

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0440 of 13 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer injection system FIS EB

Injection system for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

26 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-15/0440 issued on 6 July 2015

European Technical Assessment ETA-15/0440

Page 2 of 26 | 13 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0440

Page 3 of 26 | 13 December 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer injection system FIS EB is a bonded anchor consisting of a cartridge with injection mortar fischer FIS EB and a steel element.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action, Displacements	See Annex C 1 to C 6
Characteristic values for seismic performance categories C1 and C2 5, Displacements	See Annex C 7 to C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-15/0440

Page 4 of 26 | 13 December 2017

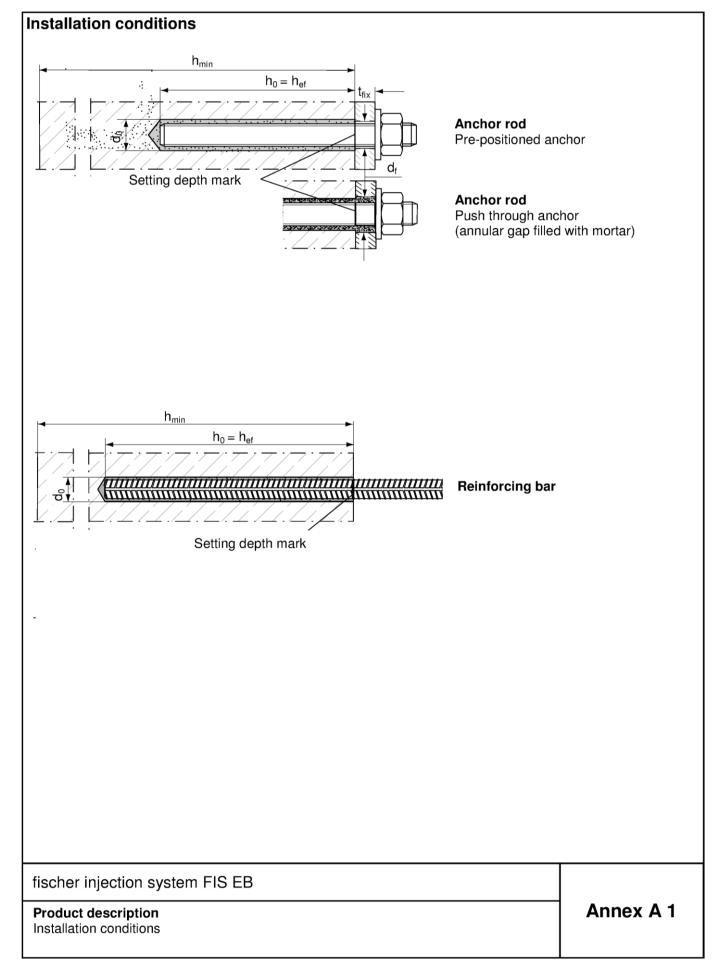
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

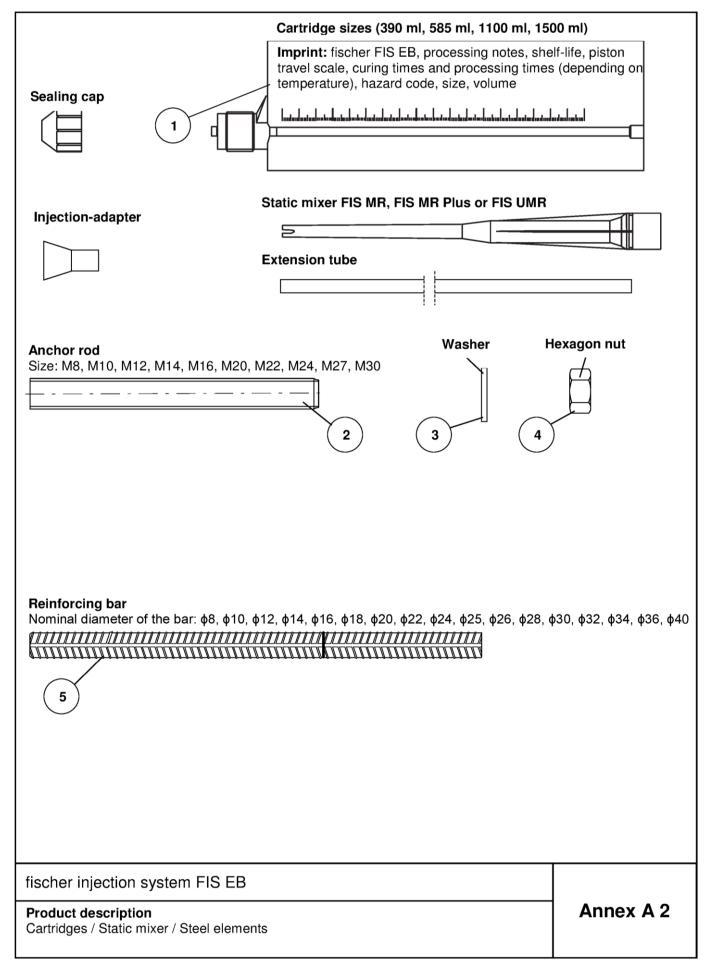
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 December 2017 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider

Z2110.18

electronic copy of the eta by dibt: eta-15/0440

English translation prepared by DIBt

Tabl	e A1: Materials							
Part	Designation	Mat	erial					
1	Mortar cartridge	Mortar, hardener, filler						
	Steel grade	Steel, zinc plated	Stainless steel A4					
2	Anchor rod		Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation fracture elongation excategory C2					
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanized ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014					
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanized ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014					
7	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class B or C with f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$						

fischer injection system FIS EB	
Product description Materials	Annex A 3

Specifications of intended use (part 1)

Table B1: Overview use and performance categories

Anchorages subj	ect to	FIS EB with							
		Anch	or rod	Reinforcing bar					
Hammer drilling with standard drill bit	£44400000000:	all sizes							
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")	Ī	Nominal drill bit diameter (d ₀) 12 mm to 35 mm							
Diamond drilling		all sizes							
Static and quasi	uncracked concrete	all sizes	Tables:	all sizes	Tables:				
static load, in	cracked concrete	dii 31263	C1, C3, C4, C6	dii 31263	C2, C3, C5, C7				
Seismic performance category (only	C1	M10 to M30	Tables: C8, C10, C11	φ10 to φ32	Tables: C9, C10, C12				
hammer drilling with Standard / hollow drill bits)	C2	M12, M16, M20, M24	Tables: C8, C10, C13						
Use category	dry or wet concrete	all sizes							
Use category	flooded hole	ole all sizes							
Installation temperature		+5 °C to +40 °C							
In-service temperature		-40 °C to +72 °C (max. long term temperature +50 °C and max. short term temperature +72 °C)							

fischer injection system FIS EB

Intended use
Specifications (part 1)

Annex B 1

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience in anchorages and concrete
 work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) have to be designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer under seismic action are not allowed

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer injection system FIS EB

Intended use
Specifications (part 2)

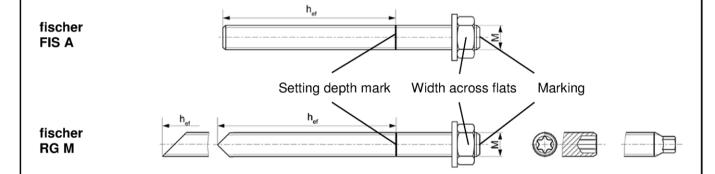

Annex B 2

Table B2: Installa	Table B2: Installation parameters for anchor rods												
Size				М8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Width across flats		SW		13	17	19	22	24	30	32	36	41	46
Nominal drill bit diameter		d ₀		12	14	14	16	18	24	25	28	30	35
Drill hole depth		h ₀						h ₀ =	h _{ef}				
Effective		h _{ef,min}		60	60	70	75	80	90	93	96	108	120
anchorage depth		h _{ef,max}		160	200	240	280	320	400	440	480	540	600
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	60	65	85	95	105	120	140
Diameter of clearance hole in	pre- positioned anchorage	d _f		9	12	14	16	18	22	24	26	30	33
the fixture ¹⁾	push through anchorage	d _f		14	16	16	18	20	26	28	30	33	40
Minimum thickness of concrete member		h _{min}			h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀					
Maximum installation torque		$T_{inst,max}$	[Nm]	10	20	40	50	60	120	135	150	200	300

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Anchor rod:

Marking (on random place) fischer anchor rod FIS A or RG M:

Property class 8.8: •

Stainless steel A4, property class 50: ••

Or colour coding according to DIN 976-1

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

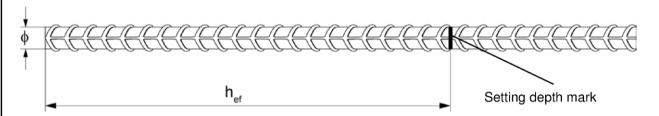
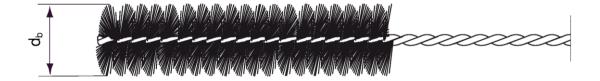

fischer injection system FIS EB	
Intended use Installation parameters anchor rods	Annex B 3

Table B3: Installation parameters for reinforcing bars													
Nominal diameter of the bar		ф	8 ¹	1)	10 ¹⁾	1	2 ¹⁾	14	16	18	20	22	24
Nominal drill bit diameter	d ₀		10	12	12 14	1 14	16	18	20	25	25	30	30
Drill hole depth	h ₀		$h_0 = h_{ef}$										
Effective	$h_{\text{ef,min}}$		60	0	60	7	70	75	80	85	90	94	98
anchorage depth	h _{ef,max}	[mm]	16	0	200	2	40	280	320	360	400	440	480
Minimum spacing and minimum edge distance	S _{min} = C _{min}		4(0	45	,	55	60	65	75	85	95	105
Minimum thickness of concrete member	h _{min}		h _{ef} + 30 (≥ 100)				$h_{ef} + 2d_0$						
Nominal diameter of the bar		ф	25	5	26		28	30	32	34	36	40	
Nominal drill bit diameter	d ₀		30	0	35	;	35	40	40	40	45	55	
Drill hole depth	h ₀					_			$h_0 = h_{ef}$				
Effective	h _{ef,min}		10	0	104	1	12	120	128	136	144	160	
anchorage depth	h _{ef,max}	[mm]	50	0	520	5	60	600	640	680	720	800	
Minimum spacing and minimum edge distance	S _{min} = C _{min}		11	0	120	1	30	140	160	170	180	200	
Minimum thickness of concrete member	h_{min}			h _{ef}			h _{ef} + 2d)					

¹⁾ Both drill bit diameters can be used

Reinforcing bar



- The minimum value of related rib area $f_{R,min}$ must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Nominal diameter of the bar , h_{rib} = rib height)

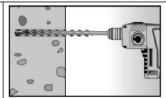
fischer injection system FIS EB	
Intended use Installation parameters reinforcing bars	Annex B 4

electronic copy of the eta by dibt: eta-15/0440

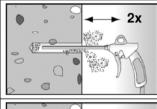
Table B4: Parameters of cleaning brush (steel brush) BS Ø																
Drill bit diameter	do	[mm]	12	14	16	18	20	24	25	28	30	32	35	40	45	55
Steel brush diameter	d _b	[mm]	14	16	20		25	26	27	30	40			42	47	58

Table B5: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

System temperature	Maximum processing time	Minimum curing time ¹⁾
[°C]	t _{work} [minutes]	t _{cure} [hours]
+5 to +10	120	45
> +10 to +20	30	22
> +20 to +30	14	12
> +30 to +40	7	6

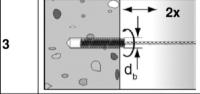

¹⁾ In wet concrete or flooded holes the curing times must be doubled

fischer injection system FIS EB	
Intended use Cleaning tools Processing times and curing times	Annex B 5

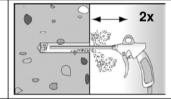


Installation instructions part 1

Drilling and cleaning the hole (hammer drilling with standard drill bit)



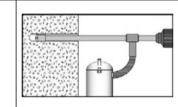
Drill the hole. Drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **Tables B2**, **B3**



Blow out the drill hole twice, with oil-free compressed air ($p \ge 6$ bar)

Brush the drill hole twice. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **Table B4**

Blow out the drill hole twice, with oil-free compressed air ($p \ge 6$ bar)


Go to step 6

2

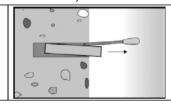
Drilling and cleaning the hole (hammer drilling with hollow drill bit)

Check a suitable hollow drill (see **Table B1**) for correct operation of the dust extraction

Use a suitable dust extraction system, e.g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process. Diameter of drill hole \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **Tables B2, B3**

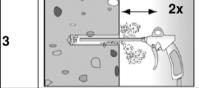
Go to step 6

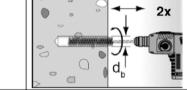

2

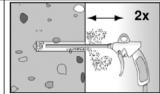
fischer injection system FIS EB	
Intended use Installation instructions part 1	Annex B 6



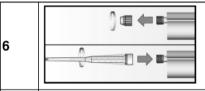
Installation instructions part 2 Drilling and cleaning the hole (wet drilling with diamond drill bit) Drill the hole.


Drill hole diameter do and drill hole depth ho see Tables B2, B3


Break the drill core and draw it out


Flush the drill hole with clean water until it flows clear

Blow out the drill hole twice, using oil-free compressed air (p > 6 bar)


Brush the drill hole twice using a power drill. Corresponding brushes see Table B4

Blow out the drill hole twice, using oil-free compressed air (p > 6 bar)

Preparing the cartridge

5

Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

Place the cartridge into the dispenser

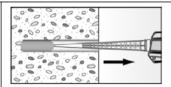
Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

fischer injection system FIS EB

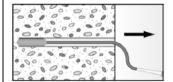
Intended use

Installation instructions part 2

Annex B 7

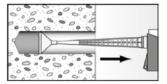

Z2110.18

8


Installation instructions part 3

Injection of the mortar

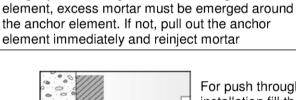
9



Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

For drill hole depth ≥ 150 mm use an extension tube

12



For overhead installation, deep holes $h_0 > 250$ mm or drill hole diameter $d_0 \ge 40$ mm use an injection-adapter

Installation of anchor rods

10

For overhead installations support the anchor rod with wedges. (e.g. fischer centering wedges) until the the mortar begins to cure

Only use clean and oil-free anchor elements.

Mark the setting depth of the anchor. Press the threaded rod down to the bottom of the hole, turning

it slightly while doing so. After inserting the anchor

For push through installation fill the annular gap with mortar

11

Wait for the specified curing time t_{cure} see **Table B5**

Tinst

Mounting the fixture $T_{inst,max}$ see **Table B2**

fischer injection system FIS EB

Intended use

Installation instructions part 3


Annex B 8

electronic copy of the eta by dibt: eta-15/0440

Installation instructions part 4

Installation reinforcing bars

Only use clean and oil-free reinforcing bars. Mark the setting depth. Turn while using force to push the reinforcing bar into the filled hole up to the setting depth mark

10

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole. If not, pull out the anchor element immediately and reinject mortar

11

Wait for the specified curing time t_{cure} see Table B5

Intended use
Installation instructions part 4

Annex B 9

English translation prepared by DIBt

Size					M8	M10	M12	M14	M16	M20	M22	M24	M27	МЗ
Bearii	ng capacity unde	r tensile loa	ad, ste	el fail	ure									
	Steel zinc plated		5.8		19	29	43	58	79	123	152	177	230	28
arin I _{RK,s}			8.8		29	47	68	92	126	196	243	282	368	44
t.be		Property	50	[kN]	19	29	43	58	79	123	152	177	230	28
Charact.bearing capacity N _{Rks}	Stainless steel A4	class	70		26	41	59	81	110	172	212	247	322	39
င် ဒ			80		30	47	68	92	126	196	243	282	368	44
Partia	ıl safety factors ¹⁾													
>	Steel zinc plated		5.8							50				
safety Yms,N		Property	8.8							50				
Partial safety factor y _{Ms,N}	Stainless steel	class	50	[-]						86				
Par fac	A4		70 80							87 60				
Rearii	ng capacity unde	r shear loa <i>r</i>		l failu	ro				1,	60				
	ut lever arm	i Sileai load	a, 3100	Tana	10									
	Otrack data data d		5.8		9	15	21	29	39	61	76	89	115	14
arinç ^{/RK,s}	Steel zinc plated		8.8		15	23	34	46	63	98	122	141	184	22
t.be		Property	50	[kN]	9	15	21	29	39	61	76	89	115	14
Charact.bearing capacity V _{Rk.s}	Stainless steel A4	class	70		13	20	30	40	55	86	107	124	161	19
ပ် ပ	8 A4		80		15	23	34	46	63	98	122	141	184	22
	tätsfaktor gemäß C 4-5:2009 Abschnitt ([-]					1	,0					
	ever arm	0.0.2.1												
D	Otaal sina platad		5.8		19	37	65	104	166	324	447	560	833	11:
ending 1 ⁰ Rk,s	Steel zinc plated		8.8		30	60	105	167	266	519	716	896	1333	179
i. be nt M		Property	50	[Nm]	19	37	65	104	166	324	447	560	833	112
Charact. bending moment M ⁰ Rk,s	Stainless steel A4	class	70		26	52	92	146	232	454	626	784	1167	15
ς S E	7.4		80		30	60	105	167	266	519	716	896	1333	179
Partia	Il safety factors ¹⁾	l												
_	Steel zinc plated		5.8						1,	25				
afet. Ms.v			8.8						1,	25				
artial safet factor ‱,v	Stainless steel	Property class	50	[-]					2,	38				
Partial safety factor ms.v	A4		70		1,56									
1) -			80						1,	33				
'' ln :	absence of other n	ational regu	llations	;										
fisch	er injection sys	tem FIS E	.B								\top			
- ·	ormances										Annex C 1			

Characteristic bending moment

 $1,2\cdot W_{el}\cdot f_{uk}{}^{1)}$

Table C2: Characteristic values for the steel bearing capacity under tensile / shear load of reinforcing bars																		
Nominal diameter of the bar		ф	8	10 1	2 14	16	18	20	22	24	25	26	28	30	32	34	36	40
Bearing capacity under tensile load, steel failure																		
Characteristic bearing capacity $N_{Rk,s}$ [kN] $A_s \cdot f_{uk}^{1)}$																		
Bearing capacity under shear load, steel failure																		
without lever arm																		
Characteristic bearing capacity	$V_{Rk,s}$	[kN]						(0,5 ·	A _s	f _{uk} 1)						
Ductility factor acc. to CEN/TS																		
with lever arm																		

 $^{^{1)}\,}f_{uk}$ or f_{yk} respectively must be taken from the specifications of the reinforcing bar

 $M^0_{Rk,s}$

fischer injection system FIS EB

Performances
Characteristic steel bearing capacity of reinforcing bars

Annex C 2

electronic copy of the eta by dibt: eta-15/0440

	·																	
Size					_		_			_	All	Siz	es			_		
	ty under tensile lo																	
	CEN/TS 1992-4:20		ction 6	.2.2	.3													
Uncracked conc		k _{ucr}	[-]									10,1						
Cracked concre		k _{cr}										7,2						
Factors for the	compressive stre	ngth o	f conc	rete	> (C20	25											
_	C25/30											,02						
Increasing -	C30/37											04, ا						
factor –	C35/45	Ψ_{c}	[-]									,06						
for τ_{Rk} _	C40/50	- 0	.,									07, ا						
_	C45/55											90,1						
	C50/60		1,09															
Splitting failure																		
_	h / h _{ef} ≥ 2,0											,0 h						
Edge distance $_$	$2.0 > h / h_{ef} > 1.3$	$\mathbf{c}_{cr,sp}$	[mm]	2,26 h _{ef}														
	h / h _{ef} ≤ 1,3		[]															
Spacing		S _{cr,sp}									2	C _{cr,s}	sp					
Bearing capaci	ty under shear loa	d																
Installation safe	ety factors																	
		γ2																
All installation co	onditions	=	[-]									1,0						
0	ant fallenna	γinst																
Concrete pry-o																		
Factor k acc. to Section 5.2.3.3 CEN/TS 1992-4 Section 6.3.3	resp. k₃ acc. to	[-]									2,0							
Concrete edge	failure																	
The value of h _{ef} under shear load			[mm]								min	(h _{ef}	; 8d)					
Calculation diam	neters																	
Size				M	8	M1	0	M12	M ²	14	M16	3 N	И 20	M22	M2	4	M27	МЗ
fischer anchor rods and standard threaded rods			[mm]	8		10		12	1.	4	16		20	22	24		27	30
Nominal diamete	er of the bar		ф	8	10	12	14	16	18	20	22	24	25	26 28	30	32	34	36 4
Reinforcing bar		d	[mm]	8	10	$\overline{}$	14	-		_	-		-	26 28	_		-	-

fischer injection system FIS EB	
Performances General design factors relating to the characteristic bearing capacity under tensile / shear load	Annex C 3

Table C4: Characteristic values of resistance for fischer anchor rods and standard
threaded rods under tensile load in hammer or diamond drilled holes;
uncracked or cracked concrete

Size			М8	M10	M12	M14	M16	M20	M22	M24	M27	M30			
Combined pullout and cor	ncrete cone	e failure													
Calculation diameter	d	[mm]	8	10	12	14	16	20	22	24	27	30			
Uncracked concrete															
Characteristic bond resist	ance in un	cracked o	concre	ete C2	0/25										
Hammer-drilling with standa	<u>ırd drill bit o</u>	r hollow d	rill bit	(dry an	d wet	concre	te)								
	$ au_{Rk,ucr}$	[N/mm ²]	11	10	10	9	9	8	8	8	7,5	7,5			
Hammer-drilling with standa	rd drill bit o	r hollow d	rill bit	(floode	d hole)	•								
	$ au_{Rk,ucr}$	[N/mm ²]	11	10	10	9	8	7,5	7	7	6	6			
Diamond-drilling (dry and w	et concrete)														
	$ au_{Rk,ucr}$	[N/mm ²]	11	10	8	7,5	7,5	7	6	6	5,5	5,5			
Diamond-drilling (flooded ho	ole)														
	$ au_{Rk,ucr}$	[N/mm ²]	11	10	8	7,5	7,5	7	6	6	5,5	5,5			
Installation safety factors															
Dry and wet concrete					1	,0				1	,2				
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]	1,4												
Cracked concrete															
Characteristic bond resist	ance in cra	acked cor	ncrete	C20/2	5										
Hammer-drilling with standa	rd drill bit o	r hollow d	rill bit a	and dia	amond	-drilling	dry a	and we	t concr	rete)					
	$ au_{Rk.cr}$	[N/mm ²]	5	5	5	5	4	4	5	5	5	5			
Hammer-drilling with standa	rd drill bit o	r hollow d	rill bit a	and dia	amond	-drilling	(flood	led hol	e)						
	$ au_{Rk,cr}$	[N/mm ²]	4	5	5	5	4	4	4	4	4	4			
Installation safety factors															
Dry and wet concrete			1,0							1,2					
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,2					1,4					

fischer injection system FIS EB

Performances

Characteristic values for static or quasi-static action under tensile load for fischer anchor rods and standard threaded rods (uncracked or cracked concrete)

Annex C 4

English translation prepared by DIBt

Table C5: Characteristic values	of resis	tan	CE	un	dei	ter	nei	le la	had	for	re	info	orci	ina	ha	re		
in hammer or diamon														_	Da	3		
Nominal diameter of the bar	ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combined pullout and concrete cor	e failure																	
Calculation diameter d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Uncracked concrete				**					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Characteristic bond resistance in un	ncracked	con	cre	te C	20/	25												
Hammer-drilling with standard drill bit	or hollow	drill b	oit (dry	and	wet	cor	ncret	<u>e)</u>									
τ _{Rk,ucr} [N/mm²] 11 10 10 9 9 9 8 8 8 8 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5																		
Hammer-drilling with standard drill bit or hollow drill bit (flooded hole)																		
$\tau_{Rk,ucr}$ [N/mm²] 11 10 9 8 7,5 8 7,5 7 7 6 6 6 6 5,5 5,5 5,5 5,5																		
Diamond-drilling (dry and wet concrete	as well a	s flo	ode	d h	ole)													
$ au_{RK,ucr}$ [N/mm ²] 11 10 8 7,5 7,5 7 7 6 6 6 5,5 5,5 5,5 5,5 5 5 5 5 5																		
Installation safety factors																		
Dry and wet concrete	r 1				1,0								1	,2				
Flooded hole $\gamma_2 = \gamma_{inst}$	[-]									1,4								
Cracked concrete	20	0																
Characteristic bond resistance in cr	acked co	ncre	ete	C20)/25													
Hammer-drilling with standard drill bit			oit a	ınd (diar	nonc	d-dr	illing	(dr	y an	d w	et co	oncr	ete)				
τ _{Rk,cr}	[N/mm ²]	5	5	5	5	4	4	4	5	5	5	5	5	5	3,5	3,5	3,5	3,5
Hammer-drilling with standard drill bit	or hollow	drill b	oit a	ınd	diar	nonc	d-dr	illing	(flo	ode	d ho	ole)						
τ _{Rk,cr}	[N/mm ²]	4	4,5	4,5	4	4	4	4	4	4	4	4	4	4	3,5	3,5	3,5	3,5
Installation safety factors																		
Dry and wet concrete	nst [-] 1,0						1,2											
Flooded hole $\gamma_2 = \gamma_{inst}$	[-]			1,	,2								1,4					

fischer injection system FIS EB	
Performances	Annex C 5
Characteristic values for static or quasi-static action under tensile load for reinforcing bars (uncracked or cracked concrete)	

English translation prepared by DIBt

Table C	6: Displace	ments	for ancl	or rod	s										
Size		М8	M10	M12	M14	M16	M20	M22	M24	M27	M30				
Displace	ment-Factors	for tens	ile load ¹⁾												
Uncrack	Incracked or cracked concrete														
$\delta_{\text{N0-Factor}}$	[mm/(N/mm ²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13				
$\delta_{N\infty\text{-Factor}}$	[[[[[[[]]	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19				
Displace	ment-Factors	for shea	ır load ²⁾												
Uncrack	ed or cracked	concret	е												
$\delta_{\text{V0-Factor}}$	[mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05				
$\delta_{V\infty ext{-Factor}}$	[IIIII/KIN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07				

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

Table C7: Displacements for reinforcing bars

Nominal of the ba	diameter ır	ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Displace	isplacement-Factors for tensile load ¹⁾																		
Uncrack	Uncracked or cracked concrete																		
$\delta_{\text{N0-Factor}}$	[mm// / / / / / / / / / / / / / / / / /	~ ² \1	0,07	0,08	0,09	0,09	0,10	0,10	0,11	0,11	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,14	0,15
δ _{N∞-Factor}	[[[[]]]]	11)]	0,11	0,12	0,13	0,14	0,15	0,16	0,16	0,17	0,18	0,18	0,18	0,19	0,19	0,20	0,20	0,21	0,22
Displace	Displacement-Factors for shear load ²⁾																		
Uncrack	ed or crac	ked	cond	rete															

$\delta_{\text{V0-Factor}}$	[mm/kNI]	0,18	0,15	0,12	0,10	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04
$\delta_{\text{V}\infty\text{-Factor}}$	[IIIII/KIN]	0,27	0,22	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,06	0,05

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EB

Performances

Displacements for anchor rods and reinforcing bars

Annex C 6

²⁾ Calculation of effective displacement:

Table C8: Characteristic values for the steel bearing capacity of fischer anchor rods and standard threaded rods under seismic action performance category C1 or C2

	category C	i or C2											
Size					M10	M12	M14	M16	M20	M22	M24	M27	M30
Bearing	capacity under te	nsile load, s	steel	failur	'e ¹⁾								
fischer a	nchor rods and s	tandard thre	eaded	d rod	s, perf	orman	ce cate	gory C	1				
g 5	Steel zinc plated		5.8		29	43	58	79	123	152	177	230	281
arin ak,s,(8.8		47	68	92	126	196	243	282	368	449
lt.be		Property	50	[kN]	29	43	58	79	123	152	177	230	281
Charact.bearing capacity N _{RK,S,C1}	Stainless steel A4	class	70	1" "1	41	59	81	110	172	212	247	322	393
5 8			80		47	68	92	126	196	243	282	368	449
fischer a	nchor rods and s	tandard thre	eaded	d rod	s, perf	orman	ce cate	gory C	2				
22 23	Steel zinc plated		5.8			39		72	108		177		
arin ak,s,(Steel Zille plated		8.8			61		116	173		282		
t.be		Property	50	[kN]		39		72	108		177		
Charact.bearing capacity N _{RK,S,C2}	Stainless steel A4	class	70			53		101	152		247		
			80			61		116	173		282		
Bearing capacity under shear load, steel failure without lever arm ¹⁾													
fischer a	nchor rods, perfo	rmance cat		y C1									
ال 1 0	Steel zinc plated	Property class	5.8	⊣	15	21	29	39	61	76	89	115	141
arii Rk,s,	— Plated		8.8		23	34	46	63	98	122	141	184	225
ct.be	Stainless steel A4		50		15	21	29	39	61	76	89	115	141
Charact.bearing capacity V _{Rk,s,C1}			70		20	30	40	55	86	107	124	161	197
			80		23	34	46	63	98	122	141	184	225
Standard	l threaded rods, p	performance		gory									
ng	Steel zinc plated		5.8		11	15	20	27	43	53	62	81	99
eari Rk,s			8.8		16	24	32	44	69	85	99	129	158
t.be		Property	50	[kN]	11	15	20	27	43	53	62	81	99
Charact.bearing capacity V _{RK,S,C1}	Stainless steel A4	class	70		14	21	28	39	60	75	87	113	138
			80		16	24	32	44	69	85	99	129	158
fischer a	nchor rods and s	tandard thre	eaded	d rod	s, perf	orman	ce cate	gory C	2				
D C 88	Steel zinc plated		5.8			14		27	43		62		
arir Rk,s,(8.8			22		44	69		99		
Charact.bearing capacity V _{Rk,s,C2}	Stainless stas!	Property class	50	[kN]		14		27	43		62		
hara tpaci	Stainless steel A4	0/400	70			20		39	60		87		
- 5 g			80			22		44	69		99		

¹⁾ Partial safety factors for performance category C1 or C2 see Table C10, for fischer anchor rods FIS A / RGM the factor for steel ductility is 1,0

fischer injection system FIS EB

Performances

Characteristic steel bearing capacity of fischer anchor rods and standard threaded rods under seismic action (performance category C1 or C2)

Annex C7

Table C9: Characteristic values for the steel bearing capacity of reinforcing bars (B500B) under seismic action performance category C1

Nominal diameter of the bar φ 10 12 14 16 18 20 22 24 25 26 28 30 32

Bearing capacity under tensile load, steel failure1)

Reinforcing bar B500B acc. to DIN 488-2:2009-08, performance category C1

Characteristic bearing capacity N_{Rk,s,C1} [kN] 44 63 85 111 140 173 209 249 270 292 339 389 443

Bearing capacity under shear load, steel failure without lever arm¹⁾

Reinforcing bar B500B acc. to DIN 488-2:2009-08, performance category C1

Characteristic bearing capacity V_{Rk,s,C1} [kN] 15 | 22 | 30 | 39 | 49 | 61 | 74 | 88 | 95 | 102 | 119 | 137 | 155

Table C10: Partial safety factors of fischer anchor rods, standard threaded rods and reinforcing bars (B500B)

under seismic action performance category C1 or C2

Size					M10 M12 M14 M16 M20 M22 M24 M27						7	M30					
Nominal	diameter of the bar	r		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Bearing capacity under tensile load, steel failure					re ¹⁾												
_	Steel zinc plated		5.8								1,50						
lcto	Oteer zine piated		8.8								1,50						
ity fa		Property	50								2,86						
Partial safety factor	Stainless steel A4	class	70	[-]							1,87						
artial			80								1,60						
۵	Reinforcing bar ²⁾	В	500B								1,40						
Bearing of	capacity under she	y under shear load, steel failur			e ¹⁾												
	Steel zinc plated		5.8								1,25						
cto			8.8								1,25						
ety fa		Property	50								2,38						
safet Y _{Ms,V}	Stainless steel A4	class —	70	[-]	1,56												
Partial safety factor			80								1,33						
ا م	Reinforcing bar ²⁾	В	500B								1,50						

¹⁾ In absence of other national regulations

fischer injection system FIS EB

Performances

Characteristic steel bearing capacity of reinforcing bars under seismic action (performance category C1); partial safety factors (performance category C1 or C2)

Annex C 8

¹⁾ Partial safety factors for performance category C1 see Table C10

²⁾ Reinforcing bars only seismic action category C1

Table C11: Characteristic values of resistance for fischer anchor rods and standard
threaded rods in hammer drilled holes under seismic action performance
category C1

		M10	M12	M14	M16	M20	M22	M24	M27	M30		
Characteristic bond resistance, combined pullout and concrete cone failure												
dard drill	bit or ho	llow dr	ill bit (c	Iry and	wet co	ncrete)						
$ au_{Rk,C1}$	[N/mm ²]	4,9	4,9	4,6	4,0	4,0	4,6	4,6	4,6	4,6		
Hammer-drilling with standard drill bit or hollow drill bit (flooded hole)												
$ au_{Rk,C1}$	[N/mm ²]	4,7	4,7	4,5	4,0	4,0	4,0	4,0	4,0	4,0		
nsile load												
				1,0				1,	,2			
$\gamma_2 = \gamma_{\text{inst}}$	[-]		1	,2				1,4				
ear load												
$\gamma_2 = \gamma_{inst}$	[-]					1,0						
	dard drill $\tau_{Rk,C1}$ dard drill $\tau_{Rk,C1}$ nsile load $\gamma_2 = \gamma_{inst}$ ear load	$\begin{array}{c c} \text{dard drill bit or hol} \\ \tau_{\text{Rk,C1}} & [\text{N/mm}^2] \\ \text{dard drill bit or hol} \\ \tau_{\text{Rk,C1}} & [\text{N/mm}^2] \\ \\ \text{nsile load} \\ \hline -\gamma_2 = \gamma_{\text{inst}} & [\text{-}] \\ \\ \text{lear load} \\ \end{array}$	ance, combined pullout a dard drill bit or hollow dr $\tau_{Rk,C1}$ [N/mm²] 4,9 dard drill bit or hollow dr $\tau_{Rk,C1}$ [N/mm²] 4,7 nsile load $-\gamma_2 = \gamma_{inst}$ [-]	ance, combined pullout and cordard drill bit or hollow drill bit (or $\tau_{Rk,C1}$ [N/mm²] 4,9 4,9 dard drill bit or hollow drill bit (for $\tau_{Rk,C1}$ [N/mm²] 4,7 4,7 hasile load $-\gamma_2 = \gamma_{inst}$ [-]	ance, combined pullout and concrete control of the dark drill bit or hollow drill bit (dry and $\tau_{Rk,C1}$ [N/mm²] 4,9 4,9 4,6 dard drill bit or hollow drill bit (flooded $\tau_{Rk,C1}$ [N/mm²] 4,7 4,7 4,5 ear load	ance, combined pullout and concrete cone fail dard drill bit or hollow drill bit (dry and wet context of $\tau_{Rk,C1}$ [N/mm²] 4,9 4,9 4,6 4,0 dard drill bit or hollow drill bit (flooded hole) $\tau_{Rk,C1}$ [N/mm²] 4,7 4,7 4,5 4,0 dard drill bit (flooded hole) $\tau_{Rk,C1}$ [N/mm²] 1,0 dear load	ance, combined pullout and concrete cone failure dard drill bit or hollow drill bit (dry and wet concrete) $ \tau_{Rk,C1} [N/mm^2] 4,9 4,9 4,6 4,0 4,0 $ dard drill bit or hollow drill bit (flooded hole) $ \tau_{Rk,C1} [N/mm^2] 4,7 4,7 4,5 4,0 4,0 $ nsile load $ -\gamma_2 = \gamma_{inst} [-] 1,0 $ lear load	ance, combined pullout and concrete cone failure dard drill bit or hollow drill bit (dry and wet concrete) $ \tau_{Rk,C1} [N/mm^2] 4,9 4,9 4,6 4,0 4,0 4,6 $ dard drill bit or hollow drill bit (flooded hole) $ \tau_{Rk,C1} [N/mm^2] 4,7 4,7 4,5 4,0 4,0 4,0 $ nsile load $ -\gamma_2 = \gamma_{inst} [-] 1,0 1,2 $ lear load	ance, combined pullout and concrete cone failure dard drill bit or hollow drill bit (dry and wet concrete) $ \tau_{Rk,C1} [N/mm^2] 4,9 4,9 4,6 4,0 4,0 4,6 4,6 \\ \hline \begin{tabular}{c c c c c c c c c c c c c c c c c c c $	ance, combined pullout and concrete cone failure dard drill bit or hollow drill bit (dry and wet concrete) $ \tau_{Rk,C1} [N/mm^2] 4,9 4,9 4,6 4,0 4,0 4,6 4,6 4,6 \\ \hline \text{dard drill bit or hollow drill bit (flooded hole)} \\ \hline \tau_{Rk,C1} [N/mm^2] 4,7 4,7 4,5 4,0 4,0 4,0 4,0 4,0 \\ \hline \text{nsile load} \\ \hline -\gamma_2 = \gamma_{\text{inst}} \begin{bmatrix} -1 & 1,0 & 1,2 & 1,4 \\ 1,2 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,4 & 1,4 & 1,4 \\ 1,5 & 1,4 & 1,4 \\ 1,6 & 1,6 & 1,4 \\ 1,7 & 1,7 & 1,4 \\ 1,8 & 1,8 & 1,4 \\ 1,9 & 1,9 & 1$		

Table C12: Characteristic values of **resistance** for **reinforcing bars** in hammer drilled holes under seismic action performance category **C1**

Nominal diameter of the b	ar	ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Characteristic bond resistance, combined pullout and concrete cone failure															
Hammer-drilling with stan	dard drill	bit or ho	llow	drill l	bit (d	ry an	d we	t cor	crete))					
	τ _{Rk,C1}	[N/mm ²]	4,9	4,9	4,6	4,0	4,0	4,0	4,6	4,6	4,6	4,6	4,6	4,6	3,4
Hammer-drilling with stan	dard drill	bit or ho	llow	drill l	bit (fl	oode	d ho	le)							
	τ _{Rk,C1}	[N/mm ²]	4,7	4,7	4,1	4,1	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0	3,4
Installation safety factors															
Bearing capacity under te	nsile load														
Dry and wet concrete					1	,0						1,2			
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-] 1,2 1,4													
Bearing capacity under shear load															
All installation conditions	$\gamma_2 = \gamma_{inst}$	[-]							1,0						

fischer injection system FIS EB

Performances
Characteristic values under seismic action (performance category C1) for fischer anchor rods, standard threaded rods and reinforcing bars

Annex C 9

Table C13: Characteristic values of resistance for fischer anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C2

				T	1	1						
Size			M12	M16	M20	M24						
Characteristic bond resistance, combined pullout and concrete cone failure												
Hammer-drilling with stand	dard drill	bit or hol	low drill bit (dry	and wet concr	ete)							
	$\tau_{\rm Rk,C2}$	[N/mm ²]	1,5	2,5	1,3	1,7						
Hammer-drilling with standard drill bit or hollow drill bit (flooded hole)												
	$\tau_{\rm Rk,C2}$	[N/mm ²]	1,6	2,5	1,3	1,4						
Installation safety factors												
Bearing capacity under ter	nsile load											
Dry and wet concrete				1,0		1,2						
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]	1	,2	1	,4						
Bearing capacity under sh	ear load											
All installation conditions	All installation conditions $\gamma_2 = \gamma_{inst}$ [-] 1,0											
Displacement-Factors for t	tensile loa	ad ¹⁾										
$\delta_{N,(DLS)\text{-Factor}}$	[mm.	(NI/mm²)1	0,09	0,10	0,11	0,12						
$\delta_{\text{N,(ULS)-Factor}}$	lmm/	(N/mm ²)]	0,15	0,17	0,17	0,18						
Displacement-Factors for s	shear load	d ²⁾										
$\delta_{V,(DLS)}$ -Factor	- Fran	m/kNI1	0,18	0,10	0,07	0,06						
$\delta_{V,(ULS) ext{-}Factor}$		ım/kN]	0,25	0,14	0,11	0,09						
	•			•	•	•						

	1)	Calculatio	n of	effective	displa	cement
--	----	------------	------	-----------	--------	--------

 $\delta_{\text{N,(DLS)}} = \delta_{\text{N,(DLS)-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N,(ULS)}} = \delta_{\text{N,(ULS)-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{\text{V,(DLS)}} = \delta_{\text{V,(DLS)-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V,(ULS)}} = \delta_{\text{V,(ULS)-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EB

Performances

Characteristic values under seismic action (performance category C2) for fischer anchor rods and standard threaded rods

Annex C 10