

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/0773 of 1 March 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system VME

Bonded anchor for use in uncracked concrete

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

Werk 2, D

19 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-13/0773

Page 2 of 19 | 1 March 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-13/0773

Page 3 of 19 | 1 March 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection System VME for concrete" is a bonded anchor consisting of a cartridge with injection mortar VME or VM-ME and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M10 to M24 or reinforcing bar in the range of diameter 10 to 25 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 to C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-13/0773

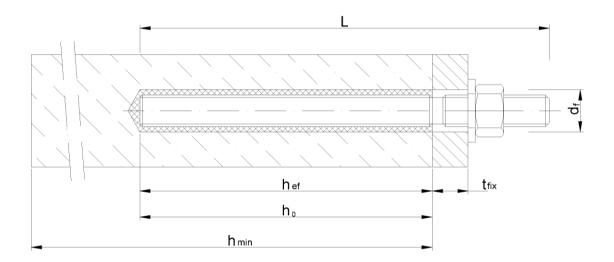
Page 4 of 19 | 1 March 2017

English translation prepared by DIBt

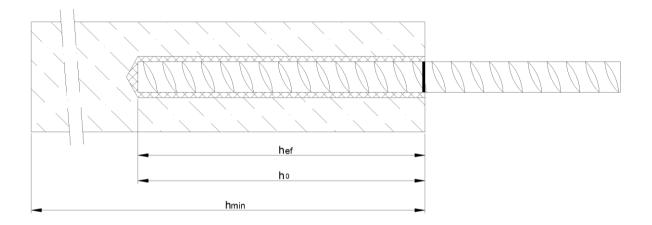
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 1 March 2017 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt: Baderschneider

Installation threaded rod

Installation reinforcing bar

d_f = diameter of clearance hole in the fixture

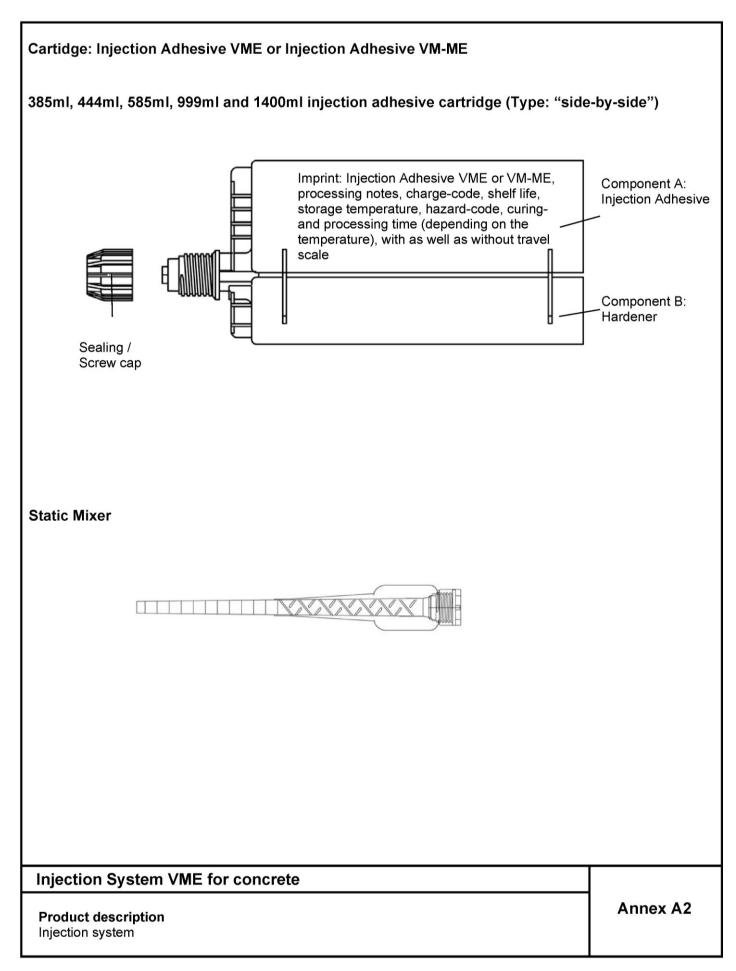
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

 h_0 = depth of drill hole

 h_{min} = minimum thickness of member

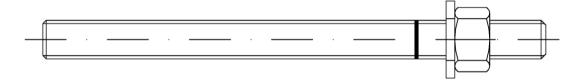
Injection System VME for concrete

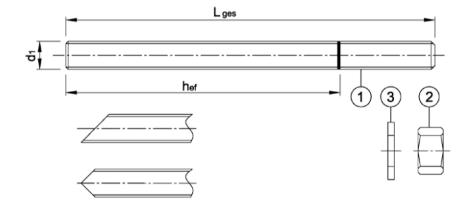

Product description Installation conditions

Annex A1

electronic copy of the eta by dibt: eta-13/0773

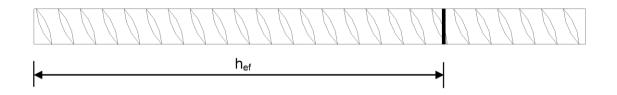
English translation prepared by DIBt





Z9727.17

Threaded rod M10, M12, M16, M20, M24 with washer and hexagon nut



Commercial standard threaded rod with:

- · Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- · Marking of embedment depth

Reinforcing bar \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rib height of the bar)

Injection System VME for concrete

Product description

Threaded rod and reinforcing bar

Annex A3

electronic copy of the eta by dibt: eta-13/0773

Table A1: Materials

Part	Designation	Material					
	, zinc plated ≥ 5 μm acc. to EN ISO 4						
Steel, hot-dip galvanised ≥ 40 µm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009							
1	Threaded rod	Steel, acc. to EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8, EN ISO 898-1					
2	Hexagon nut	Steel, acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) acc. to EN ISO 898-2:2012, Property class 5 (for class 5.8 rod) acc. to EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) acc. to EN ISO 898-2:2012					
3	Washer, acc. to EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Steel, zinc plated or hot dip galvanized					
Stain	less steel						
1	Threaded rod	Material 1.4401 / 1.4404 / 1.4571, acc. to EN 10088-1:2005, Property class 70, EN ISO 3506-1:2009					
2	Hexagon nut	Material 1.4401 / 1.4404 / 1.4571, acc. to EN 10088-1:2005, Property class 70, EN ISO 3506-2:2009					
3	Washer, acc. to EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Material 1.4401 / 1.4404 / 1.4571, acc. to EN 10088-1:2005					
High	corrosion resistance steel						
1	Threaded rod	Material 1.4529 / 1.4565, acc. to EN 10088-1:2005, Property class 70, EN ISO 3506-1:2009					
2	Hexagon nut	Material 1.4529 / 1.4565, acc. to EN 10088-1:2005, Property class 70, EN ISO 3506-2:2009					
3	Washer, acc. to EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Material 1.4529 / 1.4565, acc. to EN 10088-1:2005					
Reinforcing bars							
4	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$					

Injection System VME for concrete	
Product description Materials	Annex A4

Specifications of intended use

Anchorages subject to:

Static and quasi static loads: M10 to M24, rebar Ø10 to Ø25

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000
- Uncracked concrete: M10 to M24, rebar Ø10 to Ø25

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry or wet concrete: M10 to M24, Rebar Ø10 to Ø25.
- Flooded holes (not sea water): M10 to M24, Rebar Ø10 to Ø25.
- · Hole drilling by diamond drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System VME for concrete	
Intended use Specifications	Annex B1

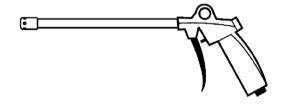
Table B1: Installation parameters for threaded rod

Anchor size			M10	M12	M16	M20	M24
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	18	24	28
Embedment depth and bore hole depth	$h_{\rm ef,min} =$	[mm]	60	70	80	90	96
Embedment depth and bore note depth	h _{ef,max} =	[mm]	200	240	320	400	480
Diameter of clearance hole in the fixture	$d_f \leq$	[mm]	12	14	18	22	26
Diameter of steel brush	d _b ≥	[mm]	14	16	20	26	30
Installation torque	T _{inst}	[Nm]	20	40	80	120	160
Thickness of fixture	$t_{\text{fix,min}} >$	[mm]	0				
Trickless of fixture	t _{fix,max} <	[mm]	1500				
Minimum thickness of member	h _{min}	[mm]	0.	30 mm 0 mm	h _{ef} + 2d ₀		
Minimum spacing	S _{min}	[mm]	50	60	80	100	120
Minimum edge distance	C _{min}	[mm]	50	60	80	100	120

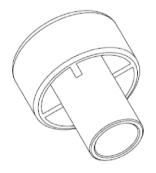
Table B2: Installation parameters for rebar

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Nominal drill hole diameter	d ₀ =	[mm]	14	16	18	20	24	32
Embedment depth and	h _{ef,min} =	[mm]	60	70	75	80	90	100
bore hole depth h _{ef,n}	h _{ef,max} =	[mm]	200	240	280	320	400	500
Diameter of steel brush	d _b ≥	[mm]	16	18	20	22	26	34
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30mm ≥ 100 mm	h _{ef} + 2d _o				
Minimum spacing	S _{min}	[mm]	50	60	70	80	100	125
Minimum edge distance	C _{min}	[mm]	50	60	70	80	100	125

Injection System VME for concrete	
Intended use Installation parameters	Annex B2



Steel brush


Table B3: Parameter cleaning and setting tools

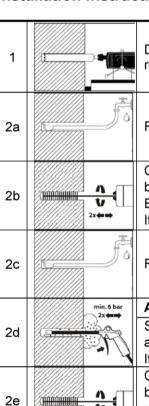
Threaded rod	Rebar	d₀ Drill bit - Ø	d₅ Brush - Ø	d _{b,min} min. Brush - Ø	Retaining washer
[mm]	[mm]	[mm]	[mm]	[mm]	[-]
M10		12	14	12,5	
M12	10	14	16	14,5	
	12	16	18	16,5	No retaining washer required
M16	14	18	20	18,5	washer required
	16	20	22	20,5	
M20	20	24	26	24,5	VM-IA 24
M24		28	30	28,5	VM-IA 28
	25	32	34	32,5	VM-IA 32

Rec. compressed air tool (min 6 bar)

All drill bit diameters (d₀)

Retaining washer for overhead or horizontal installation

Drill bit diameter (d₀): 24 mm to 32 mm


Intended use

Cleaning and setting tools

Annex B3

Installation instructions

Drill with diamond drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2).

Rinsing with water until clear water comes out.

Check brush diameter acc. Table B3 and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B3) a minimum of two times.

If the bore hole ground is not reached with the brush, a brush extension shall be used.

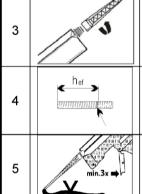
Rinsing again with water until clear water comes out.

Attention! Standing water in the bore hole must be removed before cleaning.

Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) acc. to Annex B3, a minimum of two times.

If the bore hole ground is not reached an extension shall be used.

Check brush diameter acc. Table B3 and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush $> d_{b,min}$ a minimum of two times.


If the bore hole ground is not reached with the brush, a brush extension shall be used.

2f min.6 bar

Finally blow the hole clean again with compressed air acc. to Annex B3 (min. 6 bar) a minimum of two times.

If the bore hole ground is not reached an extension shall be used.

After cleaning, the bore hole hast to be protected against re-contamination in an appropriate way, until dispensing the adhesive in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the adhesive. In-flowing water must not contaminate the bore hole again.

Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B4) as well as for new cartridges, a new static-mixer shall be used.

Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the adhesive shows a consistent colour.

Injection System VME for concrete

Intended use Installation instruction Annex B4

Installation instructions (continuation)

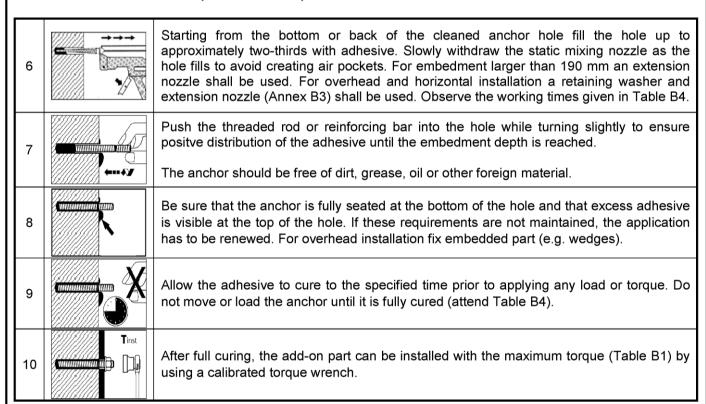


Table B4: Working and curing time

Bore hole	Maximum	Minimum o	curing time
temperature	working time	dry concrete	wet concrete
≥ + 5 °C	120 min	50 h	100 h
≥ + 10 °C	90 min	30 h	60 h
≥ + 20 °C	30 min	10 h	20 h
≥ + 30 °C	20 min	6 h	12 h
≥ +40 °C	12 min	4 h	8 h

Injection System VME for concrete	
Intended use Installation instruction (continuation) Working and curing time	Annex B5

Table C1: Characteristic values for **threaded rods** under **tension loads** in uncracked concrete

Anchor size threaded	l rod			M 10	M 12	M 16	M 20	M24
Steel failure								
Characteristic tension res Steel, property class 4.6	sistance,	N _{Rk,s}	[kN]	23	34	63	98	141
Characteristic tension res Steel, property class 5.8	N _{Rk,s}	[kN]	29	42	78	122	176	
Characteristic tension res Steel, property class 8.8	sistance,	$N_{Rk,s}$	[kN]	46	67	125	196	282
Characteristic tension res Stainless steel A4 and H0 property class 70	$N_{Rk,s}$	[kN]	41	59	110	171	247	
Combined pull-out ar	nd concrete cone fail	ure						
Characteristic bond resis	tance in non-cracked con	crete C20/	25					
Temperature range l:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	9,5	9,0
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,0	10	9,5	9,5	8,5
Temperature range II: 60°C/43°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,0	6,0	5,5
	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,0	5,0
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,0	5,0	5,0
		C30/37	[-]			1,04		
Increasing factor for cond	crete ψc	C40/50	[-]			1,08		
		C50/60	[-]			1,10		
Factor according to CEN/TS 1992-4-5 Sectio	n 6.2.2.3	k ₈	[-]			10,1		
Concrete cone failure)							
Factor according to CEN/TS 1992-4-5 Sectio	n 6.2.3.1	k _{ucr}	[-]			10,1		
Edge distance		C _{cr,N}	[mm]			1,5 h _{ef}		
Spacing	S _{cr,N}	[mm]			3,0 h _{ef}			
Splitting failure								
Edge distance		C _{cr,sp}	[mm]	1,0	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$			
Spacing		S _{cr,sp}	[mm]			2 c _{cr,sp}		
Installation safety factor		Y2 = Yinst	[-]	1,0		1	,2	

Injection System VME for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in uncracked concrete

Annex C1

Table C2: Characteristic values for **threaded rods** under **shear loads** in uncracked concrete

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24	
Steel failure without lever arm						•		
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s}$	[kN]	12	17	31	49	71	
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	15	21	39	61	88	
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s}$	[kN]	23	34	63	98	141	
Characteristic shear resistance, Stainless steel A4 and HCR, property class 70	$V_{Rk,s}$	[kN]	20	30	55	86	124	
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	[-]	0,8					
Steel failure with lever arm								
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	30	52	133	260	449	
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	37	65	166	324	560	
Characteristic bending moment, Steel, property class 8.8	$M^0_{Rk,s}$	[Nm]	60	105	266	519	896	
Characteristic bending moment, Stainless steel A4 and HCR, property class 70	${f M}^0_{{\sf Rk},{\sf s}}$	[Nm]	52	92	232	454	784	
Concrete pry-out failure								
Factor k acc. to TR029 und k_3 acc. to CEN/TS 1992-4-5 Section 6.3.3	k ₍₃₎	[-]			2,0			
Concrete edge failure								
Effective length of anchor	lf	[mm]		I _f =	= min(h _{ef} ; 8 d _r	nom)		
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	
Installation safety factor[-]	^Y 2 = Y inst	[-]			1,0			

Injection System VME for concrete	
Performances Characteristic values of resistance for threaded rods under shear loads in uncracked concrete	Annex C2

T 11 00				
Table C3:	Characteristic values for reb	ar linder teneion	Inade in lineracke	ad concrete
I able Co.	Characteristic values for rep	ai undel telision	Ioaus III unclack	

							l		
Anchor size reinforc	ing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure									
Characteristic tension re	sistance	$N_{Rk,s}$	[kN]			As	• f _{uk}		
Combined pull-out a	nd concrete con	e failure							
Characteristic bond resis	stance in non-crack	ed concre	te C20/25						
dry and wet Temperature range I: concrete		τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	9,0	10	10	9,5	9,5	8,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5
60°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	T _{Rk,ucr}	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0
72°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	5,0	6,0	5,5	5,5	5,0	5,0
		C30/37	[-]	1,04					
Increasing factor for cor	ncrete ψ _c	C40/50	[-]			1,	08		
		C50/60	[-]	1,10					
Factor according to CEN/TS 1992-4-5 Section	on 6.2.2.3	k ₈	[-]			10	0,1		
Concrete cone failur	е								
Factor according to CEN/TS 1992-4-5 Section	on 6.2.3.1	k _{ucr}	[-]			10	0,1		
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}		
Spacing		S _{cr,N}	[mm]			3,0) h _{ef}		
Splitting failure									
Edge distance		C _{cr,sp}	[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$					
Spacing		S _{cr,sp}	[mm]			2 0	cr,sp		
Installation safety factor		Y ₂ = Y inst	[-]	1,0			1,2		

Injection System VME for concrete

Performances

Characteristic values of resistance for rebar under tension loads in uncracked concrete

Annex C3

Table C4: Characteristic value	ues fo	or reb	ar under	shear Id	ads in u	ncracked	d concrete	е	
Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Steel failure without lever arm									
Characteristic shear resistance	$V_{Rk,s}$	[kN]	0,50 • A _s • f _{uk}						
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	[-]			0	,8			
Steel failure with lever arm									
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]			1,2 • V	V _{el} • f _{uk}			
Concrete pry-out failure									
Factor k acc. to TR029 und k₃ acc. to CEN/TS 1992-4-5 Section 6.3.3	k ₍₃₎	[-]			2	,0			
Concrete edge failure									
Effective length of anchor	I _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$						
Outside diameter of anchor	d _{nom}	[mm]] 10 12 14 16 20 25					25	
Installation safety factor	2 = Y inst	[-]			1	,0	•		

Injection System VME for concrete	
Performances Characteristic values of resistance for rebar under shear loads in uncracked concrete	Annex C4

Table C5:	Displacements under tension loads 19	(threaded rod)
-----------	--------------------------------------	----------------

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Temperature range 40°C/24°C for non-cracked concrete C20/25							
Displacement	δ _{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,020	0,024	0,029
Displacement	$\delta_{\text{N}_{\infty}}$ -factor [mm/(N/mm²)]		0,052	0,061	0,079	0,096	0,114
Temperature range 7	72°C/43°C and 60°	°C/43°C for non-c	racked conc	rete C20/25			
Displacement	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033
Displacement	δ_{N_∞} -factor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond strength

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C6: Displacement under shear load 1) (threaded rod)

Anchor size threaded rod			M10	M12	M16	M20	M24
Displacement	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,04	0,04	0,03
Displacement	δ_{V_∞} -factor	[mm/(kN)]	0,08	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

Injection System VME for concrete

Performances

Displacements (threaded rods)

Annex C5

Table C7:	Table C7: Displacements under tension loads ''(rebar)												
Anchor size reinf	orcing bar		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25					
Temperature range 40°C/24°C for non-cracked concrete C20/25													
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,024	0,030					
Displacement	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,061	0,070	0,079	0,096	0,118					
Temperature rang	ge 72°C/43°C aı	nd 60°C/43°C fo	r non-crack	ed concrete	C20/25								
Displacement	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,015	0,018	0,020	0,023	0,028	0,034					
Displacement	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,060	0,070	0,081	0,091	0,111	0,136					

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\tau\colon \text{action bond strength}$

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor } \cdot \tau;$

Displacement under shear load 1) (rebar) Table C8:

Anchor size reinforcing bar		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Displacement	δ _{v0} -factor	[mm/(kN)]	0,05	0,05	0,04	0,04	0,04	0,03
Displacement	δ _{V∞} -factor	[mm/(kN)]	0,08	0,07	0,06	0,06	0,05	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

electronic copy of the eta by dibt: eta-13/0773

Injection System VME for concrete Annex C6 Performances Displacements (rebar)