

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-13/0652 vom 17. März 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von Deutsches Institut für Bautechnik

Mapei Injektionssystem Mapefix EP für Beton

Verbunddübel zur Verankerung im ungerissenen Beton

Mapei S.p.A. via Cafiero, 22 20158 MILANO (MI) ITALIEN

Mapei S.p.A., Plant1 Germany

23 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

ETAG 001 Teil 5: "Verbunddübel", April 2013, verwendet als EAD gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011

Europäische Technische Bewertung ETA-13/0652

Seite 2 von 23 | 17. März 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-13/0652

Seite 3 von 23 | 17. März 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Mapei Injektionssystem Mapefix EP für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel Mapefix EP und einem Stahlteil besteht. Das Stahlteil besteht aus einer handelsüblichen Gewindestange mit Scheibe und Sechskantmutter in den Größen M10 bis M24 oder aus einem gerippten Betonstahl mit Durchmesser 10 bis 25 mm.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Bemessungswerte gemäß TR 029	Siehe Anhang C 1 bis C 4
Charakteristische Bemessungswerte gemäß CEN/TS 1992-4:2009	Siehe Anhang C 5 bis C 8
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 9 bis C 10

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

Europäische Technische Bewertung ETA-13/0652

Seite 4 von 23 | 17. März 2017

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäisch technische Zulassung ETAG 001, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, gilt folgende Rechtsgrundlage: [96/582/EG].

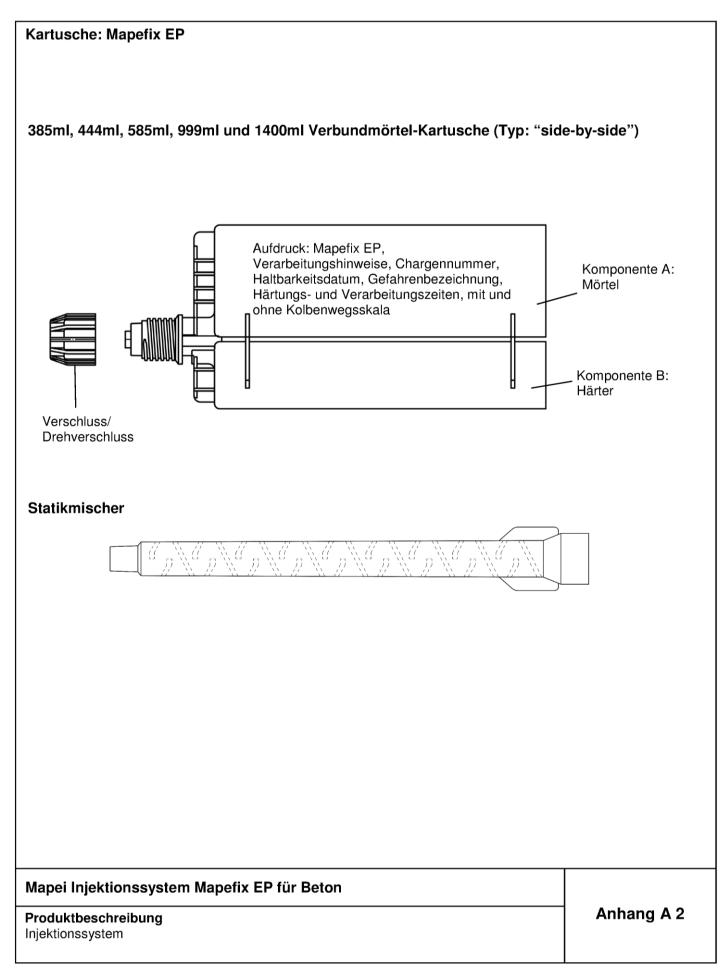
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

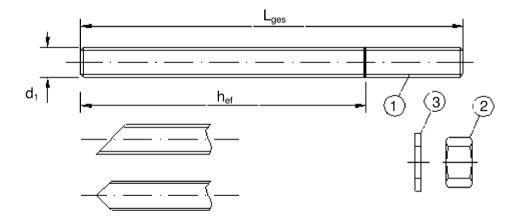
Ausgestellt in Berlin am 17. März 2017 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

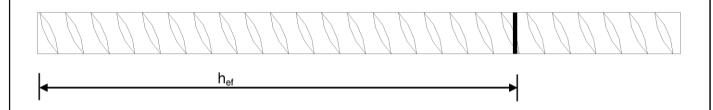

Beglaubigt:

Einbauzustand

Einbauzustand Ankerstange h_{ef} t_fix h_0 h_{min} **Einbauzustand Betonstahl** hef hmin d_{f} Durchgangsloch im anzuschließenden Bauteil Dicke des Anbauteils effektive Setztiefe h_{ef} Bohrlochtiefe h_{min} Mindestbauteildicke Mapei Injektionssystem Mapefix EP für Beton Anhang A 1 Produktbeschreibung



Ankerstange M10, M12, M16, M20, M24 mit Unterlegscheibe und Sechskantmutter



Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004
- Markierung der Setztiefe

Betonstahl \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05d ≤ h ≤ 0,07d betragen
 (d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

Mapei Injektionssystem Mapefix EP für Beton Produktbeschreibung Ankerstange und Betontahl Anhang A 3

Геil	Benennung	Werkstoff	
	teile, galvanisch verzinkt ≥ 5 μm gemäß verzinkt ≥ 40 μm gemäß EN ISO 1461:20		
1	Ankerstange	Stahl gemäß EN 10087:1998 oder EN 1020 Festigkeitsklasse 4.6, 5.8, 8.8 gemäß EN 19	
2	Sechskantmutter, EN ISO 4032:2012	Stahl gemäß EN 10087:1998 oder EN 1020 Festigkeitsklasse 4 (für Ankerstangen der K Festigkeitsklasse 5 (für Ankerstangen der K Festigkeitsklasse 8 (für Ankerstangen der K gemäß EN ISO 898-2:2012	(lasse 4.6) (lasse 5.8)
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Stahl, galvanisch verzinkt oder feuerverzink	t
Stahl	teile aus nichtrostendem Stahl		
1	Ankerstange	Werkstoff 1.4401 / 1.4404 / 1.4571, EN 100 ≤ M24: Festigkeitsklasse 70 EN ISO 3506-1	
2	Sechskantmutter, EN ISO 4032:2012	Werkstoff 1.4401 / 1.4404 / 1.4571 EN 1008 ≤ M24: Festigkeitsklasse 70 (für Ankerstang gemäß EN ISO 3506-2:2009	
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Werkstoff 1.4401, 1.4404 oder 1.4571 gem	äß EN 10088-1:2005
Stahl	teile aus hochkorrosionsbeständigem S	Stahl	
1	Ankerstange	Werkstoff 1.4529 / 1.4565, EN 10088-1:200 ≤ M24: Festigkeitsklasse 70 EN ISO 3506-1	-
2	Sechskantmutter, EN ISO 4032:2012	Werkstoff 1.4529 / 1.4565 EN 10088-1:2009 ≤ M24: Festigkeitsklasse 70 (für Ankerstang gemäß EN ISO 3506-2:2009	
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Werkstoff 1.4529 / 1.4565 gemäß EN 10088	3-1:2005
Beto	nstahl		
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse f_{yk} und k gemäß NDP oder NCL gemäß EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	
Мар	ei Injektionssystem Mapefix EP für	Beton	
•			

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

Statische und quasi-statische Lasten: M10 bis M24, Rebar Ø10 bis Ø25.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206-1:2000.
- Ungerissener Beton: M10 bis M24, Betonstahl Ø10 bis Ø25.

Temperaturbereich:

- I: 40 °C bis +40 °C (max. Langzeit-Temperatur +24 °C und max. Kurzzeit-Temperatur +40 °C)
 II: 40 °C bis +60 °C (max. Langzeit-Temperatur +43 °C und max. Kurzzeit-Temperatur +60 °C)
- III: 40 °C bis +72 °C (max. Langzeit-Temperatur +43 °C und max. Kurzzeit-Temperatur +72 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen unter statischen und quasi-statischen Lasten erfolgt nach:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Fassung September 2010 oder
 - CEN/TS 1992-4:2009

Einbau:

- · Trockener oder nasser Beton: M10 bis M24, Betonstahl Ø10 bis Ø25.
- Wassergefüllte Bohrlöcher (nicht Seewasser): M10 bis M24, Betonstahl Ø10 bis Ø25.
- · Bohrlochherstellung durch Diamantbohren.
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Mapei Injektionssystem Mapefix EP für Beton

Verwendungszweck
Spezifikationen

Anhang B 1

Tabelle B1: Montagekennwerte	e für Gewindestan	gen				
Dübelgröße		M 10	M 12	M 16	M 20	M 24
Bohrernenndurchmesser	d ₀ [mm] =	12	14	18	24	28
Effective Verenteer upgetiefe	$h_{ef,min}$ [mm] =	60	70	80	90	96
Effektive Verankerungstiefe	h _{ef,max} [mm] =	200	240	320	400	480
Durchgangsloch im anzuschließenden Bauteil	d _f [mm] ≤	12	14	18	22	26
Bürstendurchmesser	d _b [mm] ≥	14	16	20	26	30
Drehmoment	T _{inst} [Nm] ≤	20	40	80	120	160
Anbauteildicke	$t_{fix,min}$ [mm] >	0				
Alibautelidicke	t _{fix,max} [mm] <	1500				
Mindestbauteildicke	h _{min} [mm]	$h_{ef} + 30 \text{ mm}$ $h_{ef} + 2d_0$				
minimaler Achsabstand	s _{min} [mm]	50	60	80	100	120
minimaler Randabstand	c _{min} [mm]	50	60	80	100	120

Tabelle B2: Montagekennwerte für Betonstahl

Dübelgröße		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Bohrernenndurchmesser	d ₀ [mm] =	14	16	18	20	24	32
Effektive Verankerungstiefe	h _{ef,min} [mm] =	60	70	75	80	90	100
Ellektive veralikerungstiere	h _{ef,max} [mm] =	200	240	280	320	400	500
Bürstendurchmesser	d _b [mm] ≥	16	18	20	22	26	34
Mindestbauteildicke	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm	$h_{ef} + 2d_0$				
minimaler Achsabstand	s _{min} [mm]	50	60	70	80	100	125
minimaler Randabstand	c _{min} [mm]	50	60	70	80	100	125

Mapei Injektionssystem Mapefix EP für Beton	
Verwendungszweck	Anhang B 2
Montagekennwerte	

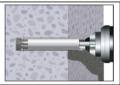
Stahlbürste

Tabelle B3: Parameter für Reinigungs- und Setzzubehör

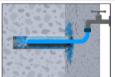
Gewindestangen	Betonstahl	d₀ Bohrer - Ø	d₀ Bürsten - Ø	d _{b,min} min. Bürsten - Ø	Verfüll- stutzen	
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)	
M10		12	14	12,5		
M12	10	14	16	14,5	 Kein	
	12	16	18	16,5	Verfüllstutzen	
M16	14	18	20	18,5	notwendig	
	16	20	22	20,5		
M20	20	24	26	24,5	# 24	
M24		28	30	28,5	# 28	
	25	32	34	32,5	# 32	

Empfohlene Druckluftpistole (min 6 bar)

Bohrerdurchmesser (d₀): 12 mm bis 32 mm

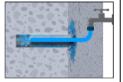

Verfüllstutzen für Überkopf- oder Horizontalmontage

Bohrerdurchmesser (d₀): 24 mm bis 32 mm


Mapei Injektionssystem Mapefix EP für Beton	
Verwendungszweck Reinigungs- und Installationszubehör	Anhang B 3

Setzanweisung

1b. Bohrloch mit Diamantbohrer und mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1 oder Tabelle B2) und gewählter Bohrlochtiefe erstellen.



2a. Mit Wasser ausspülen, bis klares Wasser aus dem Bohrloch austritt.

2b. Bohrloch mit geeigneter Drahtbürste gem. Tabelle B3 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten und zu überprüfen) 2x mittels eines Akkuschraubers oder Bohrmaschine ausbürsten.

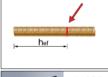
Bei tiefen Bohrlöchern Bürstenverlängerung benutzen (Tabelle B3).

2c. Wiederholt mit Wasser ausspülen, bis klares Wasser aus dem Bohrloch austritt.

2d. Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (Anhang B3) (min. 6 bar) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

2e. Bohrloch mit geeigneter Drahtbürste gem. Tabelle B3 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten und zu überprüfen) 2x mittels eines Akkuschraubers oder Bohrmaschine ausbürsten.

Bei tiefen Bohrlöchern Bürstenverlängerung benutzen (Tabelle B3).



Anschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (Anhang B3) (min. 6 bar) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden. Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

3. Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Den Schlauchfolienclip vor der Verwendung abschneiden.

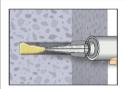
Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B4) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.

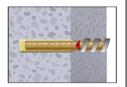
4. Vor dem Injizieren des Mörtels die geforderte Setztiefe auf der Ankerstange markieren.

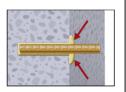
5. Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Daher Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe. Bei Schlauchfoliengebinden sind min. 6 volle Hübe zu verwerfen.

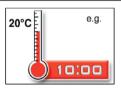
Mapei Injektionssystem Mapefix EP für Beton

Verwendungszweck


Setzanweisung


Anhang B 4


746306 17 8 06 01-356/17



Setzanweisung (Fortsetzung)

- 6 Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Bei Verankerungstiefen größer 190 mm passende Mischerverlängerung verwenden. Für die Horizontal- oder Überkopfmontage sind Verfüllstutzen gemäß Anhang B 3 und Mischerverlängerungen zu verwenden. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B 4) sind zu beachten.
- 7. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen.

Die Ankerstange sollte schmutz-, fett-, und ölfrei sein.

- 8. Nach der Installation des Ankers sollte der Ringspalt komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist die Ankerstange zu fixieren (z.B. Holzkeile).
- Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (siehe Tabelle B4).
- 10. Nach vollständiger Aushärtung kann das Anbauteil mit dem zulässigen Drehmoment (Tabelle B2) montiert werden. Die Mutter muss mit einem geeignetem Drehmomentschlüssel festgezogen werden.

Tabelle B4: Mindest-Aushärtezeiten

Concrete temperature	Gelling- working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ 5 °C	120 min	50 h	100 h
≥ + 10 °C	90 min	30 h	60 h
≥ + 20 °C	30 min	10 h	20 h
≥ + 30 °C	20 min	6 h	12 h
≥ + 40 °C	12 min	4 h	8 h

Mapei Injektionssystem Mapefix EP für Beton	
Verwendungszweck	Anhang B 5
Setzanweisung (Fortsetzung)	
Aushärtezeit	

(Bem	nessungsverfahren	gemäß	TR 029)		I	T	Γ	T
Dübelgröße Gewindesta	ngen			M 10	M 12	M 16	M 20	M24
Stahlversagen								
Charakteristische Zugtrag Stahl, Festigkeitsklasse 4		$N_{Rk,s}$	[kN]	23	34	63	98	141
Charakteristische Zugtrag Stahl, Festigkeitsklasse 5	ıfähigkeit,	N _{Rk,s}	[kN]	29	42	78	122	176
Charakteristische Zugtrag Stahl, Festigkeitsklasse 8	.8	N _{Rk,s}	[kN]	46	67	125	196	282
Charakteristische Zugtrag Stahl A4 und HCR Festigkeitsklasse 70	ıfähigkeit, nichtrostender	N _{Rk,s}	[kN]	41	59	110	171	247
Kombiniertes Versagen	durch Herausziehen und	Betonaus	sbruch					
Charakteristische Verbund	dtragfähigkeit im ungerisse	nen Beton	C20/25					
Temperaturbereich I: 40°C/24°C	trockener und feuchter Beton	TRk,ucr	[N/mm²]	11	10	10	9,5	9,0
	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	9,0	10	9,5	9,5	8,5
Temperaturbereich II:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,0	6,0	5,5
60°C/43°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,0	6,0	5,5
Temperaturbereich III:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,0	5,0
72°C/43°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,0	5,0	5,0
Erhöhungsfaktor für		C30/37	0/37 1,04					
Ψc		C40/50		1,08				
Spalten		C50/60				1,10		
Randabstand		C _{cr,sp}	[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$		h _{ef}		
Achsabstand		S _{cr,sp}	[mm]	2 c _{cr,sp}				
Montagesicherheitsbeiwe	rt	γ2		1,0 1,2				

Mapei Injektionssystem Mapefix EP für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß TR 029)	Anhang C 1

Tabelle C2: Charakteristische Werte bei Querbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß TR 029)

		M 10	M 12	M 16	M 20	M24	
	•						
V _{Rk,s}	[kN]	12	17	31	49	71	
V _{Rk,s}	[kN]	15	21	39	61	88	
V _{Rk,s}	[kN]	23	34	63	98	141	
V _{Rk,s}	[kN]	20	30	55	86	124	
M ⁰ Rk,s	[Nm]	30	52	133	260	449	
M ⁰ Rk,s	[Nm]	37	65	166	324	560	
M ⁰ Rk,s	[Nm]	60	105	266	519	896	
M ⁰ _{Rk,s}	[Nm]	52	92	232	454	784	
Seite							
k	[-]	2,0					
γ2		1,0					
ort TR 029	für die Be	messung vo	n Verbunddüb	el			
γ2				1,0			
	VRK,s VRK,s VRK,s VRK,s MORK,s MORK,s MORK,s MORK,s	V _{Rk,s} [kN] V _{Rk,s} [kN] V _{Rk,s} [kN] M ⁰ _{Rk,s} [Nm] M ⁰ _{Rk,s} [Nm] M ⁰ _{Rk,s} [Nm] M ⁰ _{Rk,s} [Nm] γ ₂ Dort TR 029 für die Be	V _{Rk,s} [kN] 15 V _{Rk,s} [kN] 23 V _{Rk,s} [kN] 20 M ⁰ _{Rk,s} [Nm] 30 M ⁰ _{Rk,s} [Nm] 37 M ⁰ _{Rk,s} [Nm] 60 M ⁰ _{Rk,s} [Nm] 52 n Seite k [-] port TR 029 für die Bemessung vo 15	V _{Rk,s} [kN] 15 21 V _{Rk,s} [kN] 23 34 V _{Rk,s} [kN] 20 30 M ⁰ _{Rk,s} [Nm] 30 52 M ⁰ _{Rk,s} [Nm] 37 65 M ⁰ _{Rk,s} [Nm] 60 105 M ⁰ _{Rk,s} [Nm] 52 92 n Seite k [-] γ2	V _{Rk,s} [kN] 15 21 39 V _{Rk,s} [kN] 23 34 63 V _{Rk,s} [kN] 20 30 55 M ⁰ _{Rk,s} [Nm] 30 52 133 M ⁰ _{Rk,s} [Nm] 37 65 166 M ⁰ _{Rk,s} [Nm] 60 105 266 M ⁰ _{Rk,s} [Nm] 52 92 232 n Seite k [-] 2,0 γ2 1,0	V _{Rk,s} [kN] 15 21 39 61 V _{Rk,s} [kN] 23 34 63 98 V _{Rk,s} [kN] 20 30 55 86 M ⁰ _{Rk,s} [Nm] 30 52 133 260 M ⁰ _{Rk,s} [Nm] 37 65 166 324 M ⁰ _{Rk,s} [Nm] 60 105 266 519 M ⁰ _{Rk,s} [Nm] 52 92 232 454 n Seite k [-] 2,0 γ2 1,0	

Mapei Injektionssystem Mapefix EP für Beton	
Leistungen Charakteristische Werte bei Querbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß TR 029)	Anhang C 2

Montagesicherheitsbeiwert

Dübelgröße Betonstahl	I			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Stahlversagen										
Charakteristische Zugtra	gfähigkeit	N _{Rk,s}	[kN]			A_s	• f _{uk}			
Kombiniertes Versager	n durch Herausziehe	n und Be	etonausbru	ıch						
Charakteristische Verbur	ndtragfähigkeit im ung	erissene	n Beton C2	0/25						
Temperaturbereich I: 40°C/24°C	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0	
	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	9,0	10	10	9,5	9,5	8,5	
Temperaturbereich II:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5	
60°C/43°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,0	6,0	5,5	
Temperaturbereich III:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0	
72°C/43°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,5	5,5	5,0	5,0	
- 1 7 7		C30/37	7	1,04						
Erhöhungsfaktor für Ψc		C40/50)	1,08						
Ψ		C50/60)	1,10						
Spalten										
Randabstand		C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right) \le 2,4$				2,4 · h _{ef}		
Achsabstand s _{cr,sp} [mr				2 C _{cr,sp}						

1,0

1,2

γ2

Mapei Injektionssystem Mapefix EP für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß TR 029)	Anhang C 3

Tabelle C4: Charakteristische Werte bei Querbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß TR 029)												
Dübelgröße Betonstahl			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25				
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit	V _{Rk,s}	[kN]	0,50 ⋅ A _s ⋅ f _{uk}									
Stahlversagen mit Hebelarm												
Charakteristische Biegemoment	M ^o _{Rk,s}	[Nm]	1.2 ⋅ W _{el} ⋅ f _{uk}									
Betonausbruch auf der lastabgew	andten Seite											
Faktor k in Gleichung (5.7) des Technical Report TR 029 für die Bemessung von Verbunddübeln	k	[-]	2,0									
Montagesicherheitsbeiwert	γ2		1,0									
Betonkantenbruch												
Montagesicherheitsbeiwert	γ2		1,0									

Mapei Injektionssystem Mapefix EP für Beton	
Leistungen Charakteristische Werte bei Querbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß TR 029)	Anhang C 4

Dübelgröße Gewindesta	ngen			M 10	M 12	M 16	M 20	M24	
Stahlversagen									
Charakteristische Zugtragfähigkeit,		N _{Rk,s}	[kN]	23	34	63	98	141	
Stahl, Festigkeitsklasse 4.6 Charakteristische Zugtragfähigkeit, Stahl, Festigkeitsklasse 5.8		N _{Rk,s}	[kN]	29	42	78	122	176	
Charakteristische Zugtrag Stahl, Festigkeitsklasse 8		N _{Rk,s}	[kN]	46	67	125	196	282	
Charakteristische Zugtrag Stahl A4 und HCR Festigkeitsklasse 70		N _{Rk,s}	[kN]	41	59	110	171	247	
Kombiniertes Versagen	durch Herausziehen und	Betonaus	bruch						
	dtragfähigkeit im ungerissei	nen Beton	C20/25						
Temperaturbereich I:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	11	10	10	9,5	9,0	
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	9,0	10	9,5	9,5	8,5	
Femperaturbereich II:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,0	6,0	5,5	
60°Ċ/43°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,0	6,0	5,5	
Temperaturbereich III: 72°C/43°C	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,0	5,0	
	wassergefülltes Bohrloch	τ _{Rk,ucr} [N/mm²]		5,0	6,0	5,0	5,0	5,0	
Erhöhungsfaktor für		C30/37		1,04					
$ u_{\rm c}$		C40/50				1,08			
-aktor gemäß						1,10	•		
CEN/TS 1992-4-5 Kapitel	6.2.2.3	k ₈	[-]			10,1			
Betonausbruch									
Faktor gemäß DEN/TS 1992-4-5 Kapitel	6.2.3.1	k _{ucr}	[-]			10,1			
Randabstand		C _{cr,N}	[mm]	1,5 h _{ef}					
Achsabstand		S _{cr,N}	[mm]	3,0 h _{ef}					
Spalten									
Randabstand		C _{cr,sp}	[mm]	1,0	·h _{ef} ≤2·I	$n_{\rm ef} \left(2,5 - \frac{1}{h} \right)$	$\frac{h}{ef} \bigg) \leq 2,4 \cdot I$	n _{ef}	
Achsabstand		S _{cr,sp}	[mm]	2 c _{cr,sp}					
Montagesicherheitsbeiwe	rt	γinst		1,0		1	,2		
Manei Injektionssy	stem Mapefix EP für	Beton							

Tabelle C6: Charakteristische Werte bei Querbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)

Dübelgröße Gewindestangen			M 10	M 12	M 16	M 20	M24	
Stahlversagen ohne Hebelarm								
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 4.6	V _{Rk,s}	[kN]	12	17	31	49	71	
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 5.8	V _{Rk,s}	[kN]	15	21	39	61	88	
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 8.8	V _{Rk,s}	[kN]	23	34	63	98	141	
Charakteristische Zugtragfähigkeit, nichtrostender Stahl A4 und HCR Festigkeitsklasse 70	V _{Rk,s}	[kN]	20	30	55	86	124	
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 Kapitel 6.3.2.1	k ₂		0,8					
Stahlversagen mit Hebelarm								
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 4.6	M ⁰ _{Rk,s}	[Nm]	30	52	133	260	449	
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 5.8	M ⁰ _{Rk,s}	[Nm]	37	65	166	324	560	
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 8.8	M ⁰ _{Rk,s}	[Nm]	60	105	266	519	896	
Charakteristische Zugtragfähigkeit, nichtrostender Stahl A4 und HCR Festigkeitsklasse 70	M ⁰ Rk,s	[Nm]	52	92	232	454	784	
Betonausbruch auf der lastabgewand	ten Seite							
Faktor in Gleichung (27) der CEN/TS 1992-4-5 Kapitel 6.3.3	K ₃	[-]			2,0			
Montagesicherheitsbeiwert	γinst		1,0					
Betonkantenbruch								
Effektive Ankerlänge	If	[mm]		l _f =	= min(h _{ef} ; 8 d _n	om)		
Aussendurchmesser des Ankers	d _{nom}	[mm]	10	12	16	20	24	
Montagesicherheitsbeiwert	γinst				1,0			

Mapei Injektionssystem Mapefix EP für Beton	
Leistungen Charakteristische Werte bei Querbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)	Anhang C 6

	arakteristische messungsverf						gerissen	em Bet	on	
Dübelgröße Betonstahl				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Stahlversagen										
Charakteristische Zugtraç	gfähigkeit	N _{Rk,s}	[kN]			As	• f _{uk}			
Kombiniertes Versagen	durch Herausziehe	n und Be	etonausbru	ıch						
Charakteristische Verbun	dtragfähigkeit im ung	erissene	n Beton C2	0/25						
Temperaturbereich I:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0	
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	9,0	10	10	9,5	9,5	8,5	
Temperaturbereich II: 60°C/43°C	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm ²]	7,0	6,5	6,5	6,0	6,0	5,5	
	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,0	6,0	5,5	
Temperaturbereich III:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm ²]	6,0	6,0	6,0	5,5	5,0	5,0	
72°C/43°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,5	5,5	5,0	5,0	
Erhöhungsfaktor für		C30/3	7	1,04						
Ψ _c		C40/50		1,08						
F-14		C50/60	0	1,10						
Faktor gemäß CEN/TS 1992-4-5 Kapite	16.2.2.3	k ₈	[-]			10),1			
Betonausbruch										
Faktor gemäß CEN/TS 1992-4-5 Kapite	I 6.2.3.1	k _{ucr}	[-]			10	0,1			
Randabstand		C _{cr,N}	[mm]			1,5	h _{ef}			
Achsabstand		S _{cr,N}	[mm]			3,0) h _{ef}			
Spalten										
Randabstand c _{cr,sp}			[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$						
Achsabstand		S _{cr,sp}	[mm]			2 c	cr,sp			
Montagesicherheitsbeiwe	rt	γinst		1,0			1,2			

Mapei Injektionssystem Mapefix EP für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)	Anhang C 7

Tabelle C8: Charakteristische Werte bei Querbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)											
Dübelgröße Betonstahl			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25			
Stahlversagen ohne Hebelarm											
Charakteristische Quertragfähigkeit	V _{Rk,s}	[kN]			0,50 •	$A_s \cdot f_{uk}$					
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 Kapitel 6.3.2.1											
Stahlversagen mit Hebelarm											
Charakteristische Biegemoment	M ⁰ _{Rk,s}	[Nm]			1.2 • V	V _{el} • f _{uk}					
Betonausbruch auf der lastabgewandten Seite											
Faktor in Gleichung (27) der CEN/TS 1992-4-5 Kapitel 6.3.3	k ₃				2	,0					
Montagesicherheitsbeiwert	γinst				1	,0					
Betonausbruch											
Effektive Ankerlänge	I _f	[mm]	$I_t = min(h_{ef}; 8 d_{nom})$								
Aussendurchmesser des Ankers	d _{nom}	[mm]	10	12	14	16	20	25			
Montagesicherheitsbeiwert γ_{inst} 1,0											

Mapei Injektionssystem Mapefix EP für Beton	
Leistungen Charakteristische Werte bei Querbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)	Anhang C 8

Tabelle C9: Verschiebung unter Zugbeanspruchung ¹⁾ (Gewindestangen)							
Dübelgröße Gewind	estangen		M 10	M 12	M 16	M 20	M24
Temperaturbereich 40°C/24°C für ungerissenen Beton C20/25							
Verschiebung	δ _{N0} -Faktor	[mm/(N/mm²)]	0,015	0,020	0,024	0,029	
$\label{eq:local_equation} Verschiebung \qquad \delta_{N_{loc}}\text{-Faktor} \qquad [\text{mm/(N/mm}^2)]$	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114	
Temperaturbereich 72°C/43°C and 60°C/43°C für ungerissenen Beton C20/25							
Verschiebung δ_{N0} -Faktor [mm/(N/mm²)] 0,015 0,018 0,023 0,028 0							0,033
Verschiebung	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131

¹⁾ Berechnung der Verschiebung

τ: einwirkende Verbundspannung

$$\begin{split} &\delta_{N0} = \delta_{N0}\text{-Faktor} \cdot \tau; \\ &\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau; \end{split}$$

Tabelle C10: Verschiebung unter Querbeanspruchung¹⁾ (Gewindestangen)

Dübelgröße			M 10	M 12	М 16	M 20	M24
		[mm/(kN)]	0,06	0,05	0,04	0,04	0,03
		[mm/(kN)]	0,08	0,08	0,06	0,06	0,05

¹⁾ Berechnung der Verschiebung

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-Faktor} & \cdot \text{V}; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} & \cdot \text{V}; \end{split}$$

V: einwirkende Querkraft

Mapei Injektionssystem Mapefix EP für Beton			
Leistungen Verschiebungen (Gewindestangen)	Anhang C 9		

8.06.01-356/17 Z46306.17

Tabelle C1	1: Versc	hiebung unte	r Zugbeanspruchung ¹⁾ (Betonstahl)					
Dübelgröße Be	etonstahl		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Temperaturbe	eich 40°C/24	°C für ungerisse	nen Beton C2	20/25				
Verschiebung	δ_{N0} -Faktor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,024	0,030
Verschiebung	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,052	0,061	0,070	0,079	0,096	0,118
Temperaturbereich 72°C/43°C and 60°C/43°C für ungerissenen Beton C20/25								
Verschiebung δ _{N0} -Faktor [mm/(N/mm²)] 0,015 0,018 0,020 0,023 0,028 0,034								0,034
Verschiebung	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,060	0,070	0,081	0,091	0,111	0,136

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}\text{-Faktor} \cdot \tau;$

τ: einwirkende Verbundspannung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \ \cdot \tau;$

Tabelle C12: Verschiebung unter Querbeanspruchung¹⁾ (Betonstahl)

Betonstahl			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Verschiebung	$\delta_{ m V0}$ -Faktor	[mm/(kN)]	0,05	0,05	0,04	0,04	0,04	0,03
Verschiebung	δ _{V∞} -Faktor	[mm/(kN)]	0,08	0,07	0,06	0,06	0,05	0,05

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-Faktor} &\cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} &\cdot V; \end{split}$$

Mapei Injektionssystem Mapefix EP für Beton	
Leistungen Verschiebungen (Betonstahl)	Anhang C 10