

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-15/0440 vom 13. Dezember 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Injektionssystem FIS EB

Injektionssystem zur Verankerung im Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

26 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

ETAG 001 Teil 5: "Verbunddübel", April 2013, verwendet als EAD gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011

ETA-15/0440 vom 6. Juli 2015

Europäische Technische Bewertung ETA-15/0440

Seite 2 von 26 | 13. Dezember 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-15/0440

Seite 3 von 26 | 13. Dezember 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Das fischer Injektionssystem FIS EB ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel fischer FIS EB und einem Stahlteil besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung				
Charakteristische Werte unter statischen und quasi-statischen Einwirkungen, Verschiebungen	Siehe Anhang C 1 bis C 6				
Charakteristische Werte für die seismischen Leistungskategorien C1 und C2, Verschiebungen	Siehe Anhang C 7 bis C 10				

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

Europäische Technische Bewertung ETA-15/0440

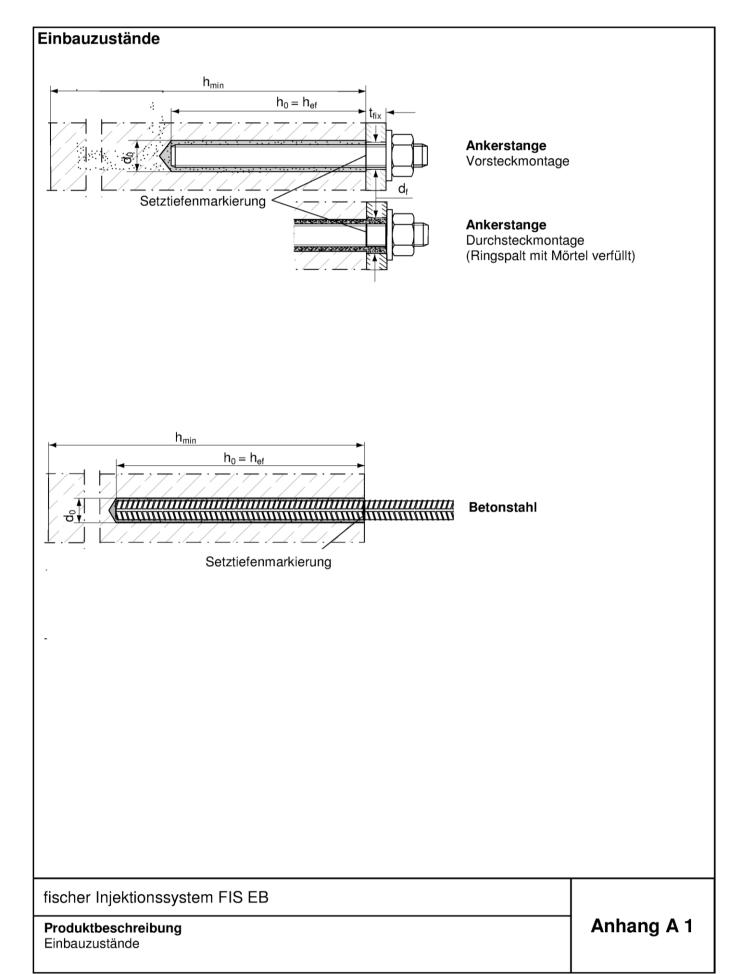
Seite 4 von 26 | 13. Dezember 2017

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

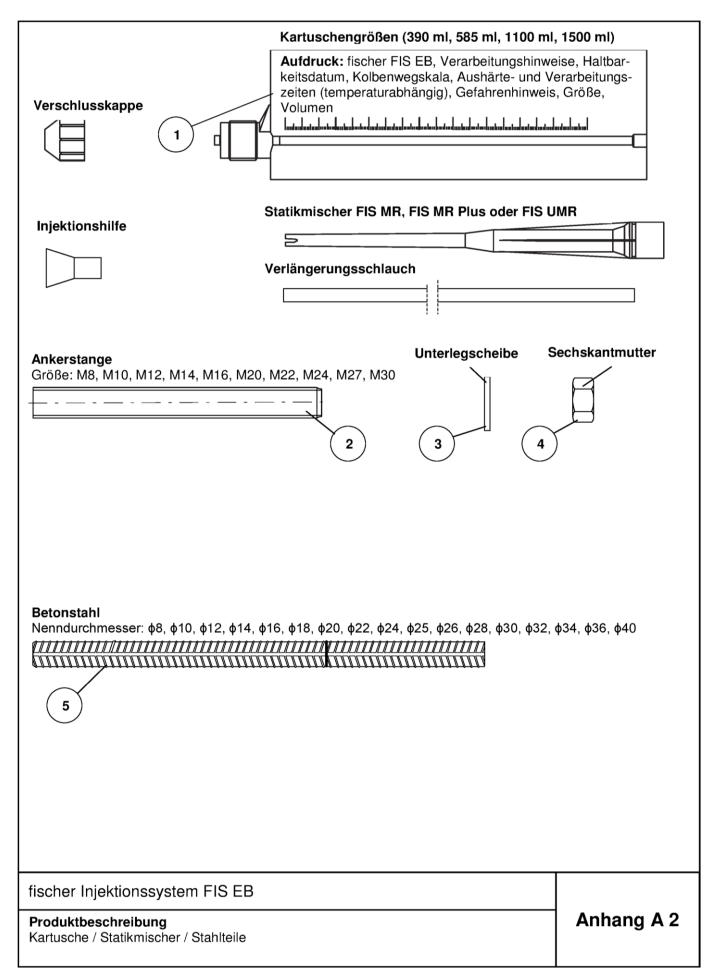
Gemäß der Leitlinie für die europäische technische Zulassung ETAG 001, April 2013 verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 13. Dezember 2017 vom Deutschen Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt:

1 N		Material									
1-	Mörtelkartusche	Mörtel, Här	ter, Füllstoffe								
5	Stahlart	Stahl, verzinkt	Nichtrostender Stahl A4								
2 A	Ankerstange		Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ Bruchdehnung ine Anforderungen der seismischen zu berücksichtigen sind.								
	Unterlegscheibe ISO 7089:2000	verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439 1.4362 EN 10088-1:2014								
4 8	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 verzinkt ≥ 5 µm, ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 µm EN ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439 1.4362 EN 10088-1:2014								

fischer Injektionssystem FIS EB	
Produktbeschreibung Materialien	Anhang A 3

Spezifizierung des Verwendungszwecks (Teil 1)

Tabelle B1: Übersicht Nutzungs- und Leistungskategorien

Beanspruchung Verankerung	der		FIS	EB mit						
		Anker	stange	Betor	nstahl					
			····							
Hammerbohren mit Standardbohrer	######################################		alle Größen Bohrernenndurchmesser (d ₀) 12 mm bis 35 mm alle Größen Tabellen: C1, C3, C4, C6 alle Größen Tabellen: C2, C3, M10 bis C8, C10, C11 bis M30 Tabellen: C8, C10, C11 bis C9, C1							
Hammerbohren mit Hohlbohrer (Heller "Duster Expert" oder Hilti "TE-CD, TE-YD")	1	Bohrernenndurchmesser (d₀) 12 mm bis 35 mm alle Größen alle Größen Tabellen: C1, C3, C4, C6 alle Größen Tabellen: C2, C3, C C2 M10 Tabellen: C8, C10, C11 Dis M30 Tabellen: C8, C10, C11 C9, C10, C9 Tabellen: C9, C10, C1								
Diamantbohren			alle G	Größen						
Statische und	ungerissenen Beton	alle Größen		alle Größen	Tabellen:					
mit Standardbohrer Hammerbohren mit Hohlbohrer (Heller "Duster Expert" oder Hilti "TE-CD, TE-YD") Diamantbohren Statische und quasi-statische Belastung, im Seismische Leistungs- kategorie (nur Hammer- bohren mit Standardbohrer / Hohlbohrer)	gerissenen Beton	and Grobott	C1, C3, C4, C6	and Grobott	C2, C3, C5, C7					
Seismische Leistungs- kategorie	C1	bis		bis	Tabellen: C9, C10, C12					
bohren mit Standardbohrer / Hohlbohrer)	C2									
Nutzungs-	Trockener oder nasser Beton		alle G	Größen						
kategorie	Wasser- gefülltes Bohrloch		alle G	rößen						
Einbau- temperatur			+5 °C bis	s +40 °C						
Gebrauchs- temperatur- bereich		-40 °C bis +72 °C	(maximale Langzeitt maximale Kurzzeitte		nd					

fischer Injektionssystem FIS EB

Verwendungszweck
Spezifikationen (Teil 1)

Anhang B 1

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

 Bewehrter oder unbewehrter Normalbeton der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2000

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl)

Anmerkung: Aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

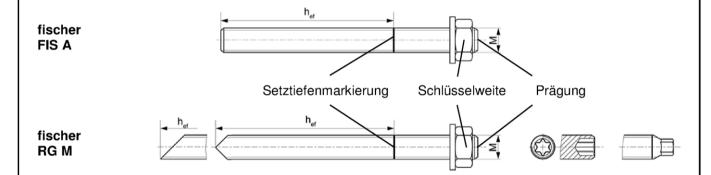
- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern)
- Die Bemessung der Verankerungen unter statischer oder quasi-statischer Belastung wird durchgeführt in Übereinstimmung mit: EOTA Technical Report TR 029 "Bemessung von Verbunddübeln", Fassung September 2010 oder CEN/TS 1992-4:2009
- Verankerungen unter seismischer Einwirkung (gerissener Beton) werden bemessen in Übereinstimmung mit:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition Februar 2013
 - Die Verankerungen sind außerhalb kritischer Bereiche (z.B. plastische Gelenke) der Betonkonstruktion anzuordnen
 - Eine Abstandsmontage oder die Montage auf M\u00f6rtelschicht ist f\u00fcr seismische Einwirkungen nicht erlaubt

Einbau:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

fischer Injektionssystem FIS EB

Verwendungszweck
Spezifikationen (Teil 2)


Anhang B 2

Taballa B2. Mar	oto a okonovi	orto fi	- A ple											
Tabelle B2: Mor	nagekennw	erte iu	r Anke	rstan	gen									
Größe				M8	M10	M12	M14	M16	M20	M22	M24	M27	M30	
Schlüsselweite		SW		13	17	19	22	24	30	32	36	41	46	
Bohrernenn- durchmesser		d ₀		12	14	14	16	18	24	25	28	30	35	
Bohrlochtiefe		h ₀	[mm]	$h_0 = h_{ef}$										
Effektive		h _{ef,min}] !	60	60	70	75	80	90	93	96	108	120	
Verankerungstiefe		h _{ef,max}] !	160	200	240	280	320	400	440	480	540	600	
Minimaler Achs- und Randabstand		S _{min} = C _{min}	[mm]	40	45	55	60	65	85	95	105	120	140	
Durchmesser des Durchgangslochs	Vorsteck- montage	d _f		9	12	14	16	18	22	24	26	30	33	
im Anbauteil ¹⁾	Durchsteck- montage	d _f		14	16	16	18	20	26	28	30	33	40	
Mindestdicke des Betonbauteils		h _{min}		1	h _{ef} + 30 (≥ 100)				r	n _{ef} + 2d	l ₀			
Maximales Montage- drehmoment		T _{inst,max}	[Nm]	10	20	40	50	60	120	135	150	200	300	

¹⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

Ankerstange:

Prägung (an beliebiger Stelle):fischer Ankerstangen FIS A und RG M

Festigkeitsklasse 8.8: •

Nichtrostender Stahl A4, Festigkeitsklasse 50: ••

Oder Farbmarkierung nach DIN 976-1

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- · Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 3, Tabelle A1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- Markierung der Verankerungstiefe

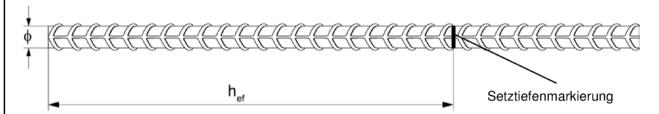

fischer Injektionssystem FIS EB	
Verwendungszweck Montagekennwerte Ankerstangen	Anhang B 3

Tabelle B3: Montageke	nnwerte f	iir Ret	onst	ah	nl										
Stabnenndurchmesser	- Intworter	ф	8 ¹⁾		10 ¹⁾	12	21)	14	16	18	20	22	24		
Bohrernenn- durchmesser	d ₀		10 1	2	12 14	14	16	18	20	25	25	30	30		
Bohrlochtiefe	h ₀		$h_0 = h_{ef}$												
Effektive	h _{ef,min}		60		60	7	0	75	80	85	90	94	98		
Verankerungstiefe	h _{ef,max}	[mm]	160)	200	24	10	280	320	360	400	440	480		
Minimaler Achs- und Randabstand	S _{min} = C _{min}		40	40 45		5	5	60	65	75	85	95	105		
Mindestdicke des Betonbauteils	h _{min}				n _{ef} + 30 ≥ 100)			$h_{ef} + 2d_0$							
Stabnenndurchmesser	ф	25		26	2	8	30	32	34	36	40				
Bohrernenn- durchmesser	d_0		30		35	3	5	40	40	40	45	55			
Bohrlochtiefe	h ₀								$h_0 = h_{ef}$						
Effektive	$h_{\text{ef,min}}$		100)	104	1	12	120	128	136	144	160			
Verankerungstiefe	h _{ef,max}	[mm]	500)	520	56	60	600	640	680	720	800	-		
Minimaler Achs- und Randabstand	S _{min} = C _{min}		110)	120	13	30	140	160	170	180	200			
Mindestdicke des Betonbauteils	h _{min}								h _{ef} + 2d)					

¹⁾ Beide Bohrernenndurchmesser sind möglich

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2009 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)

fischer Injektionssystem FIS EB	
Verwendungszweck Montagekennwerte Betonstahl	Anhang B 4

Tabelle B4: K	Tabelle B4: Kennwerte der Reinigungsbürste (Stahlbürste) BS Ø															
Bohrernenn- durchmesser	d ₀	[mm]	12 14		16	18	20	24	25	28	30	32	35	40	45	55
Stahlbürsten- durchmesser	d _b	[mm]	14	16	20		25	26	27	30	40			42	47	58

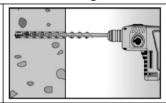
Tabelle B5: Maximal zulässige Verarbeitungszeit des Mörtels und minimale Wartezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

Systemtemperatur	Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾
[°C]	t _{work} [Minuten]	t _{cure} [Stunden]
+5 bis +10	120	45
> +10 bis +20	30	22
> +20 bis +30	14	12
> +30 bis +40	7	6

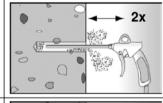
 $^{^{1)}}$ lm nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln

fischer Injektionssystem FIS EB

Verwendungszweck
Reinigungswerkzeug
Verarbeitungs- und Aushärtezeiten

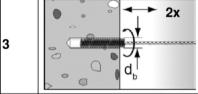

Anhang B 5

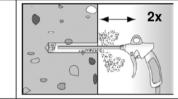
2



Montageanleitung Teil 1

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

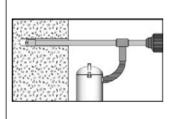

Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B2**, **B3**


2

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Bohrloch zweimal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B4**

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)



Mit Schritt 6 fortfahren

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

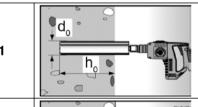
Einen geeigneten Hohlbohrer (siehe **Tabelle B1**) auf Funktion der Staubabsaugung prüfen

Verwendung eines geeigneten Staubabsaugsystems wie z.B. Bosch GAS 35 M AFC oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

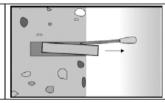
Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen. Bohrlochdurchmesser \mathbf{d}_0 und Bohrlochtiefe \mathbf{h}_0 siehe **Tabellen B2**, **B3**

Mit Schritt 6 fortfahren

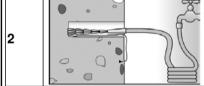
fischer Injektionssystem FIS EB

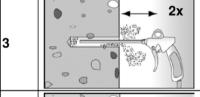

Verwendungszweck
Montageanleitung Teil 1

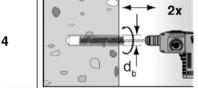
Anhang B 6

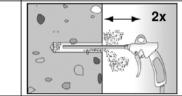


Montageanleitung Teil 2

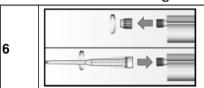

Bohrlocherstellung und Bohrlochreinigung (Nassbohren mit Diamantbohrkrone)


Bohrloch erstellen. Bohrlochdurchmesser \mathbf{d}_0 und Bohrlochtiefe \mathbf{h}_0 siehe **Tabellen B2, B3**


Bohrkern brechen und herausziehen


Bohrloch spülen, bis das Wasser klar wird

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)


Bohrloch zweimal unter Verwendung einer Bohrmaschine ausbürsten. Entsprechende Bürsten siehe **Tabelle B4**

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Kartuschenvorbereitung

5

Verschlusskappe abschrauben

Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

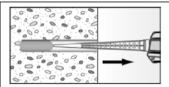
Kartusche in die Auspresspistole legen

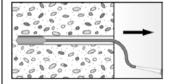
Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen

fischer Injektionssystem FIS EB

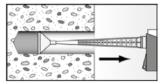
Verwendungszweck Montageanleitung Teil 2 Anhang B 7

Z2109.18


8


Montageanleitung Teil 3

Mörtelinjektion

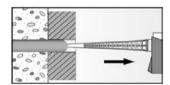

9

Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden



Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden

Bei Überkopfmontage, tiefen Bohrlöchern ($h_0 > 250$ mm) oder großen Bohrlochdurchmessern ($d_0 \ge 40$ mm) Injektionshilfe verwenden


Montage Ankerstange

Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefe des Ankers markieren. Die Ankerstange mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. Falls nicht, die Ankerstange sofort ziehen und Mörtel nachinjizieren.

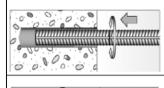
Bei Überkopfmontage die Ankerstange mit Keilen (z.B. fischer Zentrierkeile) fixieren bis der Mörtel auszuhärten beginnt

Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B5**

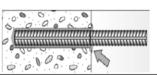
12 T_{in}

Montage des Anbauteils, T_{inst,max} siehe **Tabelle B2**


fischer Injektionssystem FIS EB

Verwendungszweck Montageanleitung Teil 3 Anhang B 8

Montageanleitung Teil 4


Montage Betonstahl

Nur sauberen und ölfreien Betonstahl verwenden. Die Setztiefe markieren.

Mit leichten Drehbewegungen den Bewehrungsstab kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben

10

Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. Falls nicht, das Verankerungselement sofort ziehen und Mörtel nachinjizieren.

11

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B5**

fischer Injektionssystem FIS EB

Verwendungszweck Montageanleitung Teil 4 Anhang B 9

Größe	<u> </u>				M8	M10	M12	M14	M16	M20	M22	M24	M27	МЗ		
	agfähigkeit, Stah	lversagen			IVIO	IVIIO	14112	1011-4	IVIIO	WIZO	IVIZZ	IVIZT	IVIZ	1010		
		Versagen	5.8		19	29	43	58	79	123	152	177	230	28		
Trag- N _{Rk,s}	Stahl verzinkt		8.8		29	47	68	92	126	196	243	282	368	44		
		Festigkeits-	50	[kN]	19	29	43	58	79	123	152	177	230	28		
Charakt. fähigkeit	Nichtrostender Stahl A4	klasse	70	[[,,,,]	26	41	59	81	110	172	212	247	322	39		
O ₩			80		30	47	68	92	126	196	243	282	368	44		
Teilsio	cherheitsbeiwert	e ¹⁾														
	Stahl verzinkt		5.8						1,	50						
neits Ms,N	Starii verzirikt		8.8						1,	50						
herh ert _{Yı}	Nichtrostender	Festigkeits- klasse	50	[-]	2,86											
Teilsicherheits- beiwert _{YMs,N}	Stahl A4	Kiasse	70		1,87											
<u> </u>			80	80	1,60											
Quert	ragfähigkeit, Sta	hlversagen														
hne	Hebelarm															
akt. Trag Jkeit V _{Rk} , 7	Stahl verzinkt		5.8		9	15	21	29	39	61	76	89	115	1		
			8.8		15	23	34	46	63	98	122	141	184	2		
	Nichtrostender	Festigkeits- klasse	50	[kN]	9	15	21	29	39	61	76	89	115	1		
	Stahl A4		70		13	20	30	40	55	86	107	124	161	1		
0 +			80		15	23	34	46	63	98	122	141	184	2		
	tätsfaktor gemäß C I-5:2009 Abschnitt		k_2	[-]					1	,0						
nit He	ebelarm															
ge-	Stahl verzinkt		5.8		19	37	65	104	166	324	447	560	833	11		
Bieg M⁰n		Ca atialogita	8.8		30	60	105	167	266	519	716	896	1333	17		
akt.E ent	Nichtrostender	Festigkeits- klasse	50	[Nm]	19	37	65	104	166	324	447	560	833	1		
Charakt.Biege- moment M ⁰ Rk,s	Stahl A4		70		26	52	92	146	232	454	626	784	1167	15		
	cherheitsbeiwert	(-1)	80		30	60	105	167	266	519	716	896	1333	17		
lelisio	cnerneitsbeiwert	e''	5.8						1 '	25						
eits-	Stahl verzinkt		8.8							25 25				_		
Teilsicherheits- beiwert ms,v	Niehtreetender	Festigkeits-	50	[-]						38						
lsich eiwe	Nichtrostender Stahl A4	klasse	70	'					1,	56						
Tei			80						1,	33						
1) Fal	lls keine abweiche	enden nationa	len R	egelu	ngen e	existier	en									
<u> </u>	er Injektionssy	. =:0 =									$\overline{}$			_		

Tabelle C2: Charakteristisch Zug- / Querzugb						_	_		un	ter	ı							
Stabnenndurchmesser		ф	8 10	12	14	16	18	20	22	24	25	26 2	в	30	32	34	36	40
Zugtragfähigkeit, Stahlversagen								-										
Charakteristische Tragfähigkeit	$N_{Rk,s}$	[kN]							As	· ful	(1)							
Quertragfähigkeit, Stahlversage	n																	
ohne Hebelarm																		
Charakteristische Tragfähigkeit	$V_{Rk,s}$	[kN]						(),5 ·	As ·	f_{uk}^{-1})						
Duktilitätsfaktor gemäß CEN/TS 1992-4-5:2009 Abschnitt 6.3.2.1	k ₂	[-]								0,8								
mit Hebelarm																		
Charakteristisches Biegemoment	M ⁰ _{Rk,s}	[Nm]						1	,2 ·	W _{el}	· f _{uk}	1)						

¹⁾ f_{uk} bzw. f_{yk} ist den Spezifikationen des Betonstahls zu entnehmen.

fischer Injektionssystem FIS EB

Leistungen
Charakteristische Stahltragfähigkeiten für Betonstahl

Anhang C 2

Zug- / Quertragfähigkeit

Größe			erisse							_	Alle G	räßar					
	\i+									_	Alle G	rober	_				
Zugtragfähigke	eit iß CEN/TS 1992-4:2	000 4	heehn	i++ 6	2 (2 2											
Ungerissener B			bsciii	111 6	.2.4	2.3					10	1					
Gerissener Beto		k _{ucr}	[-]								7,						
	etondruckfestigkei		C20/25								,						
raktoren iui bi	C25/30	len >	C20/23								1,0	າ2					
-	C30/37										1,						
Erhöhungs-	C35/45										1,0						
Emonungs- faktor für τ _{Bk}	C40/50	Ψ_{c}	[-]								1,0						
	C45/55										1,0						
-	C50/60										1,0						
Versagen durc											• , ,						
voiougon uuio	h / h _{ef} ≥ 2,0										1,0	h _{of}					
Randabstand -	$2.0 > h / h_{ef} > 1.3$	Coron								4	,6 h _{ef}						
_	$\frac{2,6 \times 1.7 \cdot \text{her} \times 1,3}{\text{h / hef} \le 1,3}$	ocr,sp	[mm]								2,26						
Achsabstand	,	S _{cr,sp}									2 c						
Querzugtragfäl	hiakeit	-01,30										JI, JOD					
Montagesicher																	
Alle Einbaubedi		γ ₂ = γ _{inst}	[-]								1,	0					
	n auf der lastabgew	andte	en Seite	e													
Faktor k gemäß Abschnitt 5.2.3 CEN/TS 1992-4 Abschnitt 6.3.3	.3 bzw. k₃ gemäß	k ₍₃₎	[-]								2,	0					
Betonkantenbr	uch																
Der Wert von h _e unter Querbelas			[mm]							ı	min (h	_{ef} ; 8d)					
Rechnerische D	urchmesser																
Größe				M	8	M10)	M12	M14	1	M16	M20	M	22	M24	M27	M3
fischer Ankersta Standard-Gewir		d	[mm]	8	•	10		12	14		16	20	2	2	24	27	30
Otaridard Gewii	messer		ф	8	10	12	14	4 16	18 2	20	22 2	4 25	26	28	30 3	32 34	36
Stabnenndurchr	1100001							4 16	18 2			4 25	26				

Tabelle C4: Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen im hammergebohrten oder diamantgebohrten Bohrloch; ungerissener oder gerissener Beton

Bonrioch; ungeris	sener od	er ge	risse	ner B	eton						
Größe		M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Kombiniertes Versagen durch Hera	ausziehen	und B	etonaı	ısbruc	h						
Rechnerischer Durchmesser d	[mm]	8	10	12	14	16	20	22	24	27	30
Ungerissener Beton											
Charakteristische Verbundtragfähi	gkeit im ur	ngeris	senen	Beton	C20/2	25					
Hammerbohren mit Standard- oder H	ohlbohrer (trocker	<u>ner unc</u>	<u>nasse</u>	er Beto	<u>n)</u>					
τ _{Rk,uc}			10	10	9	9	8	8	8	7,5	7,5
Hammerbohren mit Standard- oder H	ohlbohrer (wasse	<u>rgefüllt</u>	es Bor	<u>rrloch)</u>						
τ _{Rk,uc}	r [N/mm²]	11	10	10	9	8	7,5	7	7	6	6
Diamantbohren (trockener und nasse											
τ _{Rk,uc}	r [N/mm²]	11	10	8	7,5	7,5	7	6	6	5,5	5,5
Diamantbohren (wassergefülltes Boh											
τ _{Rk,uc}	, [N/mm²]	11	10	8	7,5	7,5	7	6	6	5,5	5,5
Montagesicherheitsfaktoren											
Trockener und nasser Beton $\gamma_2 = \gamma_{ij}$	ıst [-]			1	,0				1	,2	
wassergefulites Bonrioch	ist L J					1	,4				
Gerissener Beton											
Charakteristische Verbundtragfähi	<u> </u>										
Hammerbohren mit Standard- oder H					 	T	T				1
τ _{Rk,c}			5	5	5	4	4	5	5	5	5
Hammerbohren mit Standard- oder H		_	т —	Т	` 	<u>rgefüll</u>	tes Bo	hrloch)	T		
τ _{Rk,c}	[N/mm ²]	4	5	5	5	4	4	4	4	4	4
Montagesicherheitsfaktoren											
Trockener und nasser Beton $\gamma_2 = \gamma_{ll}$	ıst [-]				,0					,2	
Wassergefülltes Bohrloch				1,2					1,4		

fischer Injektionssystem FIS EB

Leistungen

Charakteristische Werte für statische oder quasi-statische Zugbelastung von fischer Ankerstangen und Standard-Gewindestangen (ungerissener oder gerissener Beton)

Anhang C 4

Taballa CE. Charaktariatiasha M	larda für	dia				طة4									—		—	_
Tabelle C5: Charakteristische W hammergebohrten o				_	_		_			В	iOJ(ารเล	anı	IM				
ungerissener oder			_			311 1	5011	IIIOC	, ۱ اد									
Stabnenndurchmesser	ф					16	10	20	22	24	25	26	28	20	22	24	26	10
		_	-		_			20	22	24	25	20	20	30	32	34	30	40
Kombiniertes Versagen durch Herau								20	22	24	25	20	20	20	22	24	26	40
Rechnerischer Durchmesser d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Ungerissener Beton			•		_		26	2/0/										
Charakteristische Verbundtragfähig		_																
Hammerbohren mit Standard- oder Ho	1				т —	Т		т т	_									T
T _{Rk,ucr}	[N/mm ²]			10	_	9	9	8	8	8	8	7,5	7,5	7,5	7,5	7,5	7,5	7
Hammerbohren mit Standard- oder Ho		$\overline{}$	$\overline{}$		_	т т												
τ _{Rk,ucr}	[N/mm ²]	11	10	9	8	7,5	8	7,5	7	7	6	6	6	6	5,5	5,5	5,5	5,5
Diamantbohren (trockener und nasser	Beton sov	<u>vie v</u>	wass	serc	<u>jefü</u>	lltes	Boł	rloc	<u>:h)</u>									
₹Rk,ucr	[N/mm ²]	11	10	8	7,5	7,5	7	7	6	6	6	5,5	5,5	5,5	5,5	5	5	5
Montagesicherheitsfaktoren																		
Trockener und nasser Beton					1,0								1.	,2				
Wassergefülltes Bohrloch $\gamma_2 = \gamma_{inst}$	[-]									1,4								
Gerissener Beton																		
Charakteristische Verbundtragfähig	keit im ge	eris	sene	en E	3etc	n C	20/2	25										
Hammerbohren mit Standard- oder Ho	hlbohrer ı	und	Diar	nan	itbol	ren	(tro	cke	ner	und	nas	ser	Beto	<u>on)</u>				
TBk.cr	[N/mm ²]	5	5	5	5	4	4	4	5	5	5	5	5	5	3,5	3,5	3,5	3,5
Hammerbohren mit Standard- oder Ho			Diar	nan	ıtbol	nren	(wa	asse	rgef	üllte	s B	ohrle	och)					
TRk.cr	[N/mm ²]		4,5	_	_	4	4	4	4	4	4	4	4		3,5	3,5	3,5	3,5
Montagesicherheitsfaktoren	<u> </u>		<u> </u>					ш										
Trockener und nasser Beton	T				1,0								1	,2				
Wassergefülltes Bohrloch $\gamma_2 = \gamma_{inst}$	[-]			1	,2								1,4					
		ш			<u>,</u>	_	—						,	_		_		

fischer Injektionssystem FIS EB	
Leistungen Charakteristische Werte für statische oder quasi-statische Zugbelastung von Betonstahl (ungerissener oder gerissener Beton)	Anhang C 5

Größe	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Verschiebungs-Fakt	oren für Z	uglast ¹⁾								
Ungerissener oder g	erissener	Beton;								
$\delta_{\text{N0-Faktor}}$ [mm/(N/mm	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13
$\delta_{N\infty\text{-Faktor}}$ [mm/(N/mm	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19
Verschiebungs-Fakt	oren für Q	uerlast ²⁾								
Ungerissener oder g	erissener	Beton;								
δ _{V0-Faktor} [mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05
$\delta_{V_{\infty}\text{-Faktor}}$ [mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}}$: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C7: Verschiebungen für Betonstahl

Stabnen durchme	m	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Verschie	bungs-Faktor	ren fü	ir Zuç	glast ¹)													
Ungerise	sener oder ge	risse	ner B	eton	;													
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,10	0,11	0,11	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,14	0,15
$\delta_{N\infty\text{-Faktor}}$	[[11]]	0,11	0,12	0,13	0,14	0,15	0,16	0,16	0,17	0,18	0,18	0,18	0,19	0,19	0,20	0,20	0,21	0,22
Verschie	bungs-Faktor	ren fü	ir Qu	erlas	⁽²⁾													
Ungerise	sener oder ge	risse	ner B	eton	;													
$\delta_{\text{V0-Faktor}}$	[[[[]]]] [[] [] [] [] [] [0,18	0,15	0,12	0,10	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04
δv. Felder	[mm/kN]	0.27	0.22	0.18	0.16	0.14	0.12	0.11	0.10	0.09	0.09	0.08	0.08	0.07	0.07	0.06	0.06	0.05

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \, \cdot \, \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung) ²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS EB

Leistungen

Verschiebungen Ankerstangen und Betonstahl

Tabelle C8: Charakteristische Werte für die Stahltragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

	Leistungsr	kategorie C	1 00	ier (.2								
Größe					M10	M12	M14	M16	M20	M22	M24	M27	M30
Zugtragf	ähigkeit, Stahlve	rsagen ¹⁾											
fischer A	Ankerstangen und	d Standard-G	iewir	idest	angen	, Leistı	ıngska	tegorie	e C1				
- 5	Stahl verzinkt		5.8		29	43	58	79	123	152	177	230	281
rag	Otarii verzirikt		8.8		47	68	92	126	196	243	282	368	449
T. T.		Festigkeits-	50	[kN]	29	43	58	79	123	152	177	230	281
Charakt. Trag- fähigkeit N _{Rk,s,C1}	Nichtrostender Stahl A4	klasse	70	[[41	59	81	110	172	212	247	322	393
C			80		47	68	92	126	196	243	282	368	449
fischer A	Ankerstangen und	Standard-G	ewir	idest	angen	, Leistı	ıngska	tegorie	e C2				
- 22	Stahl verzinkt		5.8			39		72	108		177		
rag k,s,C	Starii verzirikt		8.8]		61		116	173		282		
Charakt. Trag- fähigkeit N _{Rk,s,C2}	.	Festigkeits-	50	[kN]		39		72	108		177		
hara	Nichtrostender Stahl A4	klasse	70			53		101	152		247		
			80			61		116	173		282		
Quertrag	ıfähigkeit, Stahlve	ersagen ohn	e He	belar	'm¹)								
fischer A	Ankerstangen, Le	istungskateg	jorie	C1									
- C1	Stahl verzinkt		5.8		15	21	29	39	61	76	89	115	141
raç Rk,s,	——————————————————————————————————————	_	8.8		23	34	46	63	98	122	141	184	225
ıkt. T	Nijohtyootojodoji	Festigkeits- klasse	50	[kN]	15	21	29	39	61	76	89	115	141
Charakt. Trag- fähigkeit V _{Rk,s,C1}	Nichtrostender Stahl A4	Riasso	70		20	30	40	55	86	107	124	161	197
			80		23	34	46	63	98	122	141	184	225
Standard	d-Gewindestange	n, Leistungs		gorie		. –							
₽ 2,	Stahl verzinkt		5.8		11	15	20	27	43	53	62	81	99
Tra(-	8.8		16	24	32	44	69	85	99	129	158
kt		Festigkeits-	50	[kN]	11	15	20	27	43	53	62	81	99
Charakt. Trag- fähigkeit V _{Rk,s,C1}	Nichtrostender Stahl A4	klasse	70		14	21	28	39	60	75	87	113	138
			80		16	24	32	44	69	85	99	129	158
fischer A	Ankerstangen und	Standard-G	iewir	idest	angen	, Leistι	ıngska		e C2				
23	Stahl verzinkt		5.8			14		27	43		62		
rag Rk,s,	Claim VOIZIIIN	_	8.8			22		44	69		99		
Charakt. Trag- fähigkeit V _{Rk,s,C2}	Nichtroctonder	Festigkeits- klasse	50	[kN]		14		27	43		62		
hara	Nichtrostender Stahl A4	Niasse	70			20		39	60		87		
C			80			22		44	69		99		

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 oder C2 siehe Tabelle C10, für fischer Ankerstangen FIS A / RGM beträgt der Duktilitätsfaktor für Stahl 1,0

fischer Injektionssystem FIS EB

Leistungen

Charakteristische Stahltragfähigkeiten für fischer Ankerstangen und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 oder C2)

Tabelle C9: Charakteristische Werte für die Stahltragfähigkeit von Betonstahl (B500B) für die seismische Leistungskategorie C1 Stabnenndurchmesser φ 10 12 14 16 18 20 22 24 25 26 28 30 32 Zugtragfähigkeit, Stahlversagen¹¹⟩ Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1 Charakteristische Tragfähigkeit N_{Rk,s,C1} [kN] 44 63 85 111 140 173 209 249 270 292 339 389 443 Quertragfähigkeit, Stahlversagen ohne Hebelarm¹¹⟩ Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1

1) Teilsicherheitsbeiwerte für die Leistungskategorie C1 siehe Tabelle C10

Tabelle C10: Teilsicherheitsbeiwerte von fischer Ankerstangen, Standard-Gewindestangen und Betonstahl (B500B) für die seismische Leistungskategorie C1 oder C2

Größe					M10	N	112	M14	М	16	M20	M2	22	M24	M2	7 I	VI30
Stabnenr	ndurchmesser			ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Zugtragfä	ähigkeit, Stahlvei	rsagen¹)															
	Stahl verzinkt		5.8								1,50						
Si >	Otarii verzirikt		8.8								1,50						
rheit Yms,r		Festigkeits-	50								2,86						
Teilsicherheits beiwert $\gamma_{\mathrm{Ms,N}}$	Nichtrostender Stahl A4	klasse	70	<u> </u>													
Teils			80														
	Betonstahl ²⁾	B	500B								1,40						
Quertrag	fähigkeit, Stahlve	ersagen ¹⁾															
	Stahl verzinkt		5.8								1,25						
-S	Starii verzirikt		8.8								1,25						
rheit Yms,\		Festigkeits-	50								2,38						
Teilsicherheits beiwert $\gamma_{\text{Ms,V}}$	Nichtrostender Stahl A4	klasse	70														
Teils			80								1,33						
	Betonstahl ²⁾	B	500B								1,50						

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

fischer Injektionssystem FIS EB

Leistungen

Charakteristische Stahltragfähigkeiten für Betonstahl unter seismischer Einwirkung (Leistungskategorie C1) sowie Teilsicherheitsbeiwerte (Leistungskategorie C1 oder C2)

Charakteristische Tragfähigkeit V_{Rks,C1} [kN] 15 | 22 | 30 | 39 | 49 | 61 | 74 | 88 | 95 | 102 | 119 | 137 | 155

²⁾ Betonstahl nur seismische Leistungskategorie C1

Tabelle C11: Charakteristische Werte für die Tragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C1 im hammergebohrten Bohrloch

Größe			M10	M12	M14	M16	M20	M22	M24	M27	M30
Charakteristische Verbundt	ragfähig	keit, kon	nbinier	tes Ver	sagen	durch l	- Heraus:	ziehen	und Be	tonaus	bruch
Hammerbohren mit Standar	d- oder	Hohlboh	rer (tro	ckener	und na	asser B	eton)				
	τ _{Rk,C1}	[N/mm ²]	4,9	4,9	4,6	4,0	4,0	4,6	4,6	4,6	4,6
Hammerbohren mit Standar	d- oder	Hohlboh	rer (wa	sserge	fülltes	Bohrlo	ch)				
	$ au_{Rk,C1}$	[N/mm ²]	4,7	4,7	4,5	4,0	4,0	4,0	4,0	4,0	4,0
Montagesicherheitsfaktorer	า										
Zugtragfähigkeit											
Trockener und nasser Beton					1,0				1,	,2	
Wassergefülltes Bohrloch	$\gamma_2 = \gamma_{\text{inst}}$	[-]		1	,2				1,4		
Quertragfähigkeit	·										
Alle Einbaubedingungen	$\gamma_2 = \gamma_{inst}$	[-]					1,0				

Tabelle C12: Charakteristische Werte für die **Tragfähigkeit** von **Betonstahl** für die seismische Leistungskategorie **C1** im hammergebohrten Bohrloch

Stabnenndurchmesser		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Charakteristische Verbundt	ragfähig	jkeit, Kor	nbin	iertes	s Ver	sage	n dui	ch H	erau	szieh	en u	nd B	etona	ausbi	ruch
Hammerbohren mit Standar	d- oder	Hohlboh	rer (t	rock	ener	und	nasse	er Be	ton)						
	$\tau_{Rk,C1}$	[N/mm ²]	4,9	4,9	4,6	4,0	4,0	4,0	4,6	4,6	4,6	4,6	4,6	4,6	3,4
Hammerbohren mit Standar	d- oder	Hohlboh	rer (v	vass	ergef	üllte	s Boł	rloc	h)						
τ _{Rk,C1} [N/mm²] 4,7 4,7 4,1 4,1 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 3,4															
τ _{Rk,C1} [[N/mm²] 4,7 4,7 4,1 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 3,4 Montagesicherheitsfaktoren															
Zugtragfähigkeit															
Trockener und nasser Beton					1	,0						1,2			
Wassergefülltes Bohrloch	$\gamma_2 = \gamma_{inst}$	[-]			1,2						1	,4			
Quertragfähigkeit															
Alle Einbaubedingungen	$\gamma_2 = \gamma_{inst}$	[-]							1,0						

fischer Injektionssystem FIS EB

Leistungen

Charakteristische Werte unter seismischer Einwirkung (Leistungskategorie C1) für fischer Ankerstangen, Standard-Gewindestangen und Betonstahl

Tabelle C13: Charakteristische Werte für die Tragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C2 im hammergebohrten Bohrloch

Größe			M12	M16	M20	M24
Charakteristische Verbundtrag	gfähigk	keit, kom	nbiniertes Versa	igen durch Hera	usziehen und E	Betonausbruch
Hammerbohren mit Standard-	oder H	lohlbohr	er (trockener ui	nd nasser Betoi	n)	
τ	Rk,C2	[N/mm²]	1,5	2,5	1,3	1,7
Hammerbohren mit Standard-	oder H	lohlbohr	er (wassergefü	lites Bohrloch)		
τ	Rk,C2	[N/mm²]	1,6	2,5	1,3	1,4
Montagesicherheitsfaktoren						
Zugtragfähigkeit						
Trockener und nasser Beton				1,0		1,2
Wassergefülltes Bohrloch ^{γ2}	$=\gamma_{\rm inst}$	[-]	1,	,2	1	,4
Quertragfähigkeit						
Alle Einbaubedingungen γ ₂	$=\gamma_{inst}$	[-]		1	,0	
Verschiebungen unter Zuglast	1)					
$\delta_{N,(DLS) ext{-}Faktor}$	[mm//	N/mm²)]	0,09	0,10	0,11	0,12
$\delta_{N,(ULS) ext{-Faktor}}$	ווווווווווווווווווווווווווווווווווווווו	[//////////////////////////////////////	0,15	0,17	0,17	0,18
Verschiebungen unter Querlas	st ²⁾					
$\delta_{V,(DLS) ext{-Faktor}}$	[m	m/kN]	0,18	0,10	0,07	0,06
$\delta_{V,(ULS) ext{-Faktor}}$	[1111	11/1/11	0,25	0,14	0,11	0,09

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N,(DLS)}} = \delta_{\text{N,(DLS)-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N,(ULS)}} = \delta_{\text{N,(ULS)-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V,(DLS)} = \delta_{V,(DLS)\text{-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V,(ULS)}} = \delta_{\text{V,(ULS)-Faktor}} \cdot \, V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS EB

Leistungen

Charakteristische Werte unter seismischer Einwirkung (Leistungskategorie C2) für fischer Ankerstangen und Standard-Gewindestangen