

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0374 of 28 August 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti metal expansion anchor HSA

Mechanical fastener for use in uncracked concrete

Hilti Aktiengesellschaft Business Unit Anchors 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

17 pages including 3 annexes

EAD 330232-00-0601

ETA-11/0374 issued on 8 August 2016

European Technical Assessment ETA-11/0374

Page 2 of 17 | 28 August 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z33494.17 8.06.01-207/17

European Technical Assessment ETA-11/0374

Page 3 of 17 | 28 August 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti metal expansion anchor HSA is a torque controlled expansion fastener which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action, displacements	See Annex C1 to C3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

233494.17 8.06.01-207/17

European Technical Assessment ETA-11/0374

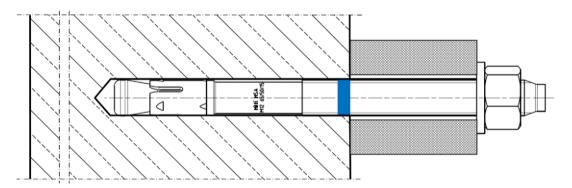
Page 4 of 17 | 28 August 2017

English translation prepared by DIBt

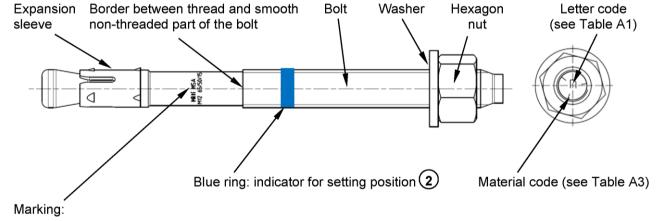
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 28 August 2017 by Deutsches Institut für Bautechnik


Dr.-Ing. Lars Eckfeldt p. p. Head of Department

beglaubigt: Lange


Z33494.17 8.06.01-207/17

Installed condition

Product description: Hilti metal expansion anchor HSA, HSA-BW, HSA-F, HSA-R2 and HSA-R

Hilti HSA M... t_{fix,1}/t_{fix,2}/t_{fix,3}

Brand and metal expansion anchor type as well as metal expansion anchor size and max. fixture thicknesses $t_{\text{fix},1}/t_{\text{fix},2}/t_{\text{fix},3}$

Product description
Installed condition, product marking and identification of metal expansion anchor

Annex A1

Table A1: Letter code for identification of maximum fixture thickness¹⁾

Size	M6	M8	M10	M12	M16	M20
	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	t _{fix,1} /t _{fix,2} /t _{fix,3}				
	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]
<u>z</u>	5/-/-	5/-/-	5/-/-	5/ -/-	5/-/-	5/-/-
У	10/-/-	10/-/-	10/-/-	10/-/-	10/-/-	10/-/-
X	15/5/-	15/5/-	15/5/-	15/-/-	15/-/-	15/-/-
w	20/10/-	20/10/-	20/10/-	20/5/-	20/5/-	20/-/-
v	25/15/-	25/15/-	25/15	25/10/-	25/10/-	25/-/-
<u>u</u>	30/20/-	30/20/-	30/20/-	30/15/-	30/15/-	30/5/-
t	35/25/5	35/25/-	35/25/-	35/20/-	35/20/-	35/10/-
<u>s</u>	40/30/10	40/30/-	40/30/-	40/25/-	40/25/-	40/15/-
r	45/35/15	45/35/5	45/35/5	45/30/-	45/30/-	45/20/5
g	50/40/20	50/40/10	50/40/10	50/35/-	50/35/-	50/25/10
р	55/45/25	55/45/15	55/45/15	55/40/5	55/40/-	55/30/15
<u>o</u>	60/50/30	60/50/20	60/50/20	60/45/10	60/45/5	60/35/20
n	65/55/35	65/55/25	65/55/25	65/50/15	65/50/10	65/40/25
m	70/60/40	70/60/30	70/60/30	70/55/20	70/55/15	70/45/30
Ī	75/65/45	75/65/35	75/65/35	75/60/25	75/60/20	75/50/35
<u>k</u>	80/70/50	80/70/40	80/70/40	80/65/30	80/65/25	80/55/40
İ	85/75/55	85/75/45	85/75/45	85/70/35	85/70/30	85/60/45
<u>i</u>	90/80/60	90/80/50	90/80/50	90/75/40	90/75/35	90/65/50
h	95/85/65	95/85/55	95/85/55	95/80/45	95/80/40	95/70/55
g	100/90/70	100/90/60	100/90/60	100/85/50	100/85/45	100/75/60
f	105/95/75	105/95/65	105/95/65	105/90/55	105/90/50	105/80/65
е	110/100/80	110/100/70	110/100/70	110/95/60	110/95/55	110/85/70
d	115/105/85	115/105/75	115/105/75	115/100/65	115/100/60	115/90/75
<u>c</u>	120/110/90	120/110/80	120/110/80	125/110/75	120/105/65	120/95/80
b	125/115/95	125/115/85	125/115/85	135/120/85	125/110/70	125/100/85
а	130/120/100	130/120/90	130/120/90	145/130/95	135/120/80	130/105/90
aa	-	-	-	155/140/105	145/130/90	-
ab	-	-	-	165/150/115	155/140/100	-
ac	-	-	-	175/160/125	165/150/110	-
ad	-	-	-	180/165/130	190/175/135	-
ae	-	-	-	230/215/180	240/225/185	-
af	-	-	-	280/265/230	290/275/235	-
ag	-	-	-	330/315/280	340/325/285	-

¹⁾ Anchor length in bold is standard item. For selection of other anchor lengths, check availability of the items.

Hilti metal expansion anchor HSA	
Product description Letter code	Annex A2

Table A2: Materials

Designation	Material
HSA, HSA-BW	
Expansion sleeve	M6: Stainless steel A2 M8 – M20: Carbon steel, galvanized
Bolt	Carbon steel, galvanized, rupture elongation (I ₀ = 5d) > 8 %
Washer	Carbon steel, galvanized
Hexagon nut	Carbon steel, galvanized
HSA-F	
Expansion sleeve	Stainless steel A2
Bolt	Hot-dip galvanized, rupture elongation ($I_0 = 5d$) > 8%
Washer	Hot-dip galvanized
Hexagon nut	Hot-dip galvanized
HSA-R2	
Expansion sleeve	Stainless steel A2
Bolt	Stainless steel A2, coated, rupture elongation (I ₀ = 5d) > 8%
Washer	Stainless steel A2
Hexagon nut	Stainless steel A2, coated
HSA-R	
Expansion sleeve	Stainless steel A2
Bolt	Stainless steel A4, coated, rupture elongation (I ₀ = 5d) > 8%
Washer	Stainless steel A4
Hexagon nut	Stainless steel A4, coated

Table A3: Material code for identification of different materials

	HSA, HSA-BW, HSA-F	HSA-R2	HSA-R
Material code			
	Letter code without mark	Letter code with two marks	Letter code with three marks

Hilti metal expansion anchor HSA	
Product description Materials and material code	Annex A3

Table A4: Dimensions of Hilti metal expansion anchor HSA, HSA-BW, HSA-F, HSA-R2 and HSA-R

Size			M6	М8	M10	M12	M16	M20
Min. inner diameter of washer	d ₁	[mm]	6,4	8,4	10,5	13	17	21
Min. outer diameter of washer	dw	[mm]	12	16	20	24	30	37
Min. thickness of washer	h	[mm]	1,6	1,6	2	2,5	3	3

Figure A1: Hilti metal expansion anchor HSA, HSA-F, HSA-R2, HSA-R

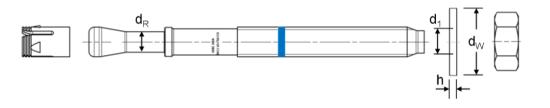
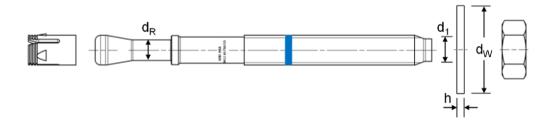
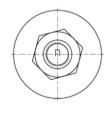




Figure A2: Hilti metal expansion anchor HSA-BW

Hilti metal expansion anchor HSA

Product description
Dimensions

Annex A4

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

Static and quasi static loading.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete.

Use conditions (Environmental conditions):

- HSA, HSA-BW, HSA-F, HSA-R2, HSA-R: Structures subject to dry internal conditions.
- HSA-R (stainless steel A4):

Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist.

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing products are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the metal expansion anchor is indicated on the design drawings (e. g. position of the metal
 expansion anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi static loading are designed in accordance with: FprEN 1992-4:2016 and EOTA Technical Report TR 055, 12/2016.

Installation:

electronic copy of the eta by dibt: eta-11/0374

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The metal expansion anchor may only be set once.

Hilti metal expansion anchor HSA	
Intended use	Annex B1
Specifications	

Table B1: Drilling technique

Size		M6	M8	M10	M12	M16	M20
Hammer drilling (HD)		✓	✓	✓	✓	✓	✓
Hammer drilling with Hilti hollow drill bit TE-CD/YD drilling system (HDB)		-	-	ı	✓	✓	✓
Diamond coring (DD) with ■ DD 30-W coring tool and C+ SPX-T (abrasive) core bits	₹ >>	-	-	√	√	√	√

Table B2: Drill hole cleaning

Manual cleaning (MC): Hilti hand pump for blowing out drill holes.	
Automatic cleaning (AC): Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.	-

Table B3: Setting alternatives

Size	М6	M8	M10	M12	M16	M20
Hammer setting	✓	✓	✓	✓	✓	✓
Machine setting (impact screw driver with setting tool)	-	✓	✓	✓	√	-

Table B4: Methods for application of torque moment

Size		М6	M8	M10	M12	M16	M20			
Torque wrench		✓	✓	✓	✓	✓	✓			
Setting tool S-TB HSA	6-TE KB3 2/6*	-	✓	✓	✓	✓	-			
Impact screw driver Hilti SI	W ¹⁾	-	1	22T-A	-					
Cotting around	HSA, HSA-BW, HSA-F	-	I	_2)						
Setting speed	HSA-R2, HSA-R	-		ı	II		-			
Setting time	t _{set} [sec.]	-	- 4							

¹⁾ See Table B5 for battery state of charge depending on the ambient temperature.

Table B5: Battery state of charge of impact screw driver

Ambient temperature		≤ +5 °C	+5 to +10 °C	≥ +10 °C
	low	-	-	-
Battery state of charge	middle	-	-	✓
	high	-	✓	✓

Hilti metal expansion anchor HSA	
Intended use Installation methods	Annex B2

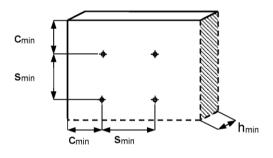

²⁾ Impact screw driver operates with fixed speed.

Table B6: Installation parameters

Size				M6			M8			M10			M12	2		M16		M20			
Nominal diameter of drill bit	d ₀	[mm]		6			8			10			12			16					
Max. cutting diameter of drill bit	d _{cut}	[mm]		6,4			8,45			10,45			12,5	5		16,5		2	5		
Max. diameter of clearance hole in the fixture	df	[mm]		7		9		12			14			18				22			
Width across flats	SW	[mm]		10			13			17			19			24			30		
Setting position			①	2	(S)	\odot	②	3	\odot	2	3	\odot	2	3	\odot	(W	(S)	\odot	2	3	
Min. thickness of concrete member	h _{min}	[mm]		00	120		00		100	120	160	100	140	180	140	160	180	160	22	20	
Nominal anchorage depth	h _{nom}	[mm]	37	47	67	39	49	79	50	60	90	64	79	114	77	92	132	90	115	130	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115	
Min. drill hole depth (HD, HDB)	h ₁	[mm]	42	52	72	44	54	84	55	65	95	72	87	122	85	100	140	98	123	138	
Min. drill hole depth (DD)	h ₁	[mm]		-		-		58	68	98	72	87	122	85	100	140	98	123	138		
Standard installation	torq	ue mo	mei	nt																	
Installation torque moment	T_{inst}	[Nm]		5			15 ¹⁾			25 ¹⁾		50 ¹⁾						200			
Min. spacing	Smin	[mm]		35			35			50		70				90		195	17	75	
Min. edge distance	C _{min}	[mm]		35		40	3	5	50	4	0	70	65	55	80	75	70	130	12	20	
Max. installation toro	jue m	omen	t																		
Max. installation torque moment	T_{max}	[Nm]		5			20			35			80			150			250		
Min. spacing	Smin	[mm]		35			35			40			50			80			120		
Min. edge distance	Cmin	[mm]		35		100				150			190			200		225			

¹⁾ Alternatively, the metal expansion anchor can be tightened with an impact screw driver in combination with a setting tool with the required setting time (see Annex B2).

Hilti metal expansion anchor HSA	
Intended use Installation parameters	Annex B3

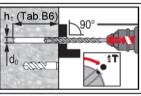
electronic copy of the eta by dibt: eta-11/0374

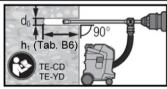
Figure B1: Constant anchor length with various fixture thicknesses t_{fix} and corresponding setting position Setting depth mark (optional) Setting position 1 **Fixture** Setting depth mark (blue ring) Setting position (2) **Fixture** $h_{min,2}$ Setting depth mark (optional) Setting position (3) h_{1,3} **Fixture** h_{min,3} Hilti metal expansion anchor HSA Annex B4 Intended use Installation parameters

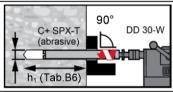
Figure B2: Various anchor lengths for different setting positions and corresponding fixture thickness tfix Setting depth mark (optional) d Setting position 1 h_{nom,1} **Fixture** Setting depth mark T_{inst} (blue ring) Setting position 2 h_{nom,2} h_{1,2} **Fixture** h_{min,2} Setting depth mark (optional) Setting position (3) $h_{1.3}$ **Fixture** $h_{\text{min,3}}$

Table B7: Checking setting position

Setting position	Pre-setting	Through setting
1	h _{nom,1} is reached when the non-threaded part of the bolt is completely below the concrete surface. For metal expansion anchor HSA with letter code "aa" to "ag" (see Table A1)	h _{nom,1} , h _{nom,2} or h _{nom,3} is reached when the present thickness of the fixture t _{fix} and the maximum thickness of the fixture t _{fix,1} /t _{fix,2} /t _{fix,3} given by the metal expansion anchor HSA (see Table A1) is identical.
	h _{nom,1} has to be measured and marked by the installer.	If the present thickness of the fixture t _{fix} is smaller than the maximum thickness of the
2	h _{nom,2} is reached when the blue ring is completely below the concrete surface.	fixture t _{fix,1} /t _{fix,2} /t _{fix,3} given by the metal expansion anchor HSA
3	h _{nom,3} has to be measured and marked by the installer.	 position of washer and hexagon nut has to be adjusted or drill hole depth h₁ has to be increased.

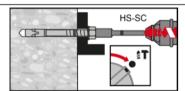

Hilti metal expansion anchor HSA	
Intended use Installation parameters	Annex B5




Installation instruction

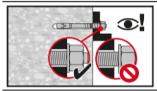
Hole drilling and cleaning

- a) Hammer drilling (HD) with manual cleaning (MC): M6 to M20
- b) Hammer drilling with Hilti hollow c) drill bit (HDB) with automatic cleaning (AC): M12 to M20
- Diamond coring (DD) with manual cleaning (MC): M10 to M20



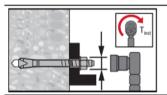
Anchor setting

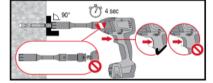
- a) Hammer setting:
- M6 to M20

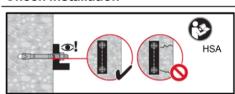


M8 to M16

b) Machine setting (impact screw driver with setting tool):




Check setting (see also Table B7)


Anchor torqueing

- a) Torque wrench: M6 to M20
- b) Impact screw driver with setting tool: M8 to M16

Check installation

Hilti metal expansion anchor HSA

Intended use

Installation instructions

Annex B6

Z35090.17

English translation prepared by DIBt

Table C1: Characteristic resistance under tension load in non-cracked concrete

Size				М6			M8			M10)		M12	!		M16	•		M20)
Setting position			\odot	(3	1	(2)	(S)	\odot	2	3	1	2	3	1	2	3	\odot	2	3
Effective anchorage depth	h _{ef}	[mm]	30 ¹⁾			30 ¹⁾		70	40	50	80	50		100	65		120	75		115
Steel failure																				
Partial safety factor	$\gamma { m Ms}^{2)}$	[-]		1,4																
HSA, HSA-BW																				
Characteristic resistance	$N_{Rk,s}$	[kN]		9,0			16,5			28,0)		41,4			82,6	6		124	ļ
HSA-F																				
Characteristic resistance	$N_{Rk,s}$	[kN]		9,5			15,9			27,0)		40,4			80,1			-	
HSA-R2, HSA-R						•						•			•					
Characteristic resistance	$N_{Rk,s}$	[kN]		12,2			18,3			35,6	6		44,6	3		90,5	5		97,6	3
Pullout failure																				
Installation safety factor	γinst	[-]									1	,0								
Characteristic resistance	$N_{Rk,p}$	[kN]	6	7,5	9	_3)	_3)	16	_3)	_3)	25	_3)	_3)	35	_3)	_3)	50	_3)	_3)	_3)
	C20/2	25 [-]									1,	00								
Increasing factor	C30/3	37 [-]									1,	22								
Increasing factor ψ _c	C40/5	50 [-]									1,	41								
	C50/6										1,	55								
Concrete cone and	splittin	ıg fail	ure																	
Installation safety factor	γ inst	[-]									1	,0								
Factor for non- cracked concrete	k ₁ =k _u	cr,N [-]									11	1,0								
Chaoina	Scr,N	[mm]] 3 ⋅ h _{ef}																	
Spacing	Scr,sp	[mm]	100	120	130	130	180	200	190	210	290	200	250	310	230	280	380	260	370	400
Edgo distance	Ccr,N	[mm]									1,5	· h _{ef}								
Edge distance	C _{cr,sp}	[mm]	50	60	65	65	90	100	95	105	145	100	125	155	115	140	190	130	185	200

¹⁾ Use is restricted to anchoring of statically indeterminate structural components under internal exposure conditions.

Hilti metal expansion anchor HSA	
Performance Characteristic resistance under tension load in non-cracked concrete	Annex C1

 ²⁾ In absence of other national regulations.
 3) Pull-out failure is not decisive for design.

Table C2: Characteristic resistance under shear load in non-cracked concrete

Size				M6			M8			M10			M12	:		M16	,	M20		
Setting position			1	12312					\odot	2	3	\odot	②	3	\odot	2	3	1	23	
Effective anchorage depth	h _{ef}	[mm]	30 ¹⁾			30 ¹⁾		(<u>3)</u> 70	40	50								75	100 115	
Steel failure withou	ıt lever	arm																		
Partial safety factor	$\gamma \rm Ms^{2)}$	[-]		1,25																
Ductility factor	k ₇	[-]		1,0																
HSA, HSA-BW				·																
Characteristic resistance	$V_{Rk,s}$	[kN]		6,5			10,6			18,9			29,5	,		51,0)		85,8	
HSA-F																				
Characteristic resistance	$V_{Rk,s}$	[kN]		6,5			10,6	,	18,9			29,5			51,0				-	
HSA-R2, HSA-R						•														
Characteristic resistance	$V_{Rk,s}$	[kN]		7,2			12,3		22,6			29,3			56,5				91,9	
Steel failure with le	ver arn	n																		
Partial safety factor	$\gamma \text{Ms}^{2)}$	[-]									1,	25								
Ductility factor	k ₇	[-]									1	,0								
HSA, HSA-BW																				
Characteristic resistance	$M^0_{\text{Rk},s}$	[Nm]		9,9			21,7			48,6			91,7		216				454	
HSA-F																				
Characteristic resistance	$M^0_{Rk,s}$	[Nm]		9,9		21,		,		48,6		91,7		,	216				-	
HSA-R2, HSA-R	HSA-R2, HSA-R																			
Characteristic resistance	$M^0_{Rk,s}$	[Nm]		9,9		21,0		48,6		76,0)	200				406			

¹⁾ Use is restricted to anchoring of statically indeterminate structural components under internal exposure conditions. ²⁾ In absence of other national regulations.

Hilti metal expansion anchor HSA	
Performance Characteristic resistance under shear load in non-cracked concrete	Annex C2

Table C2 continued

Size				М6			M8			M10			M12			M16	i		M20	
Setting position			\odot	(1)	(3)	\odot	2	\odot	\odot	(1)	\odot	\odot	(1)	\odot	\odot	2	3	\odot	2	3
Effective anchorage depth	h _{ef}	[mm]	30 ¹⁾	40	60	30 ¹⁾	40	70	40	50	80	50	65	100	65	80	120	75	100	115
Concrete pry-out fa	ilure																			
Installation safety factor	γinst	[-]									1	,0								
Pry-out factor	k ₈	[-]	ì	1	2	1	1,5	2		2,4			2			2,9		2	3	,5
Concrete edge failu	ıre																			
Installation safety factor	γinst	[-]									1	,0								
Effective length of anchor	l _f	[mm]	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115
Effective outside diameter of anchor	d_{nom}	[mm]		6			8			10			12			16			20	

¹⁾ Use is restricted to anchoring of statically indeterminate structural components under internal exposure conditions.

Table C3: Displacements under tension and shear loads in non-cracked concrete

Size			M6			M8			M10			M12			M16			M20		
Setting position			1	2	3	\odot	2	3	\odot	2	3	\odot	(2)	3	\odot	2	(S)	\odot	2	3
Effective anchorage depth	h _{ef}	[mm]	30 ¹⁾	40	60	30 ¹⁾	40	70	40	50	80	50	65	100	65	80	120	75	100	115
Displacements under tension loads																				
Tension force	N	[kN]	2,9	3,6	4,3	4,0	6,1	7,6	6,1	8,5	11,9	8,5	12,6	16,7	12,6	17,2	23,8	16,6	25,1	30,8
Corresponding displacement	δνο	[mm]	0,2	0,6	1,0	0,2	1,2	1,8	0,4	1,1	2,0	0,3	1,4	2,3	0,4	1,3	2,1	0,1	0,8	1,9
	$\delta_{\text{N}^{\infty}}$	[mm]	0,6	1,0	1,4	0,6	1,6	2,2	0,8	1,5	2,4	0,7	1,8	2,7	0,8	1,7	2,5	0,5	1,2	2,3
Displacements under shear loads																				
Shear force	V	[kN]		3,7		6,1			10,8		16,7		29,1		49,0					
Corresponding displacement	δνο	[mm]	1,6		1,9		2,0			2,1			2,2		2,3					
	δν∞	[mm]	2,4		2,9		3,0			3,2			3,3		3,5					

¹⁾ Use is restricted to anchoring of statically indeterminate structural components under internal exposure conditions.

Hilti metal expansion anchor HSA	
Performance Characteristic resistance under shear load in non-cracked concrete; Displacement under tension and shear loads in non-cracked concrete	Annex C3