

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-14/0457 of 14 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Injection system Hilti HIT-HY 170 Product family Bonded anchor for use in concrete to which the construction product belongs Manufacturer Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN Manufacturing plant Hilti Werke This European Technical Assessment 19 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is ETAG 001 Part 5: "Bonded anchors", April 2013, issued in accordance with Regulation (EU) used as EAD according to Article 66 Paragraph 3 of No 305/2011, on the basis of Regulation (EU) No 305/2011. This version replaces ETA-14/0457 issued on 10 March 2015

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-14/0457

Page 2 of 19 | 14 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 19 | 14 December 2017

Specific Part

1 Technical description of the product

The Injection system Hilti HIT-HY 170 is a bonded anchor consisting of a cartridge with injection mortar Hilti HIT-HY 170 and a steel element. The steel element consist of a threaded rod or HIT-V with washer and hexagon nut in the range of M8 to M24 or a internally threaded sleeve HIS-(R)-N in the range of M8 to M16.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C1 to C3
Displacements under tension and shear loads	See Annex C4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-14/0457

Page 4 of 19 | 14 December 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 14 December 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange

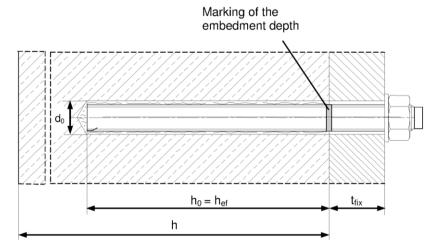
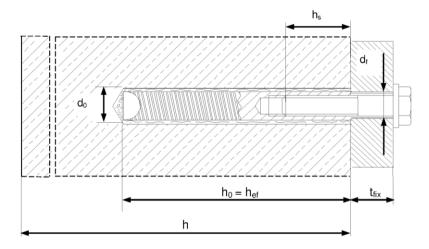
Page 5 of European Technical Assessment ETA-14/0457 of 14 December 2017

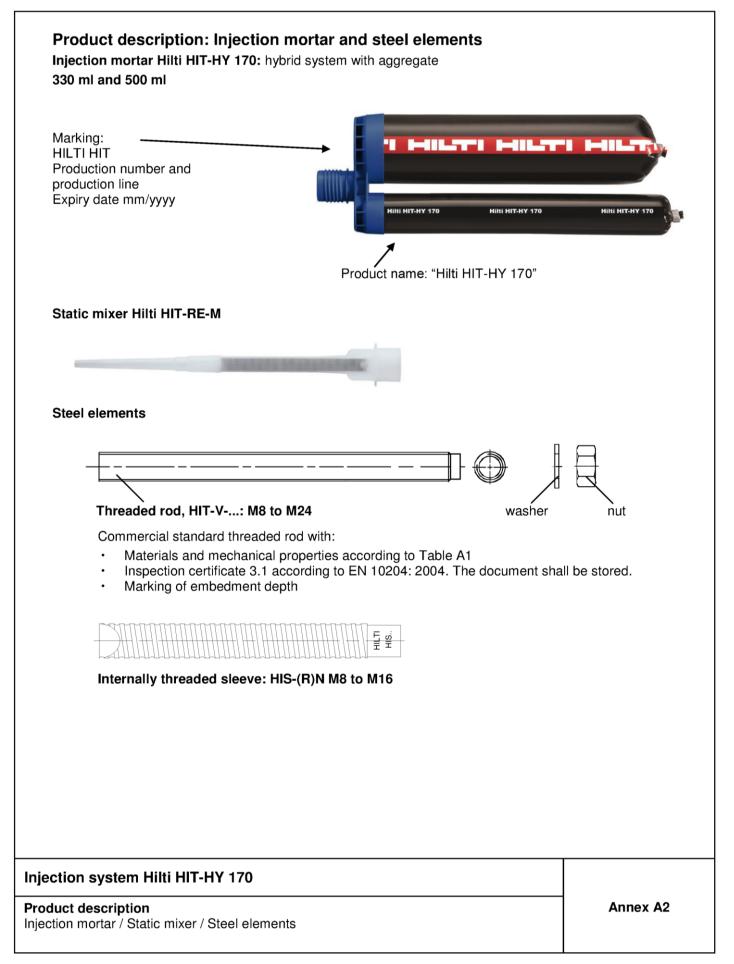
English translation prepared by DIBt

Installed condition

Figure A1:

Threaded rod and HIT-V-...


Figure A2: Internally threaded sleeve HIS-(R)N

Injection system Hilti HIT-HY 170

Product description Installed condition Annex A1

Designation	Material
Metal parts made o	f zinc coated steel
Threaded rod HIT-V-5.8(F)	$ \begin{array}{l} \mbox{Strength class 5.8, } f_{uk} = 500 \ \mbox{N/mm}^2; \ f_{yk} = 400 \ \mbox{N/mm}^2 \\ \mbox{Elongation at fracture (} I_0 = 5d) > 8\% \ \mbox{ductile} \\ \mbox{Electroplated zinc coated} \geq 5 \ \mbox{\mu m} \\ \mbox{(F) Hot dip galvanized} \geq 45 \ \mbox{\mu m} \end{array} $
Threaded rod HIT-V-8.8(F)	$ \begin{array}{l} \mbox{Strength class 8.8 , } f_{uk} = 800 \ \mbox{N/mm}^2, \ f_{yk} = 640 \ \mbox{N/mm}^2 \\ \mbox{Elongation at fracture (} I_0 = 5d) > 12\% \ \mbox{ductile} \\ \mbox{Electroplated zinc coated} \geq 5 \ \mbox{\mu m} \\ \mbox{(F) Hot dip galvanized} \geq 45 \ \mbox{\mu m} \\ \end{array} $
Internally threaded sleeve HIS-N	Electroplated zinc coated $\ge 5\mu m$
Washer	Electroplated zinc coated \ge 5 μ m Hot dip galvanized \ge 45 μ m
Nut	Strength class of nut adapted to strength class of threaded rod Electroplated zinc coated \geq 5 μm Hot dip galvanized \geq 45 μm
Metal parts made o	f stainless steel
Threaded rod HIT-V-R	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Internally threaded sleeve HIS-RN	Stainless steel 1.4401, 1.4571 EN 10088-1:2014
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Nut	Strength class of nut adapted to strength class of threaded rod Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Metal parts made o	f high corrosion resistant steel
Threaded rod HIT-V-HCR	For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$ Elongation at fracture ($l_0=5d$) > 8% ductile For > M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$ Elongation at fracture ($l_0=5d$) > 8% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Nut	Strength class of nut adapted to strength class of threaded rod High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014

Injection system Hilti HIT-HY 170

Product description Materials Annex A3

Specifications of intended use

Anchorages subject to:

Static and quasi static loading: M8 to M24

Base material:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Cracked and non-cracked concrete according to Table B1.

Table B1: Specifications of intended use

Anchorages	subject to:		HIT-HY 1	70 with	
Elements	Elements		HIT-V	HIS-(R)N	
Hammer drilli TE-CD or TE-	ng with hollow drill bit ·YD	✓		~	
Hammer drilli	ng mode 🚥	\checkmark		\checkmark	
Static and qua in non-cracke	asi static loading d concrete	M8 to M Table : C1, C2		M8 to M16 Table : C3, C4, C7, C8	
Static and qua in cracked co	asi static loading ncrete	M10 to M Table : C1, C2		-	
Temperature installation	in the base material at		-5° C to	o +40° C	
In-service	Temperature range I:	-40 °C to +40 °C	(max. long term temperature +24 °C ar max. short term temperature +40 °C)		
temperature	Temperature range II:	-40 °C to +80 °C	(max. long term temperature +50 °C and max. short term temperature +80 °C)		

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

Injection system Hilti HIT-HY 170

Intended Use Specifications

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: "EOTA Technical Report TR 029, Edition September 2010".

Installation:

- · Use category: dry or wet concrete (not in flooded holes)
- · Overhead installation is admissible
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system Hilti HIT-HY 170


Intended Use Specifications

Deutsches Institut für Bautechnik

HIT-HY 170 with threaded rod, H	IT-V		M8	M10	M12	M16	M20	M24
Diameter of element	d	[mm]	8	10	12	16	20	24
Nominal diameter of drill bit	d ₀	[mm]	10	12	14	18	22	28
Range of effective embedment depth and depth of drilled hole	$\mathbf{h}_{ef} = \mathbf{h}_0$	[mm]	60 to 96	60 to 120	70 to 144	80 to 192	90 to 240	96 to 288
Maximum diameter of clearance hole in the fixture ¹⁾	d _f	[mm]	9	12	14	18	22	26
Minimum thickness of concrete member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2·d₀		1
Maximum torque moment	T_{max}	[Nm]	10	20	40	80	150	200
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120

¹⁾ for larger clearance hole see "TR 029 section 1.1"

HIT-V-...

Injection system Hilti HIT-HY 170

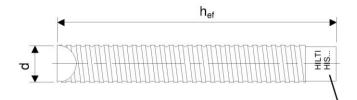

Intended Use Installation parameters

Table B3: Installation parameters of internally threaded sleeve HIS-(R)N											
		M8	M10	M12	M16						
d	[mm]	12,5	16,5	20,5	25,4						
d ₀	[mm]	14	18	22	28						
$\boldsymbol{h}_{ef} = \boldsymbol{h}_0$	[mm]	90	110	125	170						
d _f	[mm]	9	12	14	18						
h _{min}	[mm]	120	150	170	230						
T _{max}	[Nm]	10	20	40	80						
ιx h _s	[mm]	8-20	10-25	12-30	16-40						
S _{min}	[mm]	60	75	90	115						
C _{min}	[mm]	40	45	55	65						
	$\frac{d}{d_0}$ $h_{ef} = h_0$ d_f h_{min} T_{max} $x h_s$ s_{min}	d[mm] d_0 [mm] $h_{ef} = h_0$ [mm] d_f [mm] h_{min} [mm] T_{max} [Nm] $x h_s$ [mm] s_{min} [mm]	M8 d [mm] 12,5 d_0 [mm] 14 $h_{ef} = h_0$ [mm] 90 d_f [mm] 90 h_{min} [mm] 120 T_{max} [Nm] 10 tx h_s [mm] 8-20 s_{min} [mm] 60	M8 M10 d [mm] 12,5 16,5 d_0 [mm] 14 18 $h_{ef} = h_0$ [mm] 90 110 d_f [mm] 90 12 h_{min} [mm] 120 150 T_{max} [Nm] 10 20 tx h_s [mm] 8-20 10-25 s_{min} [mm] 60 75	M8 M10 M12 d [mm] 12,5 16,5 20,5 d_0 [mm] 14 18 22 $h_{ef} = h_0$ [mm] 90 110 125 d_f [mm] 9 12 14 h_{min} [mm] 120 150 170 T_{max} [Nm] 10 20 40 tx h_s [mm] 8-20 10-25 12-30 smin [mm] 60 75 90						

¹⁾ for larger clearance hole see "TR 029 section 1.1"

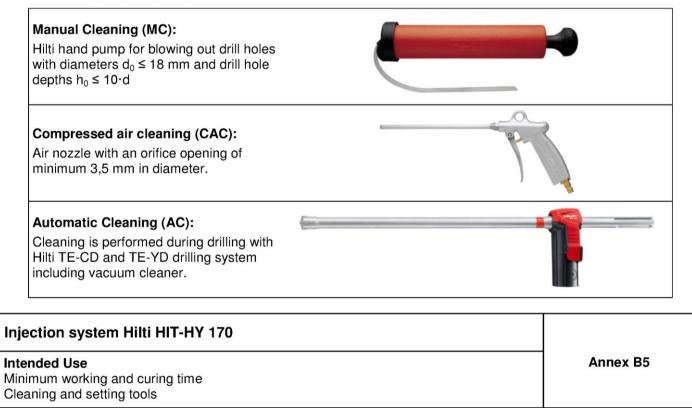
Internally threaded sleeve HIS-(R)N...

Marking:

Identifying mark - HILTI and embossing "HIS-N" (for C-steel) embossing "HIS-RN" (for stainless steel)

Intended Use Installation parameters

Temperature in the base material T		Maximum w t _{wo}		Maximum curing time t _{cure}		
-5°C	to	0°C	10	min	12	h
> 0°C	to	5°C	10	min	5	h
> 5°C	to	10°C	8	min	2,5	h
> 10°C	to	20°C	5	min	1,5	h
> 20°C	to	30°C	3	min	45	min
> 30°C	to	40°C	2	min	30	min


¹⁾ The curing time data are valid for dry base material only.

In wet base material the curing times must be doubled.

Table B5: Parameters of cleaning and setting tools

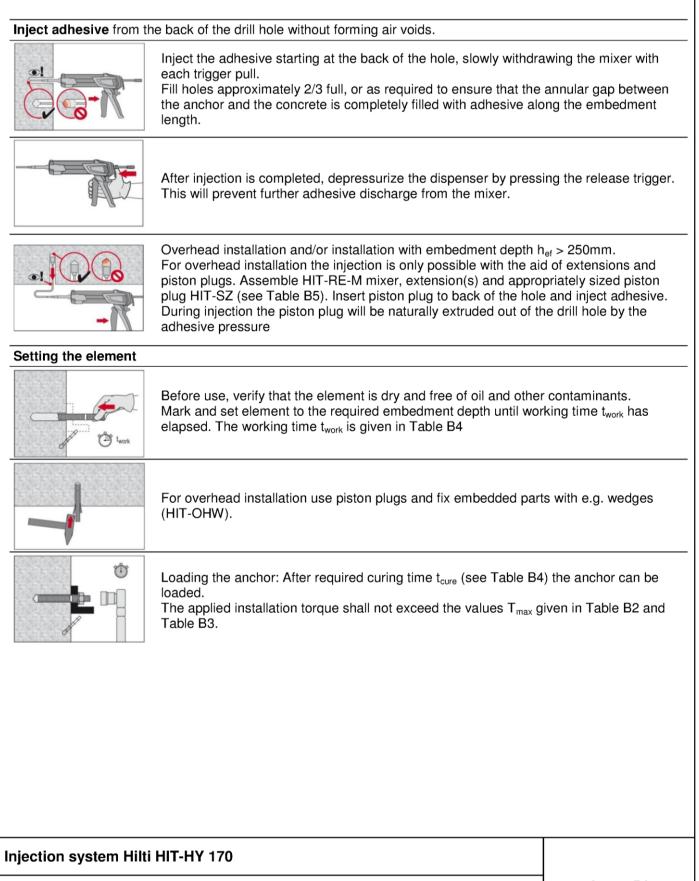
Elem	ents				Installation
HIT-V	HIS-(R)N	Hammer drilling	Hollow drill bit TE-CD, TE-YD	Brush	Piston plug
	Dimension	600000			
size	size	d ₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ
M8	-	10	-	10	-
M10	-	12	12	12	12
M12	M8	14	14	14	14
M16	M10	18	18	18	18
M20	M12	22	22	22	22
M24	M16	28	28	28	28

Cleaning alternatives

b) Hammer drilling with Hi	Il hole to the required embedment depth with a hammer drill set in rotation-hammer de using an appropriately sized carbide drill bit. Iti hollow drill bit: For dry and wet concrete only. Il hole to the required embedment depth with an appropriately sized Hilti TE-CD or
b) Hammer drilling with Hi	de using an appropriately sized carbide drill bit. Iti hollow drill bit: For dry and wet concrete only.
Dri TE dus	
TE dus	I hale to the required embedment depth with an appropriately sized Hilti TE-CD or
ins	-YD hollow drill bit with Hilti vacuum attachment. This drilling system removes the st and cleans the drill hole during drilling when used in accordance with the user's inual. After drilling is completed, proceed to the "injection preparation" step in the tallation instruction.
	st before setting an anchor, the drill hole must be free of dust and debris. Idequate hole cleaning = poor load values.
	n-cracked concrete only drill hole depths $h_0 \le 10 \cdot d$
4x d ₀ : Blo	e Hilti manual pump may be used for blowing out drill holes up to diameters ≤ 18 mm and embedment depths up to $h_{ef} \leq 10 \cdot d$. We out at least 4 times from the back of the drill hole until return air stream is free of ticeable dust
4x HIT ren The hol	ush 4 times with the specified brush (see Table B5) by inserting the steel brush Hilti Γ -RB to the back of the hole (if needed with extension) in a twisting motion and noving it. e brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge drill$ le \emptyset) - if not the brush is too small and must be replaced with the proper brush umeter.
	ow out again with manual pump at least 4 times until return air stream is free of ticeable dust.

Injection system Hilti HIT-HY 170

Intended Use Installation instructions


Compressed air clear	hing (CAC) for all drill hole diameters d_0 and all drill hole depths h_0
34	Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m ³ /h) until return air stream is free of noticeable dust.
2x	Brush 2 times with the specified brush (see Table B5) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge drill$ hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.
33.47	Blow again with compressed air 2 times until return air stream is free of noticeable dust.
njection preparation	
	Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack manifold (snug fit). Do not modify the mixing nozzle. Observe the instruction for use of the dispenser. Check foil pack holder for proper function. Do not use damaged foil packs / holders. Insert foil pack into foil pack holder and put holder into HIT-dispenser.
	Discard initial adhesive. The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded Discarded quantities are
	2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack

Injection system Hilti HIT-HY 170

Intended Use Installation instructions Annex B7

electronic copy of the eta by dibt: eta-14/0457

Intended Use Installation instructions

HIT-HY 170 with threaded rod, HIT-V			M8	M10	M12	M16	M20	M24
Installation safety factor	γ2	[-]			1	,0		
Steel failure								
Characteristic steel resistance	$N_{Rk,s}$	[kN]			A_s	• f _{uk}		
Combined pullout and concrete cone	e failure							
Characteristic bond resistance in non-c	racked cor	ncrete C20/	25					
Temperature range I: 40 °C/24 °C	$\tau_{Rk,ucr}$	[N/mm ²]	10,0					
Temperature range II: 80 °C/50 °C	$ au_{Rk,ucr}$	[N/mm²]	7,5					
Characteristic bond resistance in crack	ed concret	e C20/25					_	
Temperature range I: 40 °C/24 °C	$\tau_{Rk,cr}$	[N/mm ²]	- 5,5 -				-	
Temperature range II: 80 °C/50 °C	$\tau_{Rk,cr}$	[N/mm ²]	-	- 4,0 -				-
		C30/37			1,	04		
Increasing factors for τ_{Rk} in concrete	ψ_{c}	C40/50			1,07			
		C50/60	1,09					
Splitting failure								
	h / h _e	_{ef} ≥ 2,0	1,0 · h _{ef}			-		
Edge distance c _{cr,sp} [mm] for	2,0 > h	2,0 > h / h _{ef} > 1,3		4,6 h _{ef} - 1,8 h			\	
outop F T a series	h / h _e	_{ef} ≤ 1,3	2,26 h _{ef}			2,26 h _{et}	C _{cr,sp}	
Spacing	S _{cr,sp}	[mm]	2·c _{cr,sp}					

Table C2: Characteristic values of resistance for threaded rod, HIT-V-... under shear loads in concrete

HIT-HY 170 with threaded rod, HIT-V	70 with threaded rod, HIT-V M8 M10 M12 M16 M20 M						M24	
Steel failure without lever arm								
Characteristic steel resistance	steel resistance $V_{Rk,s}$ [kN] $0.5 \cdot A_s \cdot f_{uk}$							
Steel failure with lever arm								
Characteristic bending moment	${\sf M}^0_{{\sf R}{\sf k},{\sf s}}$	[Nm]	1,2 · W _{el} · f _{uk}					
Concrete pry-out failure								
Factor in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]] 2,0					

Injection system Hilti HIT-HY 170	
Performances Characteristic values of resistance under tension and shear loads in concrete Design according to "EOTA Technical Report TR 029, Edition September 2010"	Annex C1

Table C3: Characteristic values of resistance for internally threaded sleeve HIS-(R)N under tension loads in non-cracked concrete

HIT-HY 170 with HIS-(R)N			M8	M10	M12	N	/116
Installation safety factor	γ2	[-]	1,0				
Steel failure							
HIS-N with screw grade 8.8	N _{Rk,s}	[kN]	25	46	67	1	25
Partial safety factor	γ _{Ms,N}	[-]		1,	,50		
HIS-RN with screw grade 70	N _{Rk,s}	[kN]	26	41	59	1	10
Partial safety factor	γMs,N	[-]	[-] 1,87				
Combined pullout and concrete cone	e failure						
Characteristic bond resistance in non-c	racked co	ncrete C20	/25				
Temperature range I: 40 °C/24 °C	$\tau_{Rk,ucr}$	[N/mm²]	10,0				
Temperature range II: 80 °C/50 °C	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	n²] 7,5				
		C30/37	7 1,04				
Increasing factors for $\tau_{\text{Rk},\text{ucr}}$ in concrete	$\psi_{c,ucr}$	C40/50	1,07				
		C50/60	1,09				
Splitting failure							
	h / h _e	_f ≥ 2,0	1,0 · h _e	h/h _{ef} 7 9f 2,0			
Edge distance c _{cr.sp} [mm] for	2,0 > h /	′ h _{ef} > 1,3	4,6 h _{ef} - 1				
	h / h _e	_f ≤ 1,3	2,26 h	ef	1,0 h _{ef}	2,26 h _{ef}	→ C _{cr,s}
Spacing	S _{cr,sp}	[mm]		2.0	C _{cr,sp}		

Injection system Hilti HIT-HY 170

Performances Characteristic values of resistance under tension loads in non-cracked concrete Design according to "EOTA Technical Report TR 029, Edition September 2010" Annex C2

Table C4: Characteristic values of resistance for internally threaded sleeve HIS-(R)N under shear loads in non-cracked concrete

HIT-HY 170 with HIS-(R)N	M8	M10	M12	M16		
Steel failure without lever arm						
HIS-N with screw grade 8.8	$V_{Rk,s}$	[kN]	13	23	34	63
Partial safety factor	γMs,V	[-]		1,	25	
HIS-RN with screw grade 70	$V_{Rk,s}$	[kN]	13	20	30	55
Partial safety factor	γMs,V	[-]	1,56			
Steel failure with lever arm		·				
HIS-N with screw grade 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266
Partial safety factor	γMs,V	[-]	1,25			
HIS-RN with screw grade 70	$M^0_{Rk,s}$	[Nm]	26	52	92	233
Partial safety factor	γMs,V	[-]		1,	56	
Concrete pry-out failure		· ·				
Factor in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]		2	,0	

Injection system Hilti HIT-HY 170

Performances Characteristic values of resistance under shear loads in non-cracked concrete Design according to "EOTA Technical Report TR 029, Edition September 2010" Annex C3

HIT-HY 170 with threaded rod, HIT-V			M8	M10	M12	M16	M20	M24
Non-cracked concrete								
Displacement	δ_{N0}	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,09
Displacement	$\delta_{N^{\infty}}$	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,09
Cracked concrete)	·						
Displacement	δ_{N0}	[mm/(N/mm²)]	-	0,07	0,07	0,06	-	-
Displacement	$\delta_{N\infty}$	[mm/(N/mm ²)]	-	0,11	0,11	0,11	-	-

Table C6: Displacement under shear load

HIT-HY 170 with threaded rod, HIT-V		M8	M10	M12	M16	M20	M24	
Displacement	δ_{V0}	[mm/(N/mm²)]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement	δ_{V^∞}	[mm/(N/mm²)]	0,09	0,08	0,08	0,06	0,06	0,05

Table C7: Displacement under tension load

HIT-HY 170 with HIS-(R)N			M8	M10	M12	M16		
Non-cracked concrete								
Displacement	δ_{N^∞}	[mm/(N/mm²)]	0,06	0,07	0,08	0,09		
Displacement	δ_{N^∞}	[mm/(N/mm²)]	0,06	0,07	0,08	0,09		

Table C8: Displacement under shear load

HIT-HY 170 with	HIS-(R)N		M8	M10	M12	M16
Displacement	δ_{V0}	[mm/(N/mm²)]	0,10	0,10	0,10	0,10
Displacement	δ_{V^∞}	[mm/(N/mm²)]	0,15	0,15	0,15	0,15

Injection system Hilti HIT-HY 170

Performances Displacements

Annex C4