

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-11/0078 vom 25. April 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

Berner Einschlaganker BE

Wegkontrolliert spreizender Dübel in den Größen zur Verankerung im ungerissenen Beton

Berner Trading Holding GmbH Bernerstraße 6 74653 Künzelsau DEUTSCHLAND

Berner Herstellwerk 6
Berner manufacturing plant 6

15 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Europäisches Bewertungsdokument (EAD) 330232-00-0601, ausgestellt.

Europäische Technische Bewertung ETA-11/0078

Seite 2 von 15 | 25. April 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z31303.17 8.06.01-35/17

Europäische Technische Bewertung ETA-11/0078

Seite 3 von 15 | 25. April 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Berner Einschlaganker BE ist ein Dübel aus galvanisch verzinktem oder nichtrostendem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird. Das Anbauteil ist mit einer Befestigungsschraube oder einer Gewindestange zu befestigen. Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird. Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für statische und quasi-statische Einwirkungen, Verschiebungen	Siehe Anhang C 1 bis C 4

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß den Europäischen Bewertungsdokumenten EAD Nr. 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

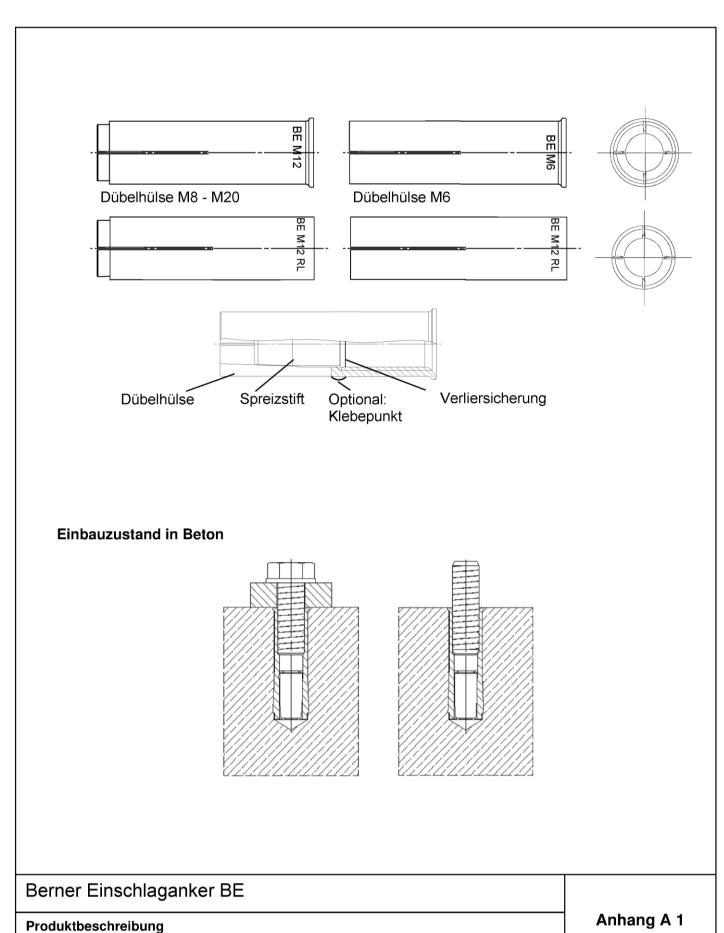
Folgendes System ist anzuwenden: 1

Z31303.17 8.06.01-35/17

Europäische Technische Bewertung ETA-11/0078

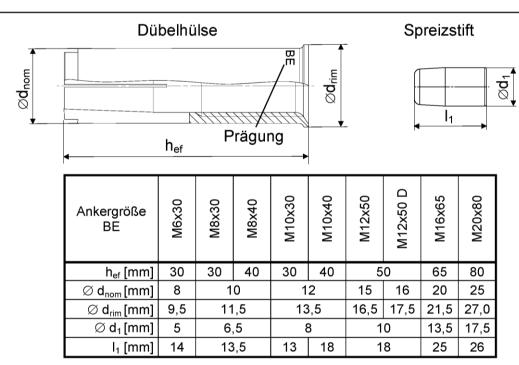
Seite 4 von 15 | 25. April 2017

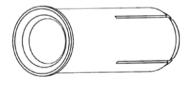
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

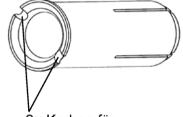
Ausgestellt in Berlin am 25. April 2017 vom Deutschen Institut für Bautechnik

Andreas Kummerow Abteilungsleiter Beglaubigt:


Z31303.17 8.06.01-35/17



Ankertypen Einbauzustand

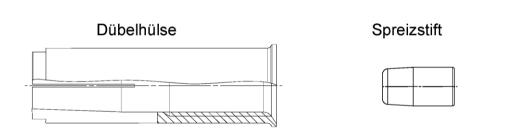


Unterscheidungsmerkmal

0× Kerbe für:

- BE M6x30..
- BE M8x30..
- BE M10x40..
- BE M12x50..
- BE M16x65...
- BE M20x80..

2× Kerben für:


- BE M8x40..
- BE M10x30..

Markierung auf Dübel

galvanisch ver	zinkter Stahl (gvz)	nichtrostender Stahl (A4)				
mit Rand	randlos	mit Rand	randlos			
BE M6x30	BE M6x30 RL	BE M6x30 A4	BE M6x30 RL A4			
BE M8x30	BE M8x30 RL	BE M8x30 A4	BE M8x30 RL A4			
BE M8x40	BE M8x40 RL	BE M8x40 A4	BE M8x40 RL A4			
BE M10x30	BE M10x30 RL	BE M10x30 A4	BE M10x30 RL A4			
BE M10x40	BE M10x40 RL	BE M10x40 A4	BE M10x40 RL A4			
BE M12x50	BE M12x50 RL	BE M12x50 A4	BE M12x50 RL A4			
BE M12x50 D	BE M12x50 RLD	BE M12x50 DA4	BE M12x50 RL D A4			
BE M16x65	BE M16x65 RL	BE M16x65 A4	BE M16x65 RL A4			
BE M20x80	BE M20x80 RL	BE M20x80 A4	BE M20x80 RL A4			

Berner Einschlaganker BE	
Produktbeschreibung Ankertypen	Anhang A 2

Tabelle A1: Materialien

	Material	
Bezeichnung	galvanisch verzinkter Stahl (≥ 5 μm)	nichtrostender Stahl
Dübelhülse	EN 10277:2008 oder EN 10084:2008 oder	
Spreizstift	EN 10111:2008 oder EN 10263:2001 oder EN 10087:1998 oder ASTM A29/A29M	EN 10088:2005
Befestigungsschraube oder Gewindestange	Stahl, Festigkeitsklasse 4.6, 5.6, 5.8 oder 8.8 gemäß EN ISO 898-1:2012	Festigkeitsklasse 50, 70 oder 80 gemäß EN ISO 3506:2009

Berner Einschlaganker BE	
Produktbeschreibung Material	Anhang A 3

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

statische oder quasi-statische Belastung

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2000
- Ungerissener Beton: alle Größen

Anwendungsbedingungen (Umweltbedingungen):

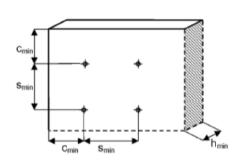
- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl oder nichtrostender Stahl)
- Bauteile im Freien (einschliesslich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl)

Anmerkung: : Zu besonders aggressiven Bedingungen gehören z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. in Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben. (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern)
- Die Bemessung der Verankerungen erfolgt nach FprEN 1992-4:2016 und EOTA Technical Report TR 055.
- Die Dübel dürfen als Einzelbefestigung für tragende Anwendungen verwendet werden.

Einbau:


- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Der Dübel darf nur einmal verwendet werden
- · Bohrloch erstellen mit Hammerbohrer oder mit Hohlbohrer und Staubsauger
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Verspreizung durch Schläge mit den in den Anhängen B 3 dargestellten Setzwerkzeugen. Der Anker ist ordnungsgemäß verspreizt, wenn der Anschlag des Setzwerkzeugs auf der Dübelhülse aufliegt. Das Handsetzwerkzeug mit Setzkontrolle hinterlässt, wie in den Anhängen B 3 und B 4 dargestellt, eine sichtbare Markierung auf der Ankerhülse.

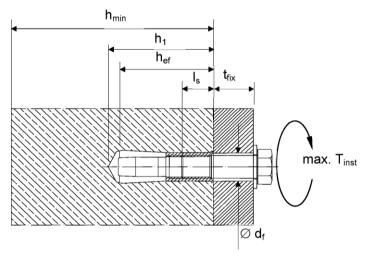

Berner Einschlaganker BE	
Verwendungszweck Spezifikationen	Anhang B 1

Tabelle B2:	Montagekennwerte	für Beton	C20/25 bis	C50/60
-------------	------------------	-----------	------------	--------

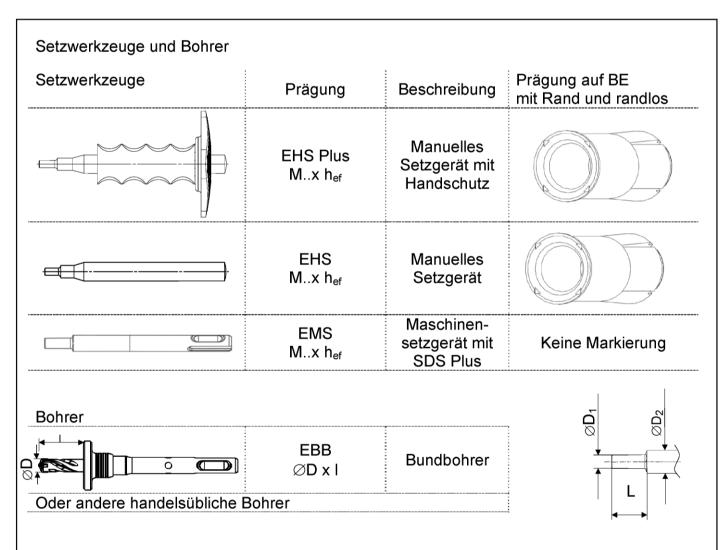
Ankergröße									0	l	
			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50D	M16x65	M20x80
Nomineller Bohrdurchmesser	d ₀	[mm]	8	1	0	1	2	15	16	20	25
Effektive Verankerungstiefe	h_{ef}	[mm]	30	30	40	30	40	5	0	65	80
Maximales Anzugsdrehmoment	max. T _{inst}	[Nm]	4	8	3	1	5	3	5	60	120
Minimale Bohrlochtiefe	h₁	[mm]	32	33	43	33	43	5	4	70	85
Minimale Einschraubtiefe	$I_{s,min}$	[mm]	6	8	3	1	0	1	2	16	20
Maximale Einschraubtiefe	I _{s,max}	[mm]	14	1	4	14	17	2	2	28	34
Durchmesser Durchgangsloch	Ø d _f ≤	[mm]	7	ç)	1	2	1	4	18	22
h _{min} = 80 mm											
Minimaler Achsabstand	S _{min}	[mm]	70	110	200	20	00	-	-	-	-
Minimaler Randabstand	C _{min}	[mm]	150	15	50	18	50	1	-	-	-
h _{min} = 100 mm											
Minimaler Achsabstand	S _{min}	[mm]	65	7	0	90	150	2	00	-	-
Minimaler Randabstand	C _{min}	[mm]	115	11	15	160	180	20	30	-	-
h _{min} = 120 mm											
Minimaler Achsabstand	S _{min}	[mm]	65	7	0	85	95	14	45	-	-
Minimaler Randabstand	C _{min}	[mm]	115	11	15	140	150	20	00	-	-
h _{min} = 160 mm											
Minimaler Achsabstand	S _{min}	[mm]	65	7	0	85	95	14	45	180	-
Minimaler Randabstand	C _{min}	[mm]	115	11	15	140	150	20	00	240	-
h _{min} = 200 mm											
Minimaler Achsabstand	S _{min}	[mm]	65	7	0	85	95	14	45	180	190
Minimaler Randabstand	C _{min}	[mm]	115	11	15	140	150	20	00	240	280

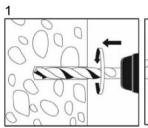
Befestigungsschraube oder Gewindestange:

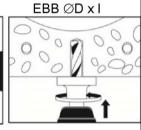
- Minimale Festigkeitsklasse und Materialien gemäß Tabelle A1
- Die Länge der Befestigungssschraube oder der Gewindestange ist in Abhängigkeit der Dicke des Anbauteiles t_{fix}, zulässiger Toleranzen und nutzbarer Gewindelänge I_{s,max} sowie der Mindesteinschraubtiefe I_{s,min} festzulegen

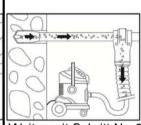
Berner Einschlaganker BE

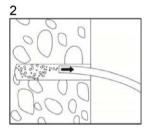
Verwendungszweck Montagekennwerte Anhang B 2

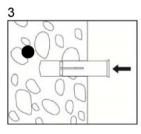


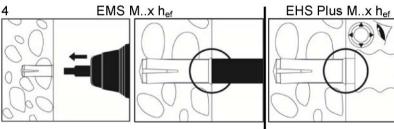

Tabelle B3: Kennwerte der Setzwerkzeuge

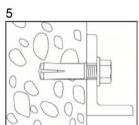

Manuelles Setzgerät	Maschinen- setzgerät	Bundbohrer	Für Ankergröße	Ø D1	Ø D2	L
EHS M6x25/30	EMS M6x25/30	EBB 8x30	BE M6x30	4,8	9,0	17,0
EHS M8x25/30	EMS M8x25/30	EBB 10x30	BE M8x30	6.4	11,0	18,0
EHS M8x40	EMS M8x40	EBB 10x40	BE M8x40	6,4		28,0
EHS M10x25/30	EMS M10x25/30	EBB 12x30	BE M10x30	7.0	13,0	18,0
EHS M10x40	EMS M10x40	EBB 12x40	BE M10x40	7,9	13,0	24,0
EHS M12x50	EMS M12x50	EBB 15x50	BE M12x50	10.2	16,5	30,0
EHS M12x50	EMS M12x50	EBB 16x50	BE M12x50 D	10,2	10,5	30,0
EHS M16x65	EMS M16x65	EBB 20x65	BE M16x65	13,5	22	36,0
EHS M20x80	EMS M20x80	EBB 25x80	BE M20x80	16,4	27	50,0


Berner Einschlaganker BE	
Verwendungszweck Setzwerkzeuge und Bohrer	Anhang B 3


Montageanleitung







Weiter mit Schritt Nr. 3

überschritten werden

Nr.	Beschreibung
1	Bohrloch erstellen mit Hammerbohrer oder mit Hohlbohrer und Staubsauger
2	Bohrloch reinigen
3	Anker setzen bis er bündig mit der Betonoberfläche abschließt
4	Verspreizen des Ankers durch Eintreiben des Spreizstiftes in die Dübelhülse und
	Kontrolle auf korrekte Montage
5	Befestigung des Anbauteils. Maximales Anzugsdrehmoment max. Tinst darf nicht

Berner Einschlaganker BE	
Verwendungszweck Montageanleitung	Anhang B 4

Tabelle C1: Charakteristische Werte für Zugtragfähigkeit

			I									
BE		Festigkeits- klasse	M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x50 D	M16x65	M20x80	
Faktor für Montagesicherheitsbeiwert	γ inst	[-]	1,0									
Stahlversagen												
Charakteristischer Widerstand	N _{Rk,s} [kN]	A4-50	10,1	18	3,3	29	9,0	42	2,1	78,3	122,4	
Teilsicherheitsfaktor	γ_{Ms}						2,86					
Charakteristischer Widerstand	N _{Rk,s} [kN]	A4-70	14,1	19	9,6	24	I,9	45,1	59,0	73,8	117,2	
Teilsicherheitsfaktor	γ_{Ms}		1,87			1,5			1,87	1	,5	
Charakteristischer Widerstand	N _{Rk,s} [kN]	A4-80	16,1	19	9,6	24	1,9	45,1	59,0	73,8	117,2	
Teilsicherheitsfaktor	γ_{Ms}		1,6	1,6			1,5					
Charakteristischer Widerstand	$N_{Rk,s}$ [kN]	Stahl 4.6	8,0	8,0 14,6		23	23,2 33		3,7	62,7	97,9	
Teilsicherheitsfaktor	γ_{Ms}		2,0									
Charakteristischer Widerstand	$N_{Rk,s}$ [kN]	Stahl 5.6	10,1	18	3,3	29	9,0	42	2,1	78,3	122,4	
Teilsicherheitsfaktor	γ _{Ms}						2,0					
Charakteristischer Widerstand	$N_{Rk,s}$ [kN]	Stahl 5.8	10,1	17	7,2	21,8 39,6		42,1	64,7	102,8		
Teilsicherheitsfaktor	γ _{Ms}						1,5					
Charakteristischer Widerstand	N _{Rk,s} [kN]	Stahl 8.8	13,5	17	7,2	21,8		39,6	53,3	64,7	102,8	
Teilsicherheitsfaktor	γ _{Ms}						1,5	1,5				
Herausziehen nicht maßgebe	end											
Betonversagen												
Effektive Verankerungstiefe	h_{ef}	[mm]	3	0	40	30	40	5	0	65	80	
Charakteristischer Achsabstan	d s _{cr,N}	[mm]	9	90 120		90	120	1:	50	195	240	
Charakteristischer Randabstand	C _{cr,N}	[mm]	45 60		45	60 7		5	97	120		
Faktor k₁	$k_{ucr,N}$	[-]	[-] 11,0									
Spalten												
Charakteristischer Achsabstan	d s _{cr,sp}	[mm]	2	10	280	210	320	3	50	455	560	
Charakteristischer Randabstand	C _{cr,sp}	[mm]	10)5	140	105	160	1	75	227	280	

¹⁾ Nur zur Verankerung statisch unbestimmt gelagerter Bauteile.

Berner Einschlaganker BE	
Leistungen Charakteristische Werte für Zugtragfähigkeit	Anhang C 1

Tabelle C2: Charakteristische Werte für Quertragfähigkeit

BE		Festigkeits- klasse	M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x50 D	M16x65	M20x80	
Duktilitätsfaktor	k ₇ [-]		1,0									
Stahlversagen ohne Hebelar	m											
Charakteristischer Widerstand	$V_{Rk,s}$ [kN]	A4-50	5,0	9,	2	14	,5	21	1,1	39,2	61,2	
Teilsicherheitsfaktor	γ_{Ms}						2,38					
Charakteristischer Widerstand	$V_{Rk,s}$ [kN]	A4-70	7,0	9,	8	12	2,4	22,6	29,5	37	59	
Teilsicherheitsfaktor	γ_{Ms}		1,56			1,25			1,56	1,	25	
Charakteristischer Widerstand	$V_{Rk,s}$ [kN]	A4-80	8,0	9,	8	12	2,4	22,6	30,4	36,9	58,6	
Teilsicherheitsfaktor	γ_{Ms}		1,33				1,	25				
Charakteristischer Widerstand	$V_{Rk,s}$ [kN]	Stahl 4.6	4,0	7,	3	11	,6	16	3,9	31	49	
Teilsicherheitsfaktor	γ_{Ms}			1,67			1,67					
Charakteristischer Widerstand	$V_{Rk,s}$ [kN]	Stahl 5.6	5,0	9,2 14,5		21	I,1	39	61			
Teilsicherheitsfaktor	γ_{Ms}						1,67					
Charakteristischer Widerstand	$V_{Rk,s}$ [kN]	Stahl 5.8	5,0	8,	6	10	,9	19,8	21,1	32	51	
Teilsicherheitsfaktor	γ _{Ms}		1,25									
Charakteristischer Widerstand	$V_{Rk,s}$ [kN]	Stahl 8.8	6,8	8,	6	10	,9	19,8	27	32	51	
Teilsicherheitsfaktor	γ _{Ms}						1,25					
Stahlversagen mit Hebelarm												
Charakteristischer Widerstand	$M^0_{Rk,s}$ [Nm]	A4-50	8	1	9	3	7	6	6	166	324	
Teilsicherheitsfaktor	γ _{Ms}						2,38					
Charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	A4-70	11	2	6	5	2	9	2	232	454	
Teilsicherheitsfaktor	γ _{Ms}						1,56					
Charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	A4-80	12	3	0	6	0	10	05	266	519	
Teilsicherheitsfaktor	γ _{Ms}						1,33					
Charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	Stahl 4.6	6,1	1	5	3	0	5	2	133	259	
Teilsicherheitsfaktor	γ _{Ms}					•	1,67					
Charakteristischer Widerstand		Stahl 5.6	7,6	1	9	3	7	6	6	166	324	
Teilsicherheitsfaktor	γ _{Ms}		1,67									
Charakteristischer Widerstand		Stahl 5.8	7,6	1	9	3	7	6	6	166	324	
Teilsicherheitsfaktor	γ _{Ms}						1,25					
Charakteristischer Widerstand		Stahl 8.8	12	3	0	6	0	10	05	266	517	
Teilsicherheitsfaktor	γ _{Ms}						1,25					

¹⁾ Nur zur Verankerung statisch unbestimmt gelagerter Bauteile.

Berner Einschlaganker BE	
Leistungen Charakteristische Werte für Quertragfähigkeit	Anhang C 2

Tabelle C3: Charakteristische Werte für Quertragfähigkeit

BE			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80	
Betonausbruch auf der lastabgewandten Seite												
Faktor	k ₈	[-]	1,74 1,88			1,74	1,88	2,0				
Faktor für Montagesicherheit	γinst	[-]	1,0									
Betonkantenbruch												
Effektive Dübellänge bei Querlast	$I_f = h_{ef}$	[mm]	30 40			30	40	50 65			80	
Dübeldurchmesser	$\emptyset d_{nom}$	[mm]	8		10	1	2	15	16	20	25	

Berner Einschlaganker BE

Leistungen
Charakteristische Werte für Quertragfähigkeit

Anhang C 3

Tabelle C4.1: Verschiebungen unter Zuglast und Querlast für BE aus galvanisch verzinktem Stahl

BE			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80		
Zuglast in C20/25 bis C50/60	N	[kN]	4	,0	6,1	4,0	6,1	8,5		12,6	17,2		
Verschiebung	δ_{No}	[mm]		0,1									
Verschiebung	$\delta_{N\infty}$	[mm]		0,2									
Querlast in C20/25 bis C50/60	V	[kN]	3,9	4,9	6,2		11,3	15,2	18,5	29,4			
Verschiebung	δ_{Vo}	[mm]	0,95	5 1,00 1,05 1,1		10	1,40	1,80					
/erschiebung	$\delta_{V\infty}$	[mm]	1,40	1,	1,50 1,60		1,70		2,10	2,70			

Tabelle C4.2: Verschiebungen unter Zuglast und Querlast für BE aus nichtrostendem Stahl

BE A4			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80		
Zuglast in C20/25 bis C50/60	Ν	[kN]	4,	4,0 6,1 4,0				8,5		12,6	17,2		
Verschiebung	δ_{No}	[mm]		0,1									
Verschiebung	$\delta_{N\infty}$	[mm]					0,2						
Querlast in C20/25 bis C50/60	V	[kN]	3,2	5,6	7,1			12,9	13,5	21,1	33,5		
Verschiebung	δ_{Vo}	[mm]	0,95	1,	1,00 1,05		05	1,10		1,40	1,80		
erscniebung	$\delta_{V^{\infty}}$	[mm]	1,40	1,	1,50 1,60		1,70		2,10	2,70			

Berner Einschlaganker BE	
Leistungen Verschiebungen	Anhang C 4