

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0449 of 4 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Mapei Injection system Mapefix VE SF or VE SF Cold Climefor concrete

Injection system for use in concrete

Mapei S.p.A. via Cafiero, 22 20158 MILANO (MI) ITALIEN

Mapei S.p.A., Plant1 Germany

21 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-11/0449

Page 2 of 21 | 4 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 4 December 2017

Specific Part

1 Technical description of the product

The "Mapei Injection system Mapefix VE SF or VE SF Cold Clime for concrete" is a bonded anchor consisting of a cartridge with injection mortar Mapefix VE SF or Mapefix VE SF Cold Clime and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 / C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-11/0449

Page 4 of 21 | 4 December 2017

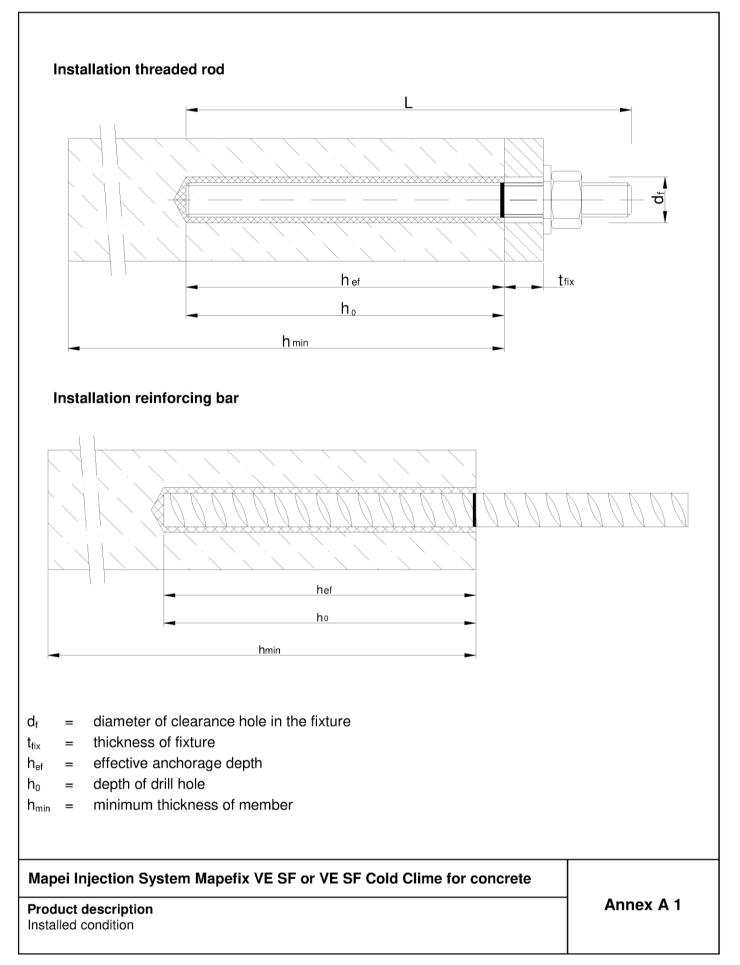
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

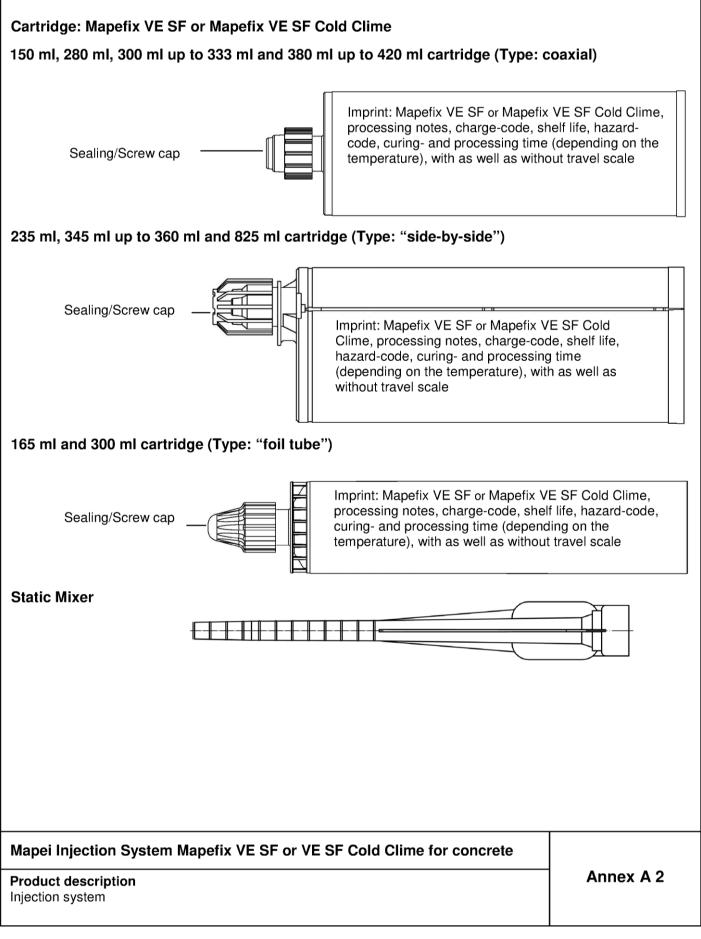
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 4 December 2017 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-11/0449 of 4 December 2017

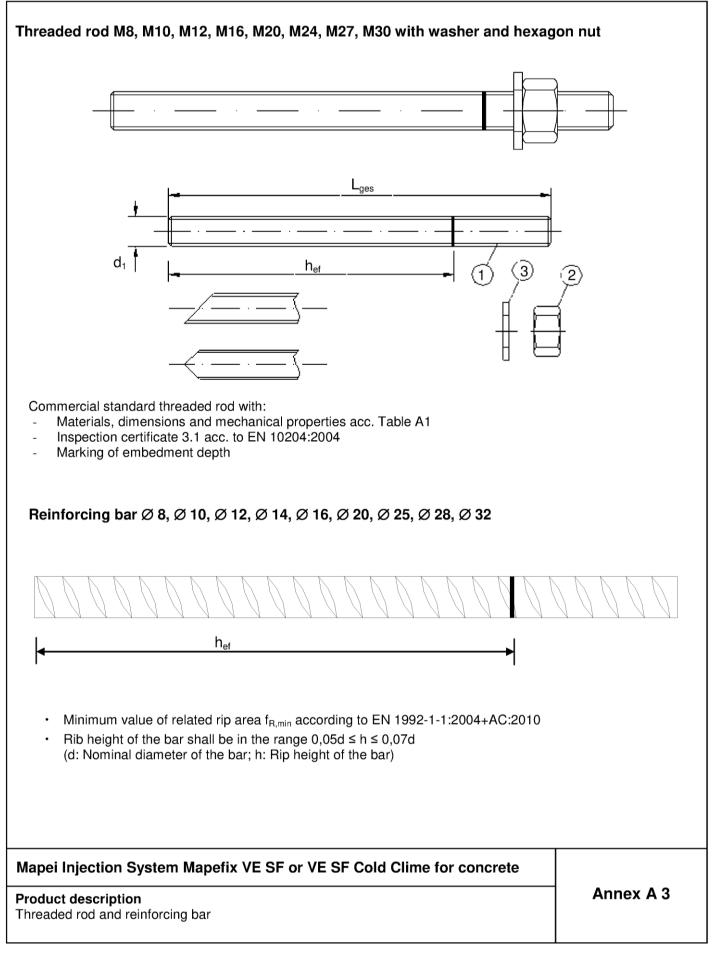


Table A1: Materials

Part	Designation	Material	
Steel	, zinc plated ≥ 5 μm acc. to EN ISO 4042:19	999 or	
Steel	hot-dip galvanised ≥ 40 μm acc. to EN IS€		2009
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 4.8, 5.8, 8.8, EN 1993- $A_5 > 8\%$ fracture elongation	1-8:2005+AC:2009
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 10263 Property class 4 (for class 4.6 or 4.8 rod) B Property class 5 (for class 5.8 rod) EN ISC Property class 8 (for class 8.8 rod) EN ISC	EN ISO 898-2:2012, D 898-2:2012,
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised	
Stain	less steel		
1	Anchor rod	$\begin{array}{l} \mbox{Material 1.4401 / 1.4404 / 1.4571, EN 100} \\ \mbox{Property class 50 EN ISO 3506-1:2009} \\ \mbox{Property class 70} (\leq M24) EN ISO 3506-1 \\ \mbox{A}_5 > 8\% \mbox{ fracture elongation} \end{array}$	
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 1008 Property class 50 (for class 50 rod) EN IS Property class 70 (\leq M24) (for class 70 rod	O 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10	088-1:2005
High	corrosion resistance steel		
1	Anchor rod	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2009 Property class 50 (for class 50 rod) EN IS0 Property class 70 (\leq M24) (for class 70 rod)	O 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:200	5
Reinf	orcing bars	-	
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1 $f_{uk} = f_{tk} = k \cdot f_{yk}$	992-1-1/NA:2013
		· 	
	ei Injection System Mapefix VE SF or luct description prials	VE SF Cold Clime for concrete	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Mapei Injection System Mapefix VE SF or VE SF Cold Clime for concrete

Intended Use Specifications

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35	
Effective encharge depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120	
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600	
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33	
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37	
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200	
Thickness of fixture	t _{fix,min} [mm] >	0								
Thickness of fixture	t _{fix,max} [mm] <	1500								
Minimum thickness of member	h _{min} [mm]		_{ef} + 30 m ≥ 100 mn		h _{ef} + 2d ₀					
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150	
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150	

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40		
Effective encharage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128		
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640		
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5		
Minimum thickness of member	h _{min} [mm]		h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160		
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160		

Mapei Injection System Mapefix VE SF or VE SF Cold Clime for concrete

Intended Use Installation parameters

Steel brush RBT Table B3: Parameter cleaning and setting tools d_{b,min} Piston Threaded \mathbf{d}_0 db Rebar min. Rod Drill bit - Ø Brush - Ø plug Brush - Ø (mm)(mm) (mm)(mm)(mm)(No.) M8 10 RBT10 12 10.5 M10 8 12 RBT12 14 12,5 No M12 14 10 RBT14 16 14.5 piston plug 12 16 RBT16 18 16,5 required 14 M16 18 RBT18 20 18,5 16 20 RBT20 22 20,5 24 VS24 M20 20 RBT24 26 24,5 M24 28 RBT28 30 28,5 VS28 M27 25 32 RBT32 VS32 34 32,5 M30 28 35 RBT35 37 35,5 **VS35** 32 40 RBT40 41,5 **VS40** 40,5

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm – uncracked concrete

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 40 mm

Mapei Injection System Mapefix VE SF or VE SF Cold Clime for concrete

Intended Use

Cleaning and setting tools

Installation inst	ructions	
	1. Drill with hammer drill a hole into the base material to the size a depth required by the selected anchor (Table B1 or Table B2). I drill hole: the drill hole shall be filled with mortar	
	Attention! Standing water in the bore hole must be removed	d before cleaning.
4x	2a. Starting from the bottom or back of the bore hole, blow the hole compressed air (min. 6 bar) or a hand pump (Annex B 3) a mini the bore hole ground is not reached an extension shall be used	mum of four times. If
or	The hand-pump can only be used for anchor sizes in uncracked bore hole diameter 20mm or embedment depth up to 240mm.	d concrete up to
4x	Compressed air (min. 6 bar) can be used for all sizes in cracked concrete.	and uncracked
<u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>	 2b. Check brush diameter (Table B3) and attach the brush to a drilli or a battery screwdriver. Brush the hole with an appropriate size > d_{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush ex shall be used (Table B3). 	ed wire brush
or	2c. Finally blow the hole clean again with compressed air (min. pump (Annex B 3) a minimum of four times. If the bore hole gro an extension shall be used. The hand-pump can <u>only</u> be used funcracked concrete up to bore hole diameter 20mm or embedm 240mm. Compressed air (min. 6 bar) can be used for all sizes in uncracked concrete.	und is not reached or anchor sizes in nent depth up to
4x	After cleaning, the bore hole has to be protected against re an appropriate way, until dispensing the mortar in the bore the cleaning repeated has to be directly before dispensing In-flowing water must not contaminate the bore hole again. ¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an er 240 mm also in cracked concrete with hand-pump.	hole. If necessary, the mortar.
	3. Attach a supplied static-mixing nozzle to the cartridge and load correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended we (Table B4 or B5) as well as for new cartridges, a new static-mix	orking time
	4. Prior to inserting the anchor rod into the filled bore hole, the posenbedment depth shall be marked on the anchor rods.	ition of the
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately full strokes and discard non-uniformly mixed adhesive component shows a consistent grey colour. For foil tube cartridges is must be minimum of six full strokes.	nts until the mortar
Mapei Injection Sy	stem Mapefix VE SF or VE SF Cold Clime for concrete	
Intended Line		Annex B 4

Intended Use Installation instructions

Installation inst	ructions (continuation)
	6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working times given in Table B4 or B5.
	Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
+20°C	9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4 or B5).
	 After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Mapei Injection System Mapefix VE SF or VE SF Cold Clime for concrete

Intended Use Installation instructions (continuation)

Table B4		aximum \ apefix VE	Working time and minimum curing SF	time
Concre	te temp	perature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾
-10 °C	to	-6°C	90 min ²⁾	24 h ²⁾
-5 °C	to	-1°C	90 min	14 h
0 °C	to	+4°C	45 min	7 h
+5 °C	to	+9°C	25 min	2 h
+ 10 °C	to	+19°C	15 min	80 min
+ 20 °C	to	+29°C	6 min	45 min
+ 30 °C	to	+34°C	4 min	25 min
+ 35 °C	to	+39°C	2 min	20 min
>	> + 40 °(0	1,5 min	15 min
Cartrido	ge temp	erature	+5°C to	+40°C
	temper 5: M	ature must l	ne must be doubled. be at min. +15°C. Working time and minimum curing SF Cold Clime	time
Concret	-		Gelling- / working time	Minimum curing time in dry concrete ¹⁾
-20 °C	to	-16°C	75 min	24 h

55 min

35 min

20 min

10 min

6 min

6 min

-20°C to +10°C

In wet concrete the curing time must be doubled. 1)

-11°C

-6°C

-1°C

+4°C

+9°C

Mapei Injection System Mapefix VE SF or VE SF Cold Clime for concrete

Intended Use

to

to

to

to

to

Cartridge temperature

+ 10 °C

-15 °C

-10 °C

-5 °C

0°C

+5 °C

Annex B 6

16 h

10 h

5 h

2,5 h

80 Min

60 Min

Curing time

Size					M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
	acteristic ten	sion resistance, Steel failure				MIO		IN TO	WI 20	11/24	W 27	W 30
	Property clas	,	N _{Bk.s}	[kN]	15	23	34	63	98	141	184	224
	Property clas		N _{Rk.s}	[kN]	18	29	42	78	122	176	230	280
	Property clas		N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
		I A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
		I A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
		sion resistance, Partial safety factor									<u> </u>	L
	Property clas	· · ·	γ _{Ms,N} 1)	[-]				2	,0			
Steel,	Property clas	s 4.8	γ _{Ms,N} ¹⁾	[-]				1	,5			
Steel,	Property clas	s 5.8	γ _{Ms,N} 1)	[-]				1	,5			
Steel,	Property clas	s 8.8	γ _{Ms,N} 1)	[-]				1	,5			
Stainl	ess steel A4 a	and HCR, Property class 50	γ _{Ms,N} ¹⁾	[-]				2,	86			
Stainl	ess steel A4 a	and HCR, Property class 70	γ _{Ms,N} ¹⁾	[-]				1,	87			
Chara	acteristic she	ar resistance, Steel failure			_							
E	Steel, Prope	rty class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
er al	Steel, Prope	erty class 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Without lever arm	Steel, Prope	erty class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
ithou	Stainless ste	eel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
8	Stainless ste	eel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
_	Steel, Prope	erty class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
arm	Steel, Prope	erty class 5.8	M _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
With lever	Steel, Prope	erty class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Vith	Stainless ste	eel A4 and HCR, Property class 50	M _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
>	Stainless ste	eel A4 and HCR, Property class 70	M _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
Chara	acteristic she	ar resistance, Partial safety factor										
	Property clas		γ _{Ms,V} 1)	[-]				1,	67			
Steel,	Property clas	s 4.8	γ _{Ms,V} 1)	[-]				1,	25			
	Property clas		γ _{Ms} ,v ¹⁾	[-]					25			
	Property clas		γ _{Ms,V} ¹⁾	[-]					25			
		and HCR, Property class 50	γ _{Ms,V} ¹⁾	[-]				-	38			
Stainl	ess steel A4 a	and HCR, Property class 70	γ _{Ms,V} 1)	[-]				1.	56			

¹⁾ in absence of national regulation

Mapei Injection System Mapefix VE SF or VE SF Cold Clime for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

Anchor size threaded r	od			M 8	M 10	M 12	M 16	M 20	M24	M27	M30	
Steel failure								-				
Characteristic tension re	sistance	N _{Rk,s}	[kN]				see Ta	ble C1				
	olotanoo	N _{Rk,s,C1}	[kN]				1,0 •					
Partial safety factor		γms,N	[-]				see Ta	ble C1				
Combined pull-out and	l concrete failure											
Characteristic bond resis	stance in non-cracked co	ncrete C20/25										
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	10	12	12	12	12	11	10	9	
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5			Determine	<u>`</u>	
Temperature range II: 80°C/50°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5	
	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5			Determine	<u>,</u>	
Temperature range III: 120°C/72°C	dry and wet concrete flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5 4,0	6,5 5,0	6,5 5,0	6,5 5,0	6,5	6,5	5,5 Determine	5,0	
	stance in cracked concre	$\tau_{\rm Rk,ucr}$	[[[%/1111-]	4,0	5,0	5,0	5,0	NOFER	onnance	Determine		
		_	[N/mm ²]	4,0	5.0	5,5	5,5	5,5	5,5	6,5	6,5	
Temperature range I:	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3.8	4,5	4.5	
40°C/24°C		$\tau_{\rm Rk,C1}$ $\tau_{\rm Rk,cr}$	[N/mm ²]	4,0	4,0	5,5	5,5	,	-,-	Determine	.,_	
	flooded bore hole	τ _{Rk,C1}	[N/mm ²]	2,5	2,5	3,7	3,7			Determine	· ·	
		τ _{Rk,cr}	[N/mm ²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5	
Temperature range II:	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1	
80°C/50°C	fleeded been bele	$\tau_{\rm Rk,cr}$	[N/mm ²]	2,5	3,0	4,0	4,0	No Perf	ormance	Determine	d (NPD	
	flooded bore hole	$\tau_{\rm Rk,C1}$	[N/mm ²]	1,6	1,9	2,7	2,7	No Perf	ormance	Determine	d (NPD	
	dry and wet concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5	
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,C1}}$	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4	
120°C/72°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm²]	2,0	2,5	3,0	3,0	No Perf	ormance	Determine	ed (NPD	
		$ au_{\text{Rk,C1}}$	[N/mm²]	1,3	1,6	2,0	2,0		ormance	Determine	ed (NPD	
			5/30				,	02				
Increasing factors for co	ncrete)/37				,	04				
(only static or quasi-stati		C35	1,07									
ψ_{c}		C40	1,08									
			1,09									
Factor according to	Non-cracked concrete	C50/60		10.1								
CEN/TS 1992-4-5		- k ₈ [-]		7,2								
Section 6.2.2.3	Cracked concrete						1	,2				
Concrete cone failure Factor according to	New and shared a survey to	1.	11				10					
CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]	10,1								
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]				7	,2				
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}				
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}				
Splitting												
Edge distance		C _{cr,sp}	[mm]		1,0	$h_{ef} \le 2$	$2 \cdot h_{ef} (2,$	$5 - \frac{h}{h_{ef}}$) ≤ 2,4	h _{ef}		
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp				
Installation safety factor	(dry and wet concrete)	$\gamma_2 = \gamma_{inst}$		1,0				1,2				
Installation safety factor	, ,	$\gamma_2 = \gamma_{inst}$.,-	1,	,4		-	ormance	Determine	ed (NPD	

Mapei Injection System Mapefix VE SF or VE SF Cold Clime for concrete

Performances Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1) Annex C 2

Z57046.17

Table C3: Characteristic value seismic action (per					tatic, o	quasi-	static	actior	n and	
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
Characteristic shear resistance	$V_{Rk,s}$	[kN]				see Ta	ble C1			
Characteristic shear resistance	V _{Rk,s,C1}	[kN]				0,70	• V _{Rk,s}			
Partial safety factor	YMs,V	[-]				see Ta	ble C1			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,	,8			
Steel failure with lever arm										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				see Ta	ble C1			
	M ⁰ _{Rk,s,C1}	[Nm]			No Perfo	ormance [Determine	ed (NPD)		
Partial safety factor	γms,v	[-]				see Ta	ble C1			
Concrete pry-out failure										
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎					2,	,0			
Installation safety factor	$\gamma_2 = \gamma_{inst}$					1,	,0			
Concrete edge failure										
Effective length of anchor	ŀ	[mm]				l _f = min(h	_{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	$\gamma_2=\gamma_{inst}$					1,	,0			

Mapei Injection System Mapefix VE SF or VE SF Cold Clime for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Annex C 3

40°C/24°C flood Temperature range III: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Characteristic bond resistance dry a Temperature range I: dry a 40°C/24°C flood Temperature range I: dry a 40°C/24°C flood Temperature range II: dry a 80°C/50°C flood Temperature range III: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ_c	and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete ded bore hole	T _{Rk,ucr}	[kN] [kN] [mm ²] [-] /25 [N/mm ²] [N/mm ²]	50 10 7,5 5,5 5,5 4,0 2,5 4,0 2,5 1,6 2,5 1,6 2,0 1,3	79 12 8,5 9 6,5 5,0 5,0 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9 2,5	113 12 8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0		$\begin{array}{c} A_{s} \cdot f_{uk}^{12} \\ 0 \cdot A_{s} \cdot f \\ 201 \\ 1,4^{21} \\ 1,4^{21} \\ 12 \\ 8,5 \\ 9 \\ 6,5 \\ 6,5 \\ 5,0 \\ \hline \\ 5,5 \\ 3,7 \\ 5,5 \\ 3,7 \\ 4,0 \\ 2,7 \\ 4,0 \\ 2,7 \\ 1,2 $	12 No Perfu 9 No Perfu 6,5 No Perfu 5,5 3,7 No Perfu 4,0 2,7	8,0 ormance 6,0 ormance 5,5 3,8 ormance ormance 4,0	10 Determine 7,0 Determine 5,0 Determine 6,5 4,5 Determine Determine 4,5	6,0 ed (NPD 4,5 ed (NPD 6,5 4,5 ed (NPD
Cross section area Partial safety factor Combined pull-out and conc Characteristic bond resistance Temperature range I: 40°C/24°C floodd Temperature range II: 80°C/50°C Temperature range III: 120°C/72°C Characteristic bond resistance Temperature range III: 120°C/72°C floodd Characteristic bond resistance Itop Characteristic bond resistance Itop Characteristic bond resistance Itop Itop A0°C/24°C Itop Itop A0°C/24°C Itop Itop Itop A0°C/24°C Itop Itop<	And wet concrete and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete and wet concrete and wet concrete and wet concrete ded bore hole and wet concrete and wet concrete and wet concrete	N _{Rk,s,C1} A _s YMs,N rcrete C20 T _{Rk,ucr} T _{Rk,cr} T _{Rk,cr} T _{Rk,cr} T _{Rk,cr} T _{Rk,cr} T _{Rk,cr} T _{Rk,c1} T _{Rk,c1} T _{Rk,c1} T _{Rk,c1} T _{Rk,c1} T _{Rk,c1}	[kN] [mm ²] [-] /25 [N/mm ²] [N/mm ²]	10 7,5 5,5 5,5 4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	12 8,5 9 6,5 5,0 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	12 8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	1,1 154 8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	0 • A _s • f 201 1,4 ²⁾ 12 8,5 9 6,5 6,5 5,0 5,5 3,7 4,0 2,7	12 No Perfu 9 No Perfu 6,5 No Perfu 5,5 3,7 No Perfu 4,0 2,7	11 ormance 8,0 ormance 6,0 ormance 5,5 3,8 ormance ormance 4,0	10 Determine 7,0 Determine 5,0 Determine 6,5 4,5 Determine Determine 4,5	8,5 ed (NPD 6,0 ed (NPD 4,5 ed (NPD 6,5 4,5 ed (NPD ed (NPD ed (NPD
Cross section area Partial safety factor Combined pull-out and conc Characteristic bond resistance Temperature range I: 40°C/24°C floodd Temperature range II: 80°C/50°C Temperature range III: 120°C/72°C Characteristic bond resistance Temperature range III: 120°C/72°C floodd Characteristic bond resistance Itop Characteristic bond resistance Itop Characteristic bond resistance Itop Itop A0°C/24°C Itop Itop A0°C/24°C Itop Itop Itop A0°C/24°C Itop Itop<	And wet concrete and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete and wet concrete and wet concrete and wet concrete ded bore hole and wet concrete and wet concrete and wet concrete	As γMs.N TRk.ucr TRk.ucr TRk.ucr TRk.ucr TRk.ucr TRk.ucr TRk.ucr TRk.ucr TRk.ucr TRk.cr TRk.c1	[mm ²] [mm ²] [.] [25 [N/mm ²] [N/mm ²]	10 7,5 5,5 5,5 4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	12 8,5 9 6,5 5,0 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	12 8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	154 12 8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	201 1,4 ²⁾ 8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	214 12 No Perfu 6,5 No Perfu 5,5 3,7 No Perfu No Perfu 4,0 2,7	11 ormance 8,0 ormance 6,0 ormance 5,5 3,8 ormance ormance 4,0	10 Determine 7,0 Determine 5,0 Determine 6,5 4,5 Determine Determine 4,5	8,5 ed (NPC 6,0 ed (NPC 4,5 ed (NPC 6,5 4,5 ed (NPC ed (NPC
Partial safety factor Combined pull-out and conc Characteristic bond resistance Temperature range I: dry a 40°C/24°C floodd Temperature range II: dry a 80°C/50°C floodd Temperature range III: dry a 120°C/72°C floodd Characteristic bond resistance dry a 120°C/72°C floodd Temperature range III: dry a 40°C/24°C floodd Temperature range II: dry a 40°C/24°C floodd Temperature range II: dry a 40°C/24°C floodd Temperature range III: dry a 120°C/72°C floodd Temperature range III: dry a 120°C/72°C floodd Increasing factors for concrete floodd (only static or quasi-static actic w/o	ce in non-cracked co and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete ded bore hole ce in cracked concrete and wet concrete ded bore hole and wet concrete and wet concrete ded bore hole and wet concrete	YMs.N TRk.ucr TRk.cr TRk.c1	[-] /25 [N/mm ²] [N/mm ²]	10 7,5 5,5 5,5 4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	12 8,5 9 6,5 5,0 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	12 8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	12 8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	1,4 ²⁾ 12 8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	12 No Perfu 6,5 No Perfu 5,5 3,7 No Perfu No Perfu 4,0 2,7	11 ormance 8,0 ormance 6,0 ormance 5,5 3,8 ormance ormance 4,0	10 Determine 7,0 Determine 5,0 Determine 6,5 4,5 Determine Determine 4,5	8,5 ed (NPE 6,0 ed (NPE 4,5 ed (NPE 6,5 4,5 ed (NPE ed (NPE
Combined pull-out and conc Characteristic bond resistance Temperature range I: dry a 40°C/24°C flood Temperature range II: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Characteristic bond resistance dry a 120°C/72°C flood Characteristic bond resistance dry a 40°C/24°C flood Temperature range II: dry a 40°C/24°C flood Temperature range II: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete flood Increasing factors for concrete (only static or quasi-static actic Ψ_c	ce in non-cracked co and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete ded bore hole ce in cracked concrete and wet concrete ded bore hole and wet concrete and wet concrete ded bore hole and wet concrete	TRK,ucr TRK,ucr TRK,ucr TRK,ucr TRK,ucr TRK,ucr TRK,ucr TRK,ucr TRK,cr TRK,C1	/25 [N/mm ²] [N/mm ²]	7,5 7,5 5,5 5,5 4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	8,5 9 6,5 5,0 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	12 8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	No Perfu 9 No Perfu 6,5 No Perfu 5,5 3,7 No Perfu 4,0 2,7	ormance 8,0 ormance 6,0 ormance 5,5 3,8 ormance ormance 4,0	Determine 7,0 Determine 5,0 Determine 6,5 4,5 Determine Determine 4,5	ed (NPE 6,0 ed (NPE 4,5 ed (NPE 6,5 4,5 ed (NPE ed (NPE
Characteristic bond resistance Temperature range I: dry a 40°C/24°C flood Temperature range II: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Characteristic bond resistance dry a 120°C/72°C flood Characteristic bond resistance dry a 40°C/24°C flood Temperature range II: dry a 40°C/24°C flood Temperature range III: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete flood Increasing factors for concrete concrete (only static or quasi-static actic ψ _c	ce in non-cracked co and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete ded bore hole ce in cracked concrete and wet concrete ded bore hole and wet concrete and wet concrete ded bore hole and wet concrete	TRk,ucr TRk,ucr TRk,ucr TRk,ucr TRk,ucr TRk,ucr TRk,ucr TRk,ucr TRk,cr TRk,C1 TRk,cr TRk,C1	[N/mm ²] [N/mm ²]	7,5 7,5 5,5 5,5 4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	8,5 9 6,5 5,0 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	No Perfu 9 No Perfu 6,5 No Perfu 5,5 3,7 No Perfu 4,0 2,7	ormance 8,0 ormance 6,0 ormance 5,5 3,8 ormance ormance 4,0	Determine 7,0 Determine 5,0 Determine 6,5 4,5 Determine Determine 4,5	ed (NPE 6,0 ed (NPE 4,5 ed (NPE 6,5 4,5 ed (NPE ed (NPE
Temperature range I: dry a 40°C/24°C floodd Temperature range II: dry a 80°C/50°C floodd Temperature range III: dry a 120°C/72°C floodd Characteristic bond resistance dry a Temperature range III: dry a 120°C/24°C floodd Temperature range II: dry a 40°C/24°C floodd Temperature range II: dry a 80°C/50°C floodd Temperature range III: dry a 80°C/50°C floodd Temperature range III: dry a 120°C/72°C floodd Increasing factors for concrete (only static or quasi-static actic Ψ_o	and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete ded bore hole ce in cracked concre and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete	TRk,ucr TRk,ucr TRk,ucr TRk,ucr TRk,ucr TRk,ucr TRk,ucr TRk,ucr TRk,cr TRk,C1 TRk,cr TRk,C1	[N/mm ²] [N/mm ²]	7,5 7,5 5,5 5,5 4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	8,5 9 6,5 5,0 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	No Perfu 9 No Perfu 6,5 No Perfu 5,5 3,7 No Perfu 4,0 2,7	ormance 8,0 ormance 6,0 ormance 5,5 3,8 ormance ormance 4,0	Determine 7,0 Determine 5,0 Determine 6,5 4,5 Determine Determine 4,5	ed (NPC 6,0 ed (NPC 4,5 ed (NPC 6,5 4,5 ed (NPC ed (NPC
40°C/24°C flood Temperature range III: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Characteristic bond resistance dry a Temperature range I: dry a 40°C/24°C flood Temperature range I: dry a 40°C/24°C flood Temperature range II: dry a 80°C/50°C flood Temperature range III: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ_o	ded bore hole and wet concrete ded bore hole and wet concrete ded bore hole e in cracked concret and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete	TRk,uor TRk,uor TRk,uor TRk,uor TRk,uor TRk,uor TRk,uor TRk,cr TRk,C1 TRk,cr TRk,C1	[N/mm ²] [N/mm ²]	7,5 7,5 5,5 5,5 4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	8,5 9 6,5 5,0 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	8,5 9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	No Perfu 9 No Perfu 6,5 No Perfu 5,5 3,7 No Perfu 4,0 2,7	ormance 8,0 ormance 6,0 ormance 5,5 3,8 ormance ormance 4,0	Determine 7,0 Determine 5,0 Determine 6,5 4,5 Determine Determine 4,5	ed (NPC 6,0 ed (NPC 4,5 ed (NPC 6,5 4,5 ed (NPC ed (NPC
Temperature range II: dry al 80°C/50°C flood Temperature range III: dry al 120°C/72°C flood Characteristic bond resistance dry al Temperature range I: dry al 40°C/24°C flood Temperature range II: dry al 80°C/50°C flood Temperature range III: dry al 80°C/50°C flood Temperature range III: dry al 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ_o	and wet concrete ded bore hole and wet concrete ded bore hole be in cracked concrete and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete	TRk,uor TRk,uor TRk,uor TRk,uor TRk,uor TRk,uor TRk,cr TRk,cr TRk,cr TRk,cr TRk,cr TRk,cr TRk,cr TRk,cr TRk,c1	[N/mm ²] [N/mm ²]	7,5 5,5 4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	9 6,5 5,0 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	9 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	9 No Perfu 6,5 No Perfu 5,5 3,7 No Perfu 4,0 2,7	8,0 ormance 6,0 ormance 5,5 3,8 ormance ormance 4,0	7,0 Determine 5,0 Determine 6,5 4,5 Determine Determine 4,5	6,0 ed (NPC 4,5 ed (NPC 6,5 4,5 ed (NPC ed (NPC
80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Characteristic bond resistance dry a Temperature range II: dry a 40°C/24°C flood Temperature range II: dry a 40°C/24°C flood Temperature range II: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete flood (only static or quasi-static actic Ψ_o	ded bore hole and wet concrete ded bore hole e in cracked concre and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete	TRk,uor TRk,uor TRk,uor te C20/25 TRk,cr TRk,c1	[N/mm ²] [N/mm ²]	5,5 5,5 4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	6,5 6,5 5,0 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	No Perfe 6,5 No Perfe 5,5 3,7 No Perfe 4,0 2,7	ormance 6,0 ormance 5,5 3,8 ormance ormance 4,0	Determine 5,0 Determine 6,5 4,5 Determine Determine 4,5	ed (NPC 4,5 ed (NPC 6,5 4,5 ed (NPC ed (NPC
Temperature range III: dry a 120°C/72°C flood Characteristic bond resistance dry a 40°C/24°C flood Temperature range I: dry a 40°C/24°C flood Temperature range II: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ_c	and wet concrete ded bore hole e in cracked concre and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete	TRk,uor TRk,uor TRk,cr TRk,cr TRk,cr TRk,C1 TRk,cr TRk,C1	[N/mm ²] [N/mm ²]	5,5 4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	6,5 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7	6,5 No Perfe 5,5 3,7 No Perfe 4,0 2,7	6,0 ormance 5,5 3,8 ormance ormance 4,0	5,0 Determine 6,5 4,5 Determine Determine 4,5	4,5 ed (NPC 6,5 4,5 ed (NPC
120°C/72°C flood Characteristic bond resistance flood Temperature range I: dry a 40°C/24°C flood Temperature range II: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ_c	ded bore hole e in cracked concre and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete	T _{Rk,uor} te C20/25 T _{Rk,cr} T _{Rk,c1}	[N/mm ²] [N/mm ²]	4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	5,0 5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	5,0 5,5 3,7 5,5 3,7 4,0 2,7	5,0 5,5 3,7 5,5 3,7 4,0 2,7	No Perf 5,5 3,7 No Perf No Perf 4,0 2,7	ormance 5,5 3,8 ormance ormance 4,0	6,5 4,5 Determine Determine 4,5	6,5 6,5 4,5 ed (NPC ed (NPC
Characteristic bond resistance Temperature range I: 40°C/24°C floodd Temperature range II: 80°C/50°C floodd Temperature range III: 120°C/72°C Increasing factors for concrete (only static or quasi-static actic Ψ_c	e in cracked concre and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete	te C20/25 T _{Rk,cr} T _{Rk,C1} T _{Rk,cr} T _{Rk,C1} T _{Rk,cr} T _{Rk,cr} T _{Rk,cr} T _{Rk,cr} T _{Rk,cr} T _{Rk,cr}	[N/mm ²] [N/mm ²]	4,0 2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,0	5,0 3,1 4,0 2,5 3,5 2,2 3,0 1,9	5,5 3,7 5,5 3,7 4,0 2,7 4,0	5,5 3,7 5,5 3,7 4,0 2,7	5,5 3,7 5,5 3,7 4,0 2,7	5,5 3,7 No Perfe 4,0 2,7	5,5 3,8 ormance ormance 4,0	6,5 4,5 Determine Determine 4,5	6,5 4,5 ed (NPC ed (NPC
Temperature range I: dry a 40°C/24°C flood Temperature range II: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ_{\circ}	and wet concrete ded bore hole and wet concrete ded bore hole and wet concrete	TRk.cr TRk,C1	[N/mm ²] [N/mm ²]	2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,5 1,6 2,0	3,1 4,0 2,5 3,5 2,2 3,0 1,9	3,7 5,5 3,7 4,0 2,7 4,0	3,7 5,5 3,7 4,0 2,7	3,7 5,5 3,7 4,0 2,7	3,7 No Perfe No Perfe 4,0 2,7	3,8 ormance ormance 4,0	4,5 Determine Determine 4,5	4,5 ed (NPC ed (NPC
Temperature range I: 1 40°C/24°C flood Temperature range III: dry a 80°C/50°C flood Temperature range III: 120°C/72°C Increasing factors for concrete (only static or quasi-static actic Ψ _c	ded bore hole and wet concrete ded bore hole and wet concrete	TRK,C1	[N/mm ²] [N/mm ²]	2,5 4,0 2,5 2,5 1,6 2,5 1,6 2,5 1,6 2,0	3,1 4,0 2,5 3,5 2,2 3,0 1,9	3,7 5,5 3,7 4,0 2,7 4,0	3,7 5,5 3,7 4,0 2,7	3,7 5,5 3,7 4,0 2,7	3,7 No Perfe No Perfe 4,0 2,7	3,8 ormance ormance 4,0	4,5 Determine Determine 4,5	4,5 ed (NPD ed (NPD
40°C/24°C flood Temperature range II: dry a 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ _c	and wet concrete ded bore hole and wet concrete	T _{Rk,cr} T _{Rk,C1}	[N/mm ²] [N/mm ²] [N/mm ²] [N/mm ²] [N/mm ²] [N/mm ²] [N/mm ²]	4,0 2,5 2,5 1,6 2,5 1,6 2,0	4,0 2,5 3,5 2,2 3,0 1,9	5,5 3,7 4,0 2,7 4,0	5,5 3,7 4,0 2,7	5,5 3,7 4,0 2,7	No Perfe No Perfe 4,0 2,7	ormance ormance 4,0	Determine Determine 4,5	ed (NPD ed (NPD
Temperature range II: 80°C/50°C floode Temperature range III: 120°C/72°C floode Increasing factors for concrete (only static or quasi-static actio Ψc	and wet concrete ded bore hole and wet concrete	TRk,C1 TRk,cr TRk,C1 TRk,cr TRk,cr TRk,C1 TRk,C1 TRk,C1 TRk,cr TRK,C1 TRK,cr	[N/mm ²] [N/mm ²] [N/mm ²] [N/mm ²] [N/mm ²] [N/mm ²] [N/mm ²]	2,5 2,5 1,6 2,5 1,6 2,0	2,5 3,5 2,2 3,0 1,9	3,7 4,0 2,7 4,0	3,7 4,0 2,7	3,7 4,0 2,7	4,0 2,7	4,0	4,5	<u>`</u>
Temperature range II: 1 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ_c	ded bore hole and wet concrete	τ _{Rk,cr} τ _{Rk,C1} τ _{Rk,cr} τ _{Rk,cr} τ _{Rk,cr} τ _{Rk,cr}	[N/mm ²] [N/mm ²] [N/mm ²] [N/mm ²] [N/mm ²]	1,6 2,5 1,6 2,0	2,2 3,0 1,9	2,7 4,0	2,7	2,7	2,7	· ·	· ·	4,5
Temperature range II: 1 80°C/50°C flood Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ_c	ded bore hole and wet concrete	τ _{Rk,cr} τ _{Rk,c1} τ _{Rk,cr} τ _{Rk,c1} τ _{Rk,cr}	[N/mm ²] [N/mm ²] [N/mm ²] [N/mm ²]	2,5 1,6 2,0	3,0 1,9	4,0			,	0.0		
Image: Temperature range III: dry a 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ _c	and wet concrete	$\tau_{Rk,C1}$ $\tau_{Rk,cr}$ $\tau_{Rk,C1}$ $\tau_{Rk,cr}$	[N/mm ²] [N/mm ²] [N/mm ²]	1,6 2,0	1,9	,	10			2,8	3,1	3,1
Temperature range III: 120°C/72°C flood Increasing factors for concrete (only static or quasi-static action Ψ_c	and wet concrete	T _{Rk,cr} T _{Rk,C1} T _{Rk,cr}	[N/mm ²] [N/mm ²]	2,0	,		4,0	4,0	No Perfe	ormance	Determine	d (NPD
Temperature range III: 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ _c		τ _{Rk,C1} τ _{Rk,cr}	[N/mm ²]		25	2,7	2,7	2,7	No Perfe	ormance	Determine	d (NPC
Temperature range III: 120°C/72°C flood Increasing factors for concrete (only static or quasi-static actic Ψ _c		$\tau_{\rm Rk,cr}$	· · ·	13		3,0	3,0	3,0	3,0	3,0	3,5	3,5
flood Increasing factors for concrete (only static or quasi-static actic Ψ_c	ded bore hole		[N/mm²]		1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
(only static or quasi-static actic Ψ_c		$\tau_{\rm Rk,C1}$	FN1 / 07	2,0	2,5	3,0	3,0	3,0			Determine	,
(only static or quasi-static actic Ψ_c			[N/mm ²]	1,3	1,6	2,0	2,0	2,0	No Perfe	ormance	Determine	d (NPD
(only static or quasi-static actic Ψ_c			5/30 0/37					1,02				
Ψc	te		5/45					1,04				
-	tions)		0/50					1,07				
			5/55					1,09				
			0/60					1,10				
Factor according to Non-c	n-cracked concrete							10,1				
CEN/TS 1992-4-5	Cracked concrete		[-]	· · · · · · · · · · · · · · · · · · ·								
	cked concrete							7,2				
Concrete cone failure		1	1									
Factor according to Non-or CEN/TS 1992-4-5	n-cracked concrete	k _{ucr}	[-]					10,1				
	cked concrete	k _{cr}	[-]					7,2				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance								3,0 h _{ef}				
Splitting		S _{cr,N}	[mm]					3,0 Tlef				
Splitting		1						(
Edge distance		C _{cr,sp}	[mm]			1,0 · h _{ef}	≤2 · h _e	_f (2,5 –	$\left(\frac{h}{h_{ef}}\right) \leq 1$	2,4 · h _e	f	
Axial distance		S _{cr,sp}	[mm]					2 C _{cr,sp}				
Installation safety factor (dry a		$\gamma_2 = \gamma_{inst}$		1,0				1	,2			
Installation safety factor (flood		$\gamma_2 = \gamma_{inst}$				1,4			No Perfe	ormance	Determine	d (NPE
 f_{uk} shall be taken fro in absence of nation 	rom the specification	ons of reir	ntorcing ba	rs								
absence of nation	unal regulation											
Mapei Injection Syst	stem Mapefix	VE SF o	or VE SF	Cold	Clime	for c	oncrei	te				
				0010						_	-	_
Performances Characteristic values of te										Ann	ex C 4	ł –

Table C5:Characteristic valueseismic action (perf					atic,	quas	i-stat	ic act	tion a	Ind	
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
	V _{Rk,s}	[kN]				0,5	0 • A _s • 1	f _{uk} 1)			
Characteristic shear resistance	V _{Rk,s,C1}	[kN]	0,35 • A _s •				5 • A _s • †	f _{uk} 1)			
Cross section area	As	[mm²]	50	79	113	154	201	214	491	616	804
Partial safety factor	γ _{Ms,V} [-] 1,						1,5 ²⁾				
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm											
Characteristic banding memorit	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾								
Characteristic bending moment	M ⁰ _{Rk,s, C1}	[Nm]	No Performance Determined (1					(NPD)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial safety factor	ΎMs,V	[-]	1,5 ²⁾								
Concrete pry-out failure											
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎		2,0								
Installation safety factor	$\gamma_2 = \gamma_{inst}$		1,0								
Concrete edge failure											
Effective length of anchor	l,	[mm]				l _f = m	in(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor	$\gamma_2 = \gamma_{inst}$						1,0				
¹⁾ f _{uk} shall be taken from the specification ²⁾ in absence of national regulation	is of reinforcin	goars									
Mapei Injection System Mapefix V Performances	E SF or VE	SF Co	old Cl	lime fo	or cor	ncrete	9		Anne	x C 5	

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Anchor size thread	led rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30			
Non-cracked conc	rete C20/25												
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049			
40°C/24°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071			
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119			
	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172			
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119			
	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172			
Cracked concrete	C20/25												
Temperature range I:	0,090		0,070										
40°C/24°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,1	0,105		0,105							
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	0,219		0,170							
80°C/50°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,2	0,255		0,245							
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219	0,170								
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,2	0,255		0,245							

¹⁾ Calculation of the displacement $\delta_{N0} = \delta_{N0} \text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Displacements under shear load¹⁾ (threaded rod) Table C7:

Anchor size thre	Anchor size threaded rod			M 10	M 12	M 16	M 20	M24	M 27	M 30	
For non-cracked	l concrete C2	0/25									
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
	$\delta_{V\infty}\text{-}factor$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
For cracked con	crete C20/25										
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07	
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10	
$\delta_{V0} = \delta_{V0}$ -facto $\delta_{V\infty} = \delta_{V\infty}$ -facto	or · V;	V: action shear load	05.0.1								
Mapei Injectio	n System M	apefix VE SF or VE	SF Col	d Clime	e for co	oncrete					
Performances									Annex C 6		

Displacements (threaded rods)

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/	25	L	L							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N\infty}\text{-}factor$	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	$\delta_{N\infty}\text{-}factor$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,090		0,070						
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,105		0,105						
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm ²)]	0,219					0,170			
	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,255					0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,219					0,170			
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,255					0,245			
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di	· τ; · τ;	nent τ: action bond nent under sl			ebar)						
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	rete C20/2	25									
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
anges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

Cracked concrete C20/25

All temperature	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	$\delta_{V_\infty}\text{-factor}$	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

V: action shear load

Mapei Injection System Mapefix VE SF or VE SF Cold Clime for concrete

Performances Displacements (rebar) Annex C 7