thickness of the fixtures
d ₀	Diameter of the drill hole
d _f	Diameter of the clearance hole in the fixture
h _{min}	Minimum thickness of the concrete member
h _{nom}	Overall anchor embedment depth
h _{ef}	Anchorage depth

Tecfi Concrete Screw HXE	
Product description Installed condition	Annex A 1

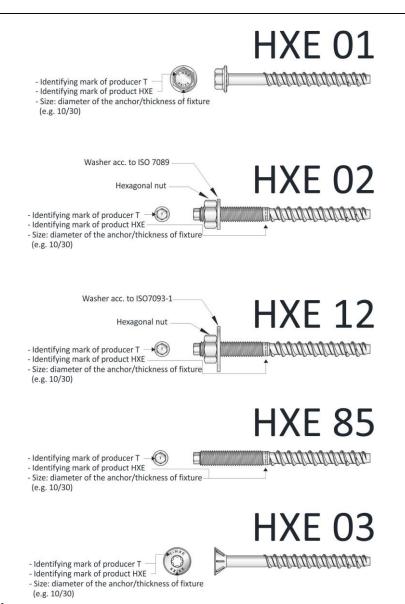


Table A1: Materials

electronic copy of the eta by dibt: eta-11/0336

ITEM	Description		f _u [Mpa]	Finishing	
HXE01	Hexagonal flanged washer head screw				
HXE85	Dual thread screw with hexagonal shank			Matarials galvanisad	
HXE02	Dual thread screw with hexagonal shank, nut and washer according to ISO 7089:2000	640 750		Materials galvanised ≥ 5μm according to	
HXE12	Dual thread screw with hexagonal shank, nut and washer according to ISO 7093:2000			ISO 4042:1999	
HXE03	Flat countersunk head with ribs screw				

Tecfi Concrete Screw HXE	
Product description Anchor types and Materials	Annex A 2

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: All anchor types, all sizes
- Seismic action for Performance Category C1 and C2: Ø 16 and Ø 12
- Seismic action for Performance Category C1: Ø 10
- Fire exposure: all sizes

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- · Cracked or uncracked concrete: All anchor types, all sizes

Use conditions (Environmental conditions):

· Anchorages subject to dry internal conditions

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Design for fastenings in accordance to FprEN 1992-4:2016 and EOTA Technical Report TR 055

Installation:

- Hole drilling by rotary plus hammer mode only
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.

Tecfi Concrete Screw HXE	
Intended Use	Annex B 1
Specifications	

Table B1: HXE 01, installation details

Denomination		HXE Ø8/6 ¹⁾	HXE Ø10/8 ²⁾	HXE Ø12/10 ³⁾	HXE Ø16/14 ⁴⁾
Nominal drill hole diameter	$d_o = [mm]$	6	8	10	14
Cutting diameter of drill bit	d _{cut} ≤ [mm]	6.40	8.45	10.45	14.50
Effective anchorage depth	$h_{ef} = [mm]$	48	56	64	85
Depth of drill hole	$h_1 = [mm]$	75	85	100	140
Diameter of clearance in the fixture	$d_f = [mm]$	9	12	14	18
Overall anchor embedment depth in the concrete	h _{nom} =[mm]	60	70	80	110
Minimum thickness of concrete member	h _{min} = [mm]	100	110	130	170
Outside diameter of anchor	$d_{nom} = [mm]$	8	10	12	16
Wrench size HXE 01	SW = [mm]	10	13	15	21
Minimum thickness of fixture	t _{fix} =[mm]	≥5	≥5	≥5	≥5
Minimum length of the anchor HXE 01	L=[mm]	≥65	≥75	≥85	≥115
Minimum edge distance	c _{min} = [mm]	45	50	60	80
Minimum spacing	s _{min} = [mm]	45	50	60	80

Table B2: HXE 02 and HXE 12, installation details

Denomination	HXE Ø8/6 ¹⁾	HXE Ø10/8 ²⁾	HXE Ø12/10 ³⁾	
Nominal drill hole diameter	$d_o = [mm]$	6	8	10
Cutting diameter of drill bit	d _{cut} ≤ [mm]	6.40	8.45	10.45
Effective anchorage depth	$h_{ef} = [mm]$	48	56	64
Depth of drill hole	h ₁ = [mm]	75	90	100
Diameter of clearance in the fixture	$d_f = [mm]$	9	12	14
Overall anchor embedment depth in the concrete	h _{nom} =[mm]	60	70	80
Minimum thickness of concrete member	$h_{min} = [mm]$	100	110	130
Outside diameter of anchor	$d_{nom} = [mm]$	8	10	12
Wrench size HXE 02 and HXE 12	SW = [mm]	13	17	19
Maximum tightening torque of the nut	T = [Nm]	20	50	80
Hexagonal shank size HXE 02 and HXE 12	AF = [mm]	5	7	8
Minimum thickness of fixture	t _{fix} =[mm]	≥5	≥5	≥5
Minimum length of the anchor HXE 02 and HXE 12	L=[mm]	≥85	≥100	≥113
Minimum edge distance	c _{min} = [mm]	45	50	60
Minimum spacing	s _{min} = [mm]	45	50	60

Table B3: HXE 03, installation details

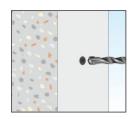
Denomination	HXE Ø8/6 ¹⁾	HXE Ø10/8 ²⁾	HXE Ø12/10 ³⁾	
Nominal drill hole diameter	$d_o = [mm]$	6	8	10
Cutting diameter of drill bit	d _{cut} ≤ [mm]	6.40	8.45	10.45
Effective anchorage depth	h _{ef} =[mm]	48	56	64
Depth of drill hole	h ₁ = [mm]	75	90	100
Diameter of clearance in the fixture	d _f = [mm]	9	12	14
Overall anchor embedment depth in the concrete	h _{nom} =[mm]	60	70	80
Minimum thickness of concrete member	h _{min} =[mm]	100	110	130
Outside diameter of anchor	$d_{nom} = [mm]$	8	10	12
Six lobe recess HXE 03	Т	T30	T40	T50
Minimum thickness of fixture	t _{fix} =[mm]	≥5	≥5	≥5
Minimum length of the anchor HXE 03	L=[mm]	≥65	≥75	≥85
Minimum edge distance	c _{min} = [mm]	45	50	60
Minimum spacing	s _{min} = [mm]	45	50	60

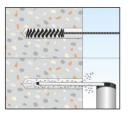
¹⁾ Setting requires an impact wrench with maximum 20 Nm torque
2) Setting requires an impact wrench with maximum 50 Nm torque
3) Setting requires an impact wrench with maximum 80 Nm torque
4) Setting requires an impact wrench with maximum 160 Nm torque

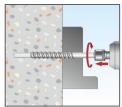
Tecfi Concrete Screw HXE	
Intended Use Installation parameters	Annex B 2

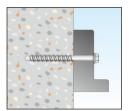
8.06.01-110/17 Z31984.17

Drill bit

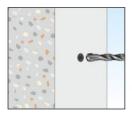

2 A 100 2 A 100 E: 0	HXE anchor size	Drill bit item code
A.	Ø 8	EO 01 06 210
\	Ø 10	EO 01 08 210
	Ø 12	EO 01 10 210
\	Ø 16	EO 01 14 210

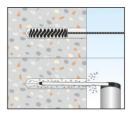

Blowing pump

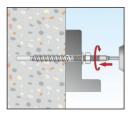


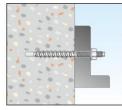

Tecfi Concrete Screw HXE	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions HXE01



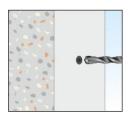



Step 1	Drill a hole into the concrete in rotary plus hammer mode. The hole must be 2 [mm] less than the outside diameter of the anchor
Step 2	Remove the dust into the hole using 2 times a brush and 2 times a blowing pump
Step 3	Place the fixture
Step 4	Install the anchor using an impact screwdriver

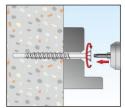

Installation instructions HXE02 and HXE12

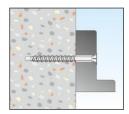


electronic copy of the eta by dibt: eta-11/0336






Step 1	Drill a hole into the concrete in rotary plus hammer mode. The hole must have a diameter 2 [mm] less than the outside diameter of the anchor
Step 2	Remove the dust into the hole using a 2 times brush and a 2 times blowing pump
Step 3 1)	Place the fixture
Step 4	Install the anchor using an impact screwdriver
Step 5	Tight the nut applying the required torque moment


¹⁾Through fixing is allowed (place the fixture before placing the anchor)

Installation instructions HXE03

Step 1	Drill a hole into the concrete in rotary plus hammer mode. The hole must be 2 [mm] less than the outside diameter of the anchor
Step 2	Remove the dust into the hole using a 2 times brush and a 2 times blowing pump
Step 3	Place the fixture
Step 4	Install the anchor using an impact screwdriver

Tecfi Concrete Screw HXE	
Intended Use Installation instructions	Annex B 4

Table C1: Performances for design, tension

Type of anchor / Size	-		HXE Ø8/6	HXE Ø10/8	HXE Ø12/10	HXE Ø16/14
Steel failure						
Characteristic Resistance	$N_{Rk,s}$ $N_{Rk,s,eq,C1}$ $N_{Rk,s,eq,C2}$	[kN]	20	35	50	95
Partial safety factor	$\gamma_{Ms}^{-1)}$	[-]		1	,5	
Pull-out failure						
Effective embedment depth	h _{ef}	[mm]	48	56	64	85
Characteristic Resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	16	20	25	40
Characteristic Resistance in cracked concrete C20/25			4	7,5	9	16
Characteristic resistance in seismic performance category C1	$N_{Rk,p,eq}$	- [kN]	NPD	6,0	6,3	16
Characteristic resistance in seismic performance category C2	$N_{Rk,p,eq}$	[KIN]	NPD	NPD	2,7	7,2
Increasing factors for N _{Rk.p} for cracked and uncracked		C30/37		1,	22	
concrete	Ψ_{c}	C40/50	1,41			
		C50/60	4.4		58	4
Installation safety factor	γ _{inst}	[-]	1,4	1,2	1.	,4
Concrete cone failure and splitting failure		1		ı	I	T
Effective embedment depth	h _{ef}	[mm]	48	56	64	85
Factor for k ₁	k _{ucr,N}	[-]	11,0			
Factor for k ₁	k _{cr,N}	[-]	7,7			
Spacing	S _{cr,N}	[mm]	3 x h _{ef}			
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}			
Spacing (splitting)	S _{cr,sp}	[mm]	160	175	195	255
Edge distance (splitting) Installation safety factor	C _{cr,sp}	[mm]	80 85 95 130 1,4 1,2 1,4			130
mstaliation safety factor	γ_{inst}	[-]	1,4 1,2 1,4			,4

¹⁾ In absence of other national regulations.

Tecfi Concrete Screw HXE	
Performances	Annex C 1
Characteristic resistance to tension loads	

Table C2: Performances for design, shear

Type of anchor / Size			HXE Ø8/6	HXE Ø10/8	HXE Ø12/10	HXE Ø16/14
Steel failure without level arm						
Characteristic Resistance for static and quasi-static action	$V_{Rk,s}$	[kN]	9,4	20,1	32,4	56,9
Characteristic Resistance for seismic action in Performance category C1	$V_{Rk,s,eq}$	[kN]	NPD	12,1	19,1	39,8
Characteristic Resistance for seismic action in Performance category C2	$V_{Rk,s,eq}$	[kN]	NPD	NPD	17,7	39,8
Partial safety factor	$\gamma_{Ms}^{}1)}$	[-]	1,5			
Steel failure with level arm						
Characteristic bending moment	$V_{Rk,s}$	[kN]	19	44	83	216
Ductility factor	k ₇	[-]		0	,8	
Partial safety factor	$\gamma_{Ms}^{-1)}$	[-]		1	,5	
Concrete pryout failure						
Effective embedment depth	h _{ef}	[mm]	48	56	64	85
Factor for pryout failure	k ₈	[-]	1	,0	2,	,0
Installation safety factor	γ_{inst}	[-]	1,4 1,2 1,4			.4
Concrete edge failure						
Effective anchorage length	l _{ef}	[mm]	48	56	64	85
Effective diameter of the anchor	d_{nom}	[mm]	6	8	10	14
Installation safety factor	γ _{inst} [-] 1,4 1,2 1,4				.4	

¹⁾ In absence of other national regulations.

Tecfi Concrete Screw HXE	
Performances	Annex C 2
Characteristic resistance to shear loads	

Table C3: Performances under fire exposure in concrete C20/25 to C50/60 (tension)

Type of anchor / Size			HXE Ø8/6	HXE Ø10/8	HXE Ø12/10	HXE Ø16/14
Duration of fire resistance = 30min						
Steel Failure						
Characteristic Resistance	$N_{Rk,s,fi,30}$	[kN]	0,28	0,73	1,51	2,85
Pull-out failure						
Characteristic Resistance in concrete C20/25 to C50/60	$N_{Rk,p,fi,30}$	[kN]	1,00	1,87	2,25	4,0
Concrete cone failure						
Characteristic Resistance in concrete C20/25 to C50/60	N _{Rk,c,fi,30}	[kN]	2,87	4,23	5,90	12,0
Duration of fire resistance = 60min						
Steel Failure						
Characteristic Resistance	$N_{Rk,s,fi,60}$	[kN]	0,25	0,64	1,13	2,14
Pull-out failure						
Characteristic Resistance in concrete C20/25 to C50/60	$N_{Rk,p,fi,60}$	[kN]	1,00	1,87	2,25	4,0
Concrete cone failure						
Characteristic Resistance in concrete C20/25 to C50/60	N _{Rk,c,fi,60}	[kN]	2,87	4,22	5,90	12,0
Duration of fire resistance = 90min						
Steel Failure						
Characteristic Resistance	$N_{Rk,s,fi,90}$	[kN]	0,19	0,49	0,98	1,85
Pull-out failure						
Characteristic Resistance in concrete C20/25 to C50/60	N _{Rk,p,fi,90}	[kN]	1,00	1,87	2,25	4,0
Concrete cone failure						
Characteristic Resistance in concrete C20/25 to C50/60	N _{Rk,c,fi,90}	[kN]	2,87	4,22	5,90	12,0
Duration of fire resistance =120min						
Steel Failure						
Characteristic Resistance	N _{Rk,s,fi,120}	[kN]	0,14	0,39	0,75	1,43
Pull-out failure						
Characteristic Resistance in concrete C20/25 to C50/60	$N_{Rk,p,fi,120}$	[kN]	0,8	1,5	1,8	3,20
Concrete cone failure						
Characteristic Resistance in concrete C20/25 to C50/60	N _{Rk,c,fi,120}	[kN]	2,30	3,38	4,72	9,59
Chacing	S _{cr,N}			4 x	h _{ef}	
Spacing	S _{min}	[mm]	45	50	60	80
	C _{cr,N}		2 x h _{ef}			
Edgo distance			$c_{min} = 2 x h$	_{ef} ; If fire at	tack comes	from
Edge distance	C _{min}	[mm]	more than	one side, the edge distance of		
			the ancho	r has to be	≥ 300 mm d	or ≥ 2 x h _{ef}

Tecfi Concrete Screw HXE	
Performances Characteristic values for fire exposure under tension loads	Annex C 3

Performances under fire exposure in concrete C20/25 to C50/60 (shear) Table C4:

Type of anchor / Size		HXE Ø8/6	HXE Ø10/8	HXE Ø12/10	HXE Ø16/14		
Duration of fire resistance = 30min			-	-		-	
Characteristic resistance	$V_{Rk,s,fi,30}$	[kN]	0,28	0,73	1,51	2,85	
Characteristic bending resistance	M _{Rk,s,fi,30}	[Nm]	0,24	0,87	2,22	5,76	
Duration of fire resistance = 60min							
Characteristic resistance	$V_{Rk,s,fi,60}$	[kN]	0,25	0,64	1,13	2,14	
Characteristic bending resistance	M _{Rk,s,fi,60}	[Nm]	0,22	0,75	1,66	4,32	
Duration of fire resistance = 90min							
Characteristic resistance	$V_{Rk,s,fi,90}$	[kN]	0,19	0,49	0,98	1,85	
Characteristic bending resistance	M _{Rk,s,fi,90}	[Nm]	0,17	0,58	1,44	3,74	
Duration of fire resistance = 120min							
Characteristic resistance	$V_{Rk,s,fi,120}$	[kN]	0,14	0,39	0,75	1,43	
Characteristic bending resistance	M _{Rk,s,fi,120}	[Nm]	0,12	0,46	1,11	2,88	
Concrete pryout failure							
The characteristic resistance V _{rk,cp,fi,Ri} in concrete C20	/25 to C50/60	is deterr	nined by:				
$V_{Rk,c,fi(90)} = k_8 \times N_{Rk,c,fi(90)} $ (\leq R90) and $V_{Rk,c,fi(120)} = k \times N_R$							
Factor k	k ₈	[-]	1	1	2	2	
Concrete edge failure							

The characteristic resistance $V_{rk,cp,fi,Ri}$ in concrete C20/25 to C50/60 is determined by $V^0_{Rk,c,fi(90)} = 0,25 \text{ x } V^0_{Rk,c}$ (R30, R60, R90) and $V^0_{Rk,c,fi(120)} = 0,20 \text{ x } V^0_{Rk,c}$ (R120) with $V^0_{Rk,c}$ as an initial value of the characteristic resistance of a single anchor in cracked concrete C20/25

Tecfi Concrete Screw HXE	
Performances Characteristic values for fire exposure under shear loads	Annex C 4

8.06.01-110/17 Z31984.17

Table C5: Displacements

Tension loads in cracked and uncracked concrete			HXE Ø8/6	HXE Ø10/8	HXE Ø12/10	HXE Ø16/14	
Service tension load in uncracked concrete C20/25	N _{ucr}	[kN]	7,62	8,89	11,90	13,61	
Displacements	$\delta_{\text{N0,ucr}}$	[mm]	0,76	0,74	0,63	0,74	
	$\delta_{N\infty,ucr}$	[mm]	0,29	0,34	0,23	0,41	
Service tension load in cracked concrete C20/25	N _{cr}	[kN]	1,90	4,17	4,29	5,44	
Displacements	$\delta_{\text{N0,cr}}$	[mm]	0,27	0,39	0,45	0,79	
	$\delta_{N^\infty,cr}$	[mm]	0,53	0,77	0,97	1,05	
Shear loads in cracked and uncracked concrete							
Service shear load in cracked and uncracked concrete C20/25	V	[kN]	4,50	9,60	15,40	27,10	
Displacements	δ_{V0}	[mm]	0,94	1,47	1,87	3,00	
	$\delta_{V^{\infty}}$	[mm]	1,41	2,20	2,81	4,50	
Seismic performance category C2							
Damage limit state							
Tension load	$\delta_{N,eq(DLS)}$	[mm]	NPD	NPD	0,16	0,56	
Shear load	$\delta_{V,eq(DLS)}$	[mm]	NPD	NPD	5,65	5,54	
Ultimate limit state							
Tension load	$\delta_{N,eq(ULS)}$	[mm]	NPD	NPD	1,02	2,23	
Shear load	$\delta_{V,eq(ULS)}$	[mm]	NPD	NPD	10,08	8,78	

Tecfi Concrete Screw HXE	
Performances Displacements	Annex C 5
Displacements	