

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0883 of 6 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Injection system Hilti HIT-RE 100
Product family to which the construction product belongs	Injection system for post-installed rebar connection
Manufacturer	Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN
Manufacturing plant	Hilti Werke
This European Technical Assessment contains	21 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330087-00-0601
This version replaces	ETA-15/0883 issued on 21 April 2016

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0883

Page 2 of 21 | 6 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 6 December 2017

Specific Part

1 Technical description of the product

The subject of this approval is the post-installed rebar connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Injection system Hilti HIT-RE 100" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm according to Annex A and injection adhesive Hilti HIT-RE 100 are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Amplification factor $\alpha_{\text{lb}},$ Bond resistance f_{bd}	See Annex C1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Rebar connnections satisfy requirements for Class A1
Resistance to fire	See Annex C2

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-00-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1

European Technical Assessment ETA-15/0883

Page 4 of 21 | 6 December 2017

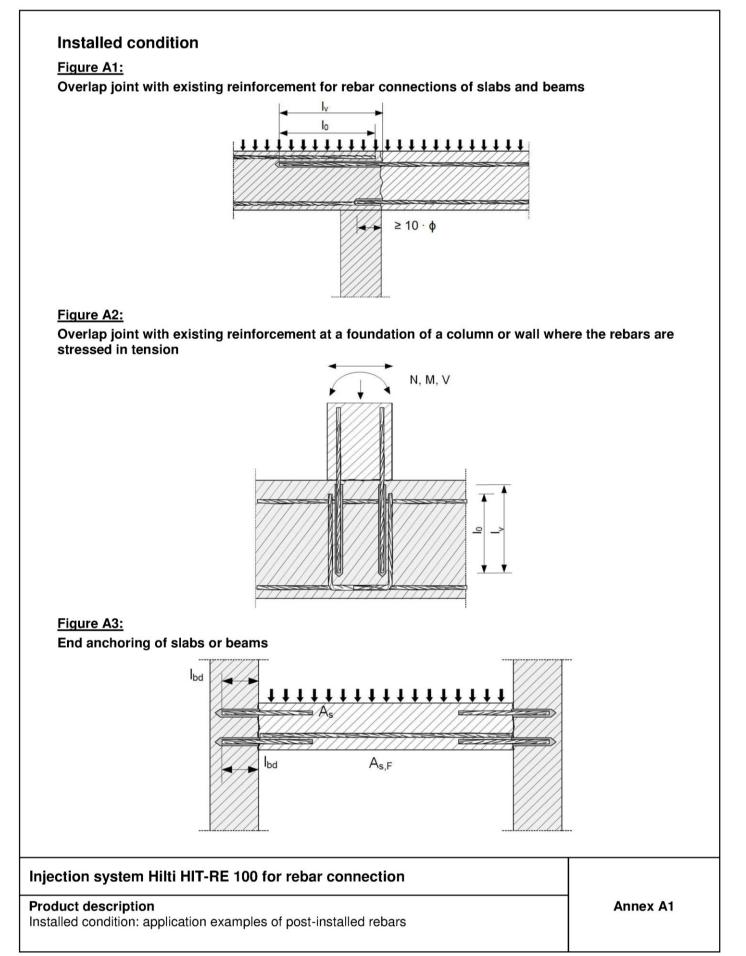
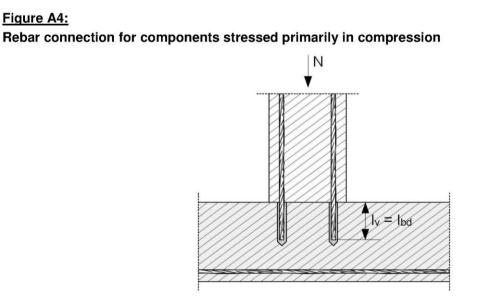
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 6 December 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange

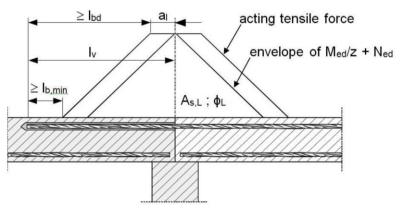
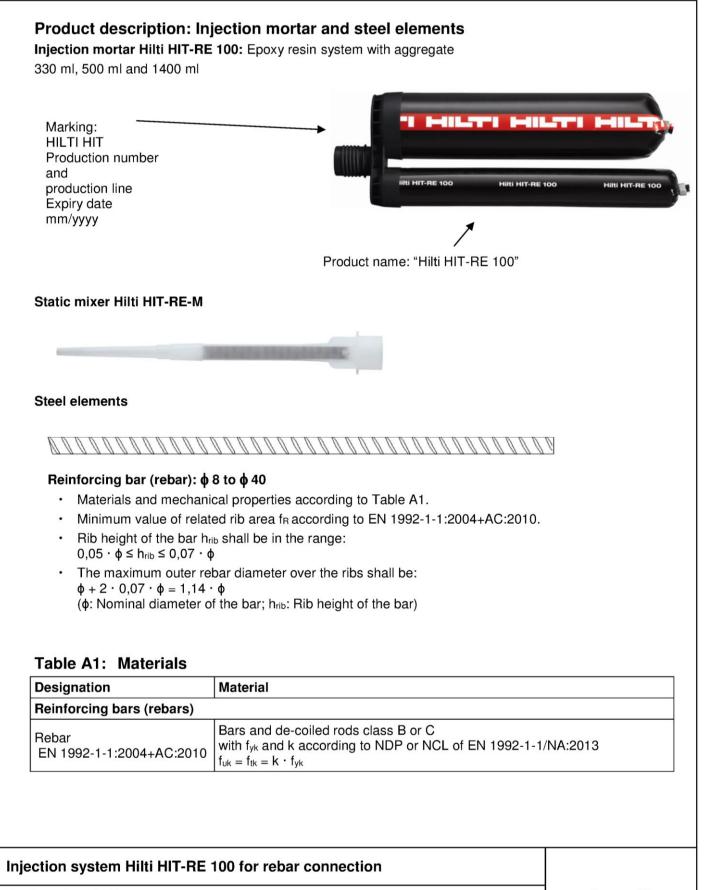

Figure A4:

Figure A5:

Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member


Note to Figure A1 to Figure A5:

- . In the Figures no transverse reinforcement is plotted, the transverse reinforcement as required by EN 1992-1-1:2004+AC:2010 shall be present.
- The shear transfer between existing and new concrete shall be designed according to EN 1992-1-1:2004+AC:2010.
- Preparing of joints according to Annex B2.

Injection system Hilti HIT-RE 100 for rebar connection

Product description Installed condition: application examples of post-installed rebars Annex A2

Product description Injection mortar / Static mixer / Steel elements Materials Annex A3

Specifications of intended use

Anchorages subject to:

- Static and quasi static loading.
- Fire exposure.

Base material:

- · Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C12/15 to C50/60 according to EN 206:2013.
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013.
- · Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond at least to the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature in the base material:

- at installation
 - +5 °C to +40 °C
- · in-service

-40 °C to +80 °C (max. long term temperature +50 °C and max. short term temperature +80 °C)

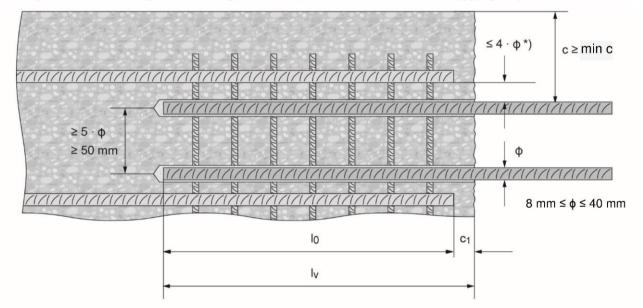
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- · Design under static or quasi-static loading in accordance with EN 1992-1-1.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- · Use category: dry or wet concrete (not in flooded holes).
- Hole drilling by hammer drill (HD), hollow drill bit (HDB), compressed air drill mode (CA), diamond coring dry (DD) or diamond coring wet (PCC).
- · Overhead installation is admissible.
- Rebar installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).


Injection system Hilti HIT-RE 100 for rebar connection

Intended Use Specifications

Figure B1: General construction rules for post-installed rebars

- Post-installed rebar may be designed for tension forces only.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- · The joints for concreting must be roughened to at least such an extent that aggregate protrudes.

- ^{*}) If the clear distance between lapped bars exceeds 4 · φ, then the lap length shall be increased by the difference between the clear bar distance and 4 · φ.
- c concrete cover of post-installed rebar
- c1 concrete cover at end-face of existing rebar
- min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
- φ diameter of reinforcement bar
- lo lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- I_v effective embedment depth $\ge I_0 + c_1$
- d₀ nominal drill bit diameter, see Annex B5 and B6

Injection system Hilti HIT-RE 100 for rebar connection

Intended Use General construction rules for post-installed rebars

Table B1: Minimum concrete cover min c¹⁾ of the post-installed rebar depending on drilling method and drilling tolerance

Drilling method	Bar diameter	Minimur	c ¹⁾ [mm]	
Drining method	[mm]	Without drilling aid	With drilling aid	
Hammer drilling	φ < 25	$30 + 0.06 \cdot I_v \ge 2 \cdot \phi$	$30 + 0,02 \cdot _{v} \ge 2 \cdot \phi$	
(HD) and (HDB) ²⁾	φ ≥ 25	$40 + 0,06 \cdot I_v \ge 2 \cdot \phi$	$40 + 0,02 \cdot I_v \ge 2 \cdot \phi$	
Compressed air	φ < 25	50 + 0,08 · I _v	50 + 0,02 · I _v	
drilling (CA)	φ ≥ 25	$60 + 0.08 \cdot I_v \ge 2 \cdot \phi$	$60 + 0,02 \cdot _{v} \ge 2 \cdot \phi$	·····
Diamont coring dry (PCC) or wet	φ < 25	Drill stand is used as	$30 + 0.02 \cdot I_v \ge 2 \cdot \phi$	
(DD)	φ ≥ 25	drilling aid	$40 + 0,02 \cdot _{v} \geq 2 \cdot \phi$	

¹⁾ See Annex B2, Figure B1.
 ²⁾ HDB = hollow drill bit Hilti TE-CD and TE-YD

Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010.

Table B2: Maximum embedment depth ly,max depending on bar diameter and dispenser

Bar		Dispensers	
diameter	HDM 330, HDM 500, HIT-MD 2000, HIT-MD 2500	HDE 500, HIT-P 3000 F, HIT-P 3500 F, HIT-ED 3500	HIT-P 8000 D
φ [mm]	l _{v,max} [mm]	l _{v,max} [mm]	l _{v,max} [mm]
8		1000	
10		1000	-
12	1000	1200	1200
14		1200	1400
16		1500	1600
18		1200	1800
20		1300	2000
22	700	1000	2200
24			2400
25			2500
26	500		2600
28	500	700	2800
30		700	3000
32			
34	-		2200
36		500	3200
40]		

Injection system Hilti HIT-RE 100 for rebar connection

Intended Use

Minimum concrete cover / Maximum embedment depth

Temperature in the base material T			Maximum working time twork ²⁾	Initial curing time t _{cure,ini} ³⁾	Minimum curing time t _{cure} 2)
+5°C	to	9°C	2 hours	18 hours	72 hours
+10°C	to	14°C	1,5 hours	12 hours	48 hours
+15°C	to	19°C	30 min	8 hours	24 hours
+20°C	to	24°C	25 min	6 hours	12 hours
+25°C	to	29°C	20 min	5 hours	10 hours
+30°C	to	39°C	12 min	4 hours	8 hours
+40°C			12 min	2 hours	4 hours

1) The curing time data are valid for dry base material only.

In wet base material the curing times must be doubled

2) The temperature of the foil pack must be between +5 °C and +40 °C during use.

3) After t_{cure,ini} has elapsed preperation work may continue

Injection system Hilti HIT-RE 100 for rebar connection

Intended use Maximum working time, initial curing time and minimum curing time

Elements	ements Drill and clean						Installation	Installation		
Rebar	Hammer drilling (HD)	Compressed air drilling (CA)	Diamond core wet (DD)	Brush HIT-RB	Air nozzle HIT-DL	Extension for air nozzle	Piston plug HIT-SZ	Extension for piston plug	Maximum embedmer depth	
17121212121212	TI 		\$ ♪	****** *****		2			-	
size	d₀ [mm]	d₀ [mm]	d₀ [mm]	size	size	[-]	size	[-]	l _{v,max} [mm]	
	10	-	10	10	10		-		250	
φ8	12	-	12	12	12		12	HIT-VL 9/1,0	1000	
1.10	12	-	12	12	12	HIT-DL	12	0/1,0	250	
φ 10	14	-	14	14	14	10/0,8	14		1000	
	14	-	14	14	14	or HIT-DL V10/1 16 18	14]	250	
φ 12	16	-	16	16	16			16	HIT-VL 11/1,0	1000
	-	17	-	18	16		18	11/1,0	1200	
φ 14	18	17	18	18	18		18 / 16 ¹⁾		1400	
1.40	20	-	20	20	20			20 / 18 ¹⁾		1000
φ16	-	20	-	22	20		22		1600	
φ 18	22	22	22	22	22		22		1800	
	25 / 24 ¹⁾	-	25	25 / 24 ¹⁾	25 / 24 ¹⁾		25 / 241)		2000 / 4001)	
φ 20	-	26	-	28	25		28			
φ 22	28	28	28	28	28		28		2200	
φ 24	32	32	32	32		HIT-DL	32		2400	
φ 25	32 / 30 ¹⁾	32 / 30 ¹⁾	32	32 / 30 ¹⁾		16/0,8	32 / 30 ¹⁾	1	2500 / 500	
φ 26	35	35	35	35	1	or HIT-DL B	35	HIT-VL 16/0,7	2600	
φ 28	35	35	35	35		and/or	35	and/or	2800	
	-	35	35	35	1	HIT-VL 16/0,7	35	HIT-VL 16		
φ 30	37	-	-	37		and/or	37	. 10	3000	
φ 32	40	40	40	40	32	HIT-VL 16	40			
	-	42	42	42			42			
φ 34	45	-	-	45	1		45			
	45	45	-	45			45		3200	
φ 36	-	-	47	47	1		47	1		
	-	-	52	52	1		52			
φ 40	55	57	-	55	1		55	1		
		given values ca sion HIT-VL 16/		ıpler HIT-DL	₋ K for dee∣	per anchor ho	les.			

Parameters of cleaning and setting tools

electronic copy of the eta by dibt: eta-15/0883

Table B5: Parameters of drilling and setting tools with hollow drill bit or dry diamond coring

Elements		D	rill				Installati	on
Rebar	Hammer drilling, hollow drill bit (HDB)	Diamond core dry (PCC)	Brush HIT-RB	Air nozzle HIT-DL	Extension for air nozzle	Piston plug HIT-SZ	Extension for piston plug	Maximum embedment depth
121/121/21/21/21/21		\$ ₽ >	******			₿	1)	-
size	d₀ [mm]	d₀ [mm]	size	size	[-]	size	[-]	l _{v,max} [mm]
φ8	12	-				12	HIT-VL	200
+ 10	12	-]			12	9/1,0	200
φ 10	14	-]			14		240
φ 12	14	-]			14	HIT-VL	240
φīz	16	-				16	11/1,0	1000
φ 14	18	-			18		1000	
φ 16	20	-				20		1000
φ 18	22	-]			22		1000
φ 20	25	-	1			25		1000
φ 22	28	-	1			28		1000
1.04	32	-	No	cleaning red	quired	32		1000
φ 24	-	35	1			35		2400
1.05	32	-	1			32	HIT-VL 16/0,7	1000
φ 25	-	35	1			35		2500
φ 2 6	-	35	1			35	and/or HIT-VL 16	2600
φ 28	-	35	1			35		2800
φ 30	-	35	1			35		3000
φ 32	-	47	1			45		
φ 34	-	47	1			45		
φ 36	-	47	1			45		3200
φ 4 0	-	52	1			52		

¹⁾ Assemble extension HIT-VL 16/0.7 with coupler HIT-DL K for deeper anchor holes.

Injection system Hilti HIT-RE 100 for rebar connection

Intended Use

Dry diamond coring: Parameters of cleaning and setting tools

Page 14 of European Technical Assessment ETA-15/0883 of 6 December 2017

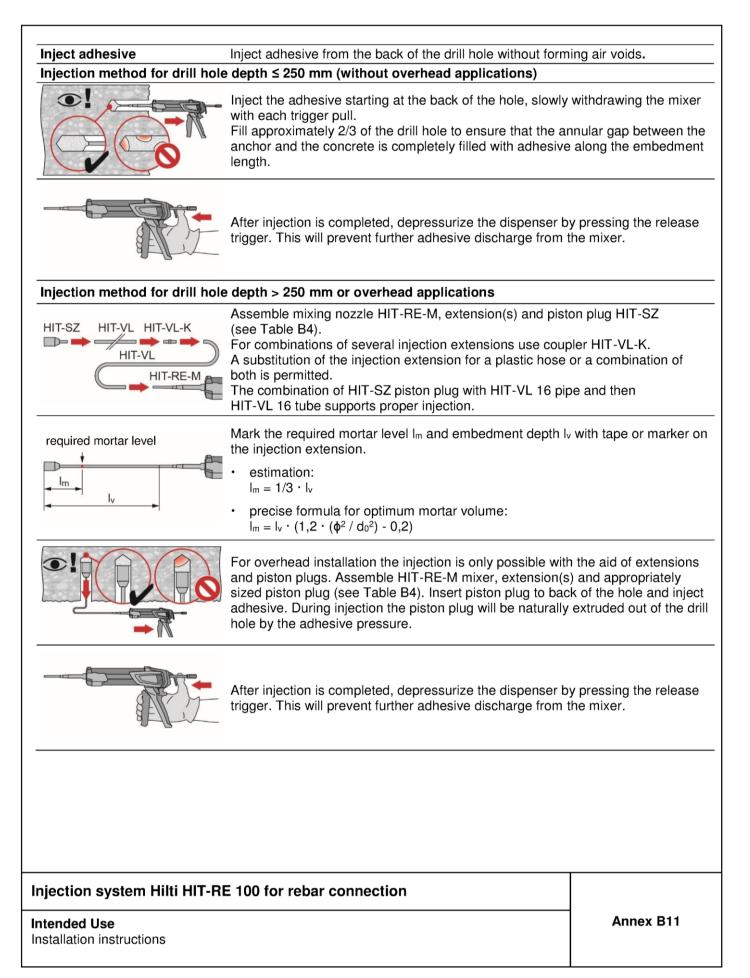
English translation prepared by DIBt

Cleaning alternatives	3					
Manual Cleaning (MC): Hilti hand pump for blowing with diameters $d_0 \le 20$ mm depths $h_0 \le 10 \cdot d$.	out drill holes					
air nozzle with an orifice op	Compressed Air Cleaning (CAC): air nozzle with an orifice opening of minimum 3,5 mm in diameter.					
Automatic Cleaning (AC): Cleaning is performed durin Hilti TE-CD and TE-YD drill including vacuum cleaner.	ng drilling with					
nstallation instruction						
Safety Regulations:	Review the Material Safety Data Sheet (MSDS) before use handling! Wear well-fitting protective goggles and protective gloves HIT-RE 100. Important: Observe the installation instruction provided wit	when working with Hilti				
lole drilling	Before drilling remove carbonized concrete and clean cor (see Annex B1). In case of aborted drill hole the drill hole shall be filled wit					
rilling						
	Drill hole to the required embedment depth with an approp CD or TE-YD hollow drill bit (HDB) with Hilti vacuum attack system removes the dust and cleans the bore hole during accordance with the user's manual.	hment. This drilling				
	After drilling is complete, proceed to the "injection prepara instructions for use. Drill bit size see Table B5	tion" step in the				
6. Calabac (****	r drill set in rotation- ely sized carbide drill bit					
	Hammer drill (HD) Compressed air drill (CA) Di	amond core wet (DD) and dry (PCC)				
ection system Hilti HIT-R	E 100 for rebar connection					
ended Use eaning alternatives stallation instructions		Annex B7				

Page 15 of European Technical Assessment ETA-15/0883 of 6 December 2017

Splicing applications	
	Measure and control concrete cover c. $c_{drill} = c + d_0/2$. Drill parallel to edge and to existing rebar. Where applicable use Hilti drilling aid HIT-BH.
Drilling aid	For holes $I_v > 20$ cm use drilling aid.
	 Ensure that the drill hole is parallel to the existing rebar. Three different options can be considered: Hilti drilling aid HIT-BH Lath or spirit level Visual check
Drill hole cleaning	Just before setting the bar the drill hole must be free of dust and debris. Inadequate hole cleaning $=$ poor load values.
Manual Cleaning (MC)	For drill hole diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$.
	The Hilti hand pump may be used for blowing out drill holes up to diameters $d_0 \leq 20$ mm and embedment depths up to $h_{ef} \leq 10 \cdot d$. Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.
	Brush 4 times with the specified brush (see Table B4) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.
	Blow out again with the Hilti hand pump at least 4 times until return air stream is free of noticeable dust.

Intended Use Installation instructions


Compressed Air Cleaning (CAC)	For all drill hole diameters d_0 and all drill hole depths $h_0 \le 20 \cdot d$.
	Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m ³ /h) until return air stream is free of noticeable dust.
	Brush 2 times with the specified brush (see Table B4) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.
	Blow again with compressed air 2 times until return air stream is free of noticeable dust.
Compressed Air Cleaning (CAC)	For drill holes deeper than 250 mm (for ϕ 8 to ϕ 12) or deeper than 20 $\cdot \phi$ (for $\phi > 12$ mm)
	Use the appropriate air nozzle Hilti HIT-DL (see Table B4). Blow 2 times from the back of the hole over the whole length with oil-free compressed air until return air stream is free of noticeable dust. Safety tip: Do not inhale concrete dust. Use of the dust collector Hilti HIT-DRS is recommended.
	Screw the round steel brush HIT-RB in one end of the brush extension(s) HIT-RBS, so that the overall length of the brush is sufficient to reach the base of the drill hole. Attach the other end of the extension to the TE-C/TE-Y chuck. Safety tip: Start machine brushing operation slowly. Start brushing operation once the brush is inserted in the borehole.
	Use the appropriate air nozzle Hilti HIT-DL (see Table B4). Blow 2 times from the back of the hole over the whole length with oil-free compressed air until return air stream is free of noticeable dust. Safety tip: Do not inhale concrete dust. Use of the dust collector Hilti HIT-DRS is recommended.
niection system Hilti HIT-F	E 100 for rebar connection

Intended Use Installation instructions

n addition for wet diamond coring (DD):	For all drill hole diameters d_0 and all drill hole depths h_0 .	
	Flush 2 times by inserting a water hose (water-line pressu hole until water runs clear.	re) to the back of the
	Brush 2 times with the specified brush (see Table B4) by i Hilti HIT-RB to the back of the hole (if needed with extensi and removing it. The brush must produce natural resistance as it enters the drill hole \emptyset) - if not the brush is too small and must be repl brush diameter.	on) in a twisting motion e drill hole (brush $\emptyset \ge$
	Flush 2 times by inserting a water hose (water-line pressu hole until water runs clear.	re) to the back of the
Rebar preparation		
	Before use, make sure the rebar is dry and free of oil or ot	her residue.
ลิสสิทสิทสิทสา	Mark the embedment depth on the rebar (e.g. with tape) -	→ I _{v.}
njection preparation		
	Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack mathe the mixing nozzle. Observe the instruction for use of the dispenser. Check foil pack holder for proper function. Insert foil pack and put holder into dispenser.	-
	The foil pack opens automatically as dispensing is initiated size of the foil pack an initial amount of adhesive has to be quantities are: 3 strokes for 330 ml foil pack, 4 strokes for 500 ml foil pack, 65 ml for 1400 ml foil pack.	
jection system Hilti HIT-R	E 100 for rebar connection	
tended Use stallation instructions		Annex B10

Page 19 of European Technical Assessment ETA-15/0883 of 6 December 2017

English translation prepared by DIBt

Setting the element	Before use, verify that the element is dry and free of oil an	d other contaminants.
	For easy installation insert the rebar into the drill hole whil the embedment mark is at the concrete surface level.	e slowly twisting until
d d	For overhead application: During insertion of the rebar mortar might flow out of the c of the flowing mortar HIT-OHC may be used. Support the rebar and secure it from falling until mortar ha e.g. using wedges HIT-OHW. For overhead installation use piston plugs and fix embedd wedges.	as started to harden,
	 After installing the rebar the annular gap must be complet Proper installation: desired anchoring embedment l_v is reached: embedment surface. excess mortar flows out of the borehole after the rebar until the embedment mark. 	ent mark at concrete
	Observe the working time t _{work} (see Table B3), which varies temperature of base material. Minor adjustments to the re performed during the working time. After t _{cure,ini} (see Table B3) preparation work may continue	bar position may be
	Full load may be applied only after the curing time t _{cure} has (see Table B3).	s elapsed
jection system Hilti HIT-R	E 100 for rebar connection	
ended lise		Annex B12

Intended Use Installation instructions

Minimum anchorage length and minimum lap length

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($l_{b,min}$ acc. to Eq. 8.6 and 8.7 and $l_{0,min}$ acc. to Eq. 8.11) shall be multiplied by the relevant amplification factor α_{lb} given in Table C1.

Table C1: Amplification factor α_{lb}

Concrete class	Bar diameter	Drilling method	Amplification factor α_{lb}
C12/15 to C50/60	φ 8 to φ 40	Hammer drilling (HD), hollow drill bit (HDB) and compressed air drilling (CA)	1,0
C12/15 to C50/60	φ 8 to φ 40	Diamond coring dry (PCC) and wet (DD)	1,5

Table C2: Design values of the ultimate bond resistance $f_{bd}^{1)}$ in N/mm² for hammer drilling (HD), hollow drill bit (HDB), compressed air drilling (CA) and diamond coring dry (PCC)

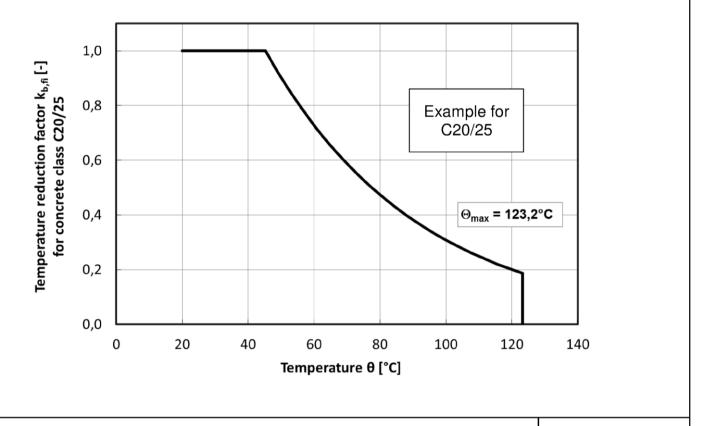
Bar diameter	Concrete class								
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ 8 to φ 32	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
34	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2
36	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1
40	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0

¹⁾ According to EN 1992-1-1:2004+AC:2010 for good bond conditions with consideration γ_c =1,5 (recommended value according to EN 1992-1-1:2004+AC:2010). For all other bond conditions multiply the values by 0,7.

Table C3: Design values of the ultimate bond resistance fbd¹ in N/mm² for diamond coring wet (DD)

Bar diameter	Concrete class								
Dar Glameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ 8 to φ 32	1,6	2,0	2,3	2,7					
34	1,6	2,0	2,3	2,6					
36	1,5	1,9	2,2	2,6					
40	1,5	1,8	2,1	2,5					

1) According to EN 1992-1-1:2004+AC:2010 for good bond conditions with consideration γ_c=1,5 (recommended value according to EN 1992-1-1:2004+AC:2010). For all other bond conditions multiply the values by 0,7.


Injection system Hilti HIT-RE 100 for rebar connection

Performances Minimum anchorage length and minimum lap length Design values of ultimate bond resistance f_{bd} Annex C1

Design value of the ultimate bond stress f _{bd,fi} under fire exposure for concrete classes C12/15 to C50/60, (all drill methods)								
The desig equation:	n value of the bond strength $f_{bd,fi}$ under fire exposure has to be calculated by the following							
	$\mathbf{f}_{bd,fi} = \mathbf{k}_{b,fi}(\mathbf{\theta}) \cdot \mathbf{f}_{bd} \cdot \mathbf{\gamma}_{c} / \mathbf{\gamma}_{M,fi}$							
with:	$\theta \le 123,2^{\circ}C: k_{b,fi}(\theta) = 26,424 \cdot e^{-0,0215 \cdot \Theta} / f_{bd} \cdot 4,3 \le 1,0$							
	$\theta > 123,2^{\circ}C: k_{b,fi}(\theta) = 0,0$							
f _{bd,fi}	design value of the ultimate bond stress in case of fire in N/mm ²							
θ	temperature in °C in the mortar layer							
$k_{b,fi}(\theta)$	reduction factor under fire exposure							
fbd	design values of the ultimate bond stress in N/mm ² in cold condition according to Table C2 considering the concrete classes, the rebar diameter, the drilling method and the bond conditions according to EN 1992-1-1							
γс	partially safety factor according to EN 1992-1-1							
γM,fi	partially safety factor according to EN 1992-1-2							

Figure C1 Example graph of Reduction factor $k_{b,fi}(\theta)$ for concrete classes C20/25 for good bond conditions:

Injection system Hilti HIT-RE 100 for rebar connection

Performances

Design values of ultimate bond resistance $f_{bd,fi}$ under fire exposure Temperature reduction factor $k_{b,fi}(\theta)$ under fire exposure

Annex C2