

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0043 of 7 August 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR

Concrete Screw of sizes 6, 8, 10, 12 and 14 mm for use in concrete

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Herstellwerk W9

16 pages including 3 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330232-00-0601 and EAD330011-00-0601

ETA-16/0043 issued on 30 March 2017

European Technical Assessment ETA-16/0043

Page 2 of 16 | 7 August 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0043

Page 3 of 16 | 7 August 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Würth Concrete Screw W-BS an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Product performance for static and quasi static action	See Annex C 1 and C 2				
Product performance for seismic category C1	See Annex C 4				
Displacements under tension and shear loads	See Annex C 3				

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 5

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 and EAD No. 330011-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-16/0043

Page 4 of 16 | 7 August 2017

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

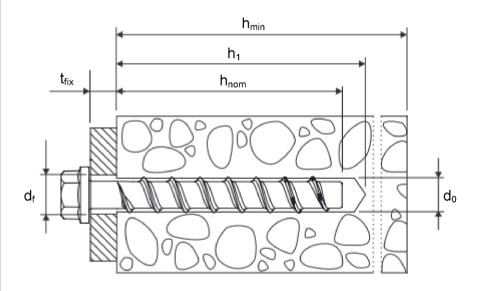
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 7 August 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Tempel

Product and installed condition


Concrete Screw W-BS

steel, zinc plated

stainless steel A4 and HCR

 d_0 nominal drill bit diameter = nominal anchorage depth h_{nom} h_1 depth of the drill hole

minimum thickness of member h_{min} =

thickness of fixture $\mathsf{t}_{\mathsf{fix}}$ =

diameter of clearance hole in the fixture d_f

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR

Product description

Installed condition

Annex A1

Table A1: materials and variants

part name			Material							
1, Concret	е		Steel EN 10262 A galvenized one to EN ISO 1042 or							
2, Sciew	W-BS/S		Steel EN 10263-4 galvanized acc. to EN ISO 4042 or zinc flake coating acc. to EN ISO 10683 (≥ 5μm)							
3,	W-BS/A4		1.4401, 1.4404, 1.4571, 1.4578							
4,	W-BS/HCR		1.4529							
5,			'							
6,										
7,										
8, 9,										
10,										
11										
		1)	Anchor version with connection thread and hexagon socket							
			e.g. W-BS 8x105 M10 SW5							
		2)	Anchor version with connection thread and hexagon drive							
		,	e.g. W-BS 8x105 M10 SW7							
1	(4-B ₃)	3)	Anchor version with washer, hexagon head							
		3)	e.g. W-BS 8x80 SW13							
1	4.83	4)	Anchor version with washer and hexagon head and TORX							
1	37.0	4)	e.g. W-BS 8x80 SW13 TX40							
₹	4-B3									
}		5)	Anchor version with washer, hexagon head e.g. W-BS 8x80 SW13							
	34-B _{.0}		•							
	(35)	6)	Anchor version with countersunk head							
1			e.g. W-BS 8x80 TX40							
	(3) o	7)	Anchor version with pan head							
1			e.g. W-BS 8x80 TX40							
	☐ (4-8 ₅)	8)	Anchor version with large pan head							
		-	e.g. W-BS 8x80 TX40							
		9)	Anchor version with countersunk head and connection thread							
mm()		-,	e.g. W-BS 6x55 M8							
mm A		10)	Anchor version with hexagon drive and connection thread							
mm.A		10)	e.g. W-BS 6x55 M8 SW10							
		11)	Anchor version with internal thread and hexagon drive e.g. W-BS 6x55 IM M8/10							

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR

Product descriptions

Materials und versions

Annex A 2

Table A2: dimensions and markings

Anchor size W-BS		(5		8			10			
Naminal ambadmant danth b	[mama]	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment depth h _{nor}	_n [mmj	40	55	45	55	65	55	75	85		
Length of the anchor L ≤	[mm]		50								
Diameter of shaft d _k	[mm]	5.1 7.			7.1			9.1			
Diameter of thread d _s	[mm]	7	10.6			12.6					
Anchor size W-BS			12				14				
Name and a second department		h _{nom1}	h _{nom2}	h _{nom}	3	h _{nom1}	h _{nom}	2	h _{nom3}		
Nominal embedment depth h _{nor}	_n [mm]	65	85	100		75	100		115		
Length of the anchor L ≤	[mm]				500			•			
Diameter of shaft d _k	[mm]		11.1				13.1				
Diameter of thread d _s	[mm]		14.6				16.6	3			

Marking

W-BS/S
Description: W-BS or TSM
Anchor size: e.g. 6

Length of the anchor: e.g. 60

W-BS/A4

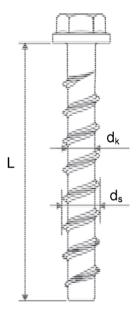
Description: W-BS or TSM Anchor size: e.g. 6

Length of the anchor:

Material:

6.9. 6

6.9. 6


A4

W-BS/HCR

Description: W-BS or TSM

Anchor size: e.g. 6
Length of the anchor: e.g. 60
Material: HCR

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR

Product descriptions

Dimensions and markings

Annex A3

Z37057.17

English translation prepared by DIBt

Intended use

Anchorages subject to:

- static and quasi-static loads,
- used for anchorages with requirements related to resistance of fire,
- used for anchorages with seismic actions category C1: sizes 8-14 for maximum embedment depth h_{noms}.

Base materials:

- reinforced and unreinforced concrete according to EN 206-1:2000,
- strength classes C20/25 to C50/60 according to EN 206-1:2000,
- cracked and uncracked concrete.

Use conditions (Environmental conditions):

- The anchor may only be used in dry internal conditions: All screw types,
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4,
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless
 steel with marking HCR.
 - Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

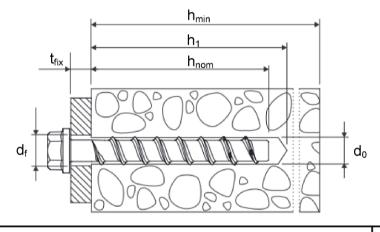
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings,
- Anchorages under static or quasi-static actions, under seismic actions and under fire exposure are designed in accordance with FprEN 1992-4:2016 and EOTA Technical Report TR 055,
- The design of anchorages under shear load according to FprEN 1992-4:2016, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B 2, Table B1.

Installation:

electronic copy of the eta by dibt: eta-16/0043

- Hammer drilling only.
- Fastener installation in accordance with the manufacturer's specifications using the appropriate tools carried out by appropriately qualified personnel.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- The drill hole can be used without or with injection mortar WIT-BS.
- Adjustability according to Annex B 4: sizes 8-14, all anchorage depths.

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR


Intended use
Specifications

Annex B 1

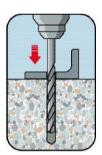
Table B1: Installation parameters

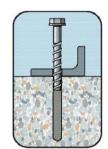
Anchor size W-BS			6	6		8		10			
Nominal embedment depth h _{nom} [m	m]		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal drill bit diameter	d ₀	[mm]	6			8			10		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40 8,45					10,45			
Depth of drill hole	h ₁ ≥	[mm]	45	60	55	65	75	65	85	95	
Diameter of clearing hole in the fix-ture	d _f ≤	[mm]	8 12					14			
Installation torque for version with connection thread	T _{inst} ≤	[Nm]	1	0	20			40			
Impact screw driver		[Nm]	Ma 16		ue acco	cording to manufacturer's instructions 300 400				ons	
Anchor size W-BS			12				•	14			
Nominal embedment depth h _{nom} [m	m]		h _{nom}	ı h	nom2	h _{nom3}	h _{nom}		00	h _{nom3}	
Nominal drill bit diameter	d ₀	[mm]			12				14		
Cutting diameter of drill bit	d _{cut} ≤	[mm]		1	2,50			14	,50		
Depth of drill hole	h₁ ≥	[mm]	75		95	110	85	1	10	125	
Diameter of clearing hole in the fix- ture	d _f ≤	[mm]	16				18				
Installation torque for version with connection thread metrical	T _{inst} ≤	[Nm]			60			80			
Impact screw driver			Ma		ue acco	ording to	manufa 		instructi 50	ons	

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR

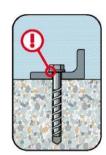
Intended use

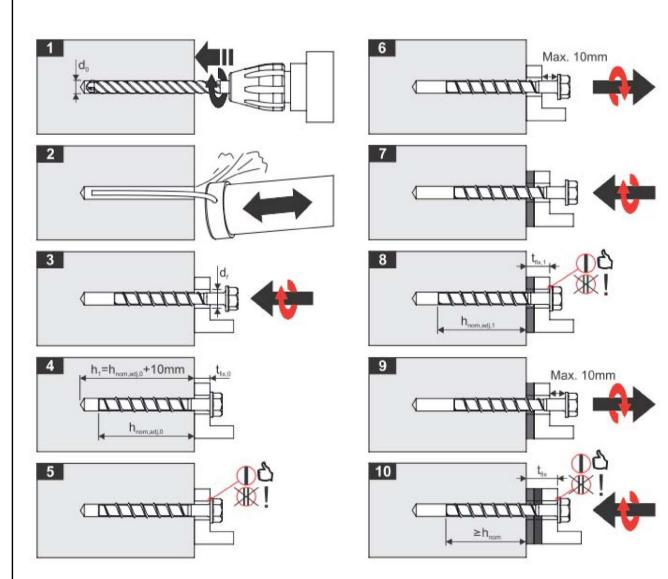
Installation parameters


Annex B 2


Table B2: Minimum thickness of member, minimum edge distance and minimum spacing


Anchor size W-BS			(6		8		10			
Naminal ambadmant da		[1	h _{nom1}	h _{nom1} h _{nom2}			h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment de	pın n _{nor}	n [mm]	40	55	45	55	65	55 75 85			
Minimum thickness of member	h _{min}	[mm]	10	10	00	120	100	130	130		
Minimum edge distance	C _{min}	[mm]	4	40	5	50	50				
Minimum spacing	S _{min}	[mm]	4	40	5	0	50				
Anchor size W-BS				12				14			
Nominal ambadmant da		[]	h _{nom1}	h _{nom2}	h _{nom}	3	h _{nom1}	h _{nom}	2	n _{nom3}	
Nominal embedment de	pın n _{nor}	n (mm)	65	85	100		75	100		115	
Minimum thickness of member	h _{min}	[mm]	120	130	150		130	150		170	
Minimum edge distance	C _{min}	[mm]	5	0	70 50		50	70			
Minimum spacing	S _{min}	[mm]	5	0	70 50		70				


Installation instructions


Würth Concrete Screw	W-BS/S.	W-BS/A4.	W-BS/HCR
----------------------	---------	----------	----------

Intended use

Minimum thickness of member, minimum spacing, minimum edge distance and installation instructions

Annex B3

Installation instructions for adjustability

Installation instructions

electronic copy of the eta by dibt: eta-16/0043

The anchor may be adjusted maximum two times while the anchor may turn back at most 10 mm. The total allowed thickness of shims added during the adjustment process is 10mm.

The final embedment depth after adjustment process must be equal or larger than h_{nom}.

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR Annex B4 Intended use Installation instruction for adjustability

Table C1: Characteristic values for design method A for W-BS 6, 8 and 10

Anchor size V	Anchor size W-BS				6 8				10		
Nominal ember	dment depth hnor	[mm]		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
				40	55	45	55	65	55	75	85
steel failure fo	or tension- and	shear l	oad								
		$N_{Rk,s}$	[kN]	14.	0		27.0		45.0		
characteristic l	oad	$V_{Rk,s}$	[kN]	7.0)	13,	5	17,0	22,5	34,	0
		\mathbf{k}_7	[-]	0.8	3		8.0			0.8	
		$M^0_{Rk,s}$	[Nm]	10.	0		26.0			56.0	
partial safety fa	actor	γ_{Ms}	[-]				1.5				
pull-out failur	е										
characteristic tension load in cracked concrete C20/25		$N_{Rk,p}$	[kN]	2.0	4.0	5.0	9.0	12.0	9.0	Pull-out is not de	
characteristic t uncracked cor		$N_{Rk,p}$	[kN]	4.0	9.0	7.5	12.0	16.0	12.0	20.0	26.0
in areasing foot	increasing factor		C30/37				1.22				
increasing factor for N _{Rk,p}		Ψ_{c}	C40/50				1.41				
Т. Т			C50/60	1.58							
concrete con	e and splitting f	failure									
effective ancho	orage depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68
factor k₁	cracked	k _{cr,N}	[-]				7.7				
Tabler K	uncracked	k _{ucr,N}	[-]				11.0				
concrete	spacing	S _{cr,N}	[mm]				3 x h				
cone failure	edge distance	C _{cr,N}	[mm]				1.5 x l				
splitting	spacing	Scr,Sp	[mm]	120	160	120	140	150	140	180	210
failure	edge distance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105
installation saf	ety factor	γ inst	[-]				1.0				
concrete pry	out failure (pry-	out)									
factor k ₈ [-]		[-]	1.0 2.0)				
concrete edge	e failure										
effective lengtl	n of anchor	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68
outside diame	ter of anchor	d_{nom}	[mm]	6			8			10	

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR	
Performances	Annex C 1
Characteristic values for W-BS 6, 8 and 10	

Table C2: Characteristic values for design method A for W-BS 12 and 14

Anchor size	W-BS				12			14		
Nominal embe	dment depth hno	[mm]		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
	amont doptir milo	[]		65	85	100	75	100	115	
steel failure f	or tension- and	shear l	oad							
		$N_{Rk,s}$	[kN]		67.0			94.0		
characteristic	load	$V_{Rk,s}$	[kN]	33,5	40,	0		56.0		
		k_7	[-]		8.0			0.8		
		$M^0_{Rk,s}$	[Nm]		113.0			185.0		
partial safety f	actor	$\gamma_{\sf Ms}$	[-]			1.5	5			
pull-out failu	re									
characteristic tension load in cracked concrete C20/25		$N_{Rk,p}$	[kN]	12.0	Pull-out	failure	Pi	ull-out failure		
characteristic uncracked cor	tension load in ncrete C20/25	$N_{Rk,p}$	[kN]	16.0	is not de	ecisive	is not decisive			
	1		C30/37			1.2	2			
ncreasing factor for N _{Rk.p}		Ψ_{c}	C40/50			1.4	1			
TOT TYRK,p			C50/60	1.58						
concrete con	e and splitting	failure								
effective anch	orage depth	h _{ef}	[mm]	50	67	80	58	79	92	
factor k₁	cracked	k _{cr,N}	[-]			7.	7			
Tactor K ₁	uncracked	k _{ucr,N}	[-]			11.	0			
concrete	spacing	S _{cr,N}	[mm]			3 x	h _{ef}			
cone failure	edge distance	C _{cr,N}	[mm]			1.5 x	h _{ef}			
splitting	spacing	S _{cr,Sp}	[mm]	150	210	240	180	240	280	
failure	edge distance	C _{cr,Sp}	[mm]	75	105	120	90	120	140	
installation sa	fety factor	γ inst	[-]			1.0)			
concrete pry	out failure (pry-	out)								
factor k ₈		[-]	1.0 2.0			1.0 2.0				
concrete edg	e failure									
effective lengt	h of anchor	$I_f = h_{ef}$	[mm]	50	67	80	58	79	92	
outside diame	ter of anchor	d_{nom}	[mm]		12			14		

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR	
Performances	Annex C 2
Characteristic values for W-BS 12 and 14	

Table C3: Displacements under tension load for W-BS

Anchor	size W-BS			(8		10				
Nominal	embedment de	oth h _{nor}	n [mm]	h _{nom1}	h _{nom2} 55	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1} h _{nom2} h _{nor} 55 75 85			
	tension load	N	[kN]	0.95	1.9	2.4	4.3	5.7	4.3	7.9	9.6	
cracked concrete	displacement	δ_{N0}	[mm]	0.3	0.6	0.6	0.7	0.8	0.6	0.5	0.9	
		δ∞	[mm]	0.4	0.4	0.6	1.0	0.9	0.4	1.2	1.2	
un-	tension load	N	[kN]	1.9	4.3	3.6	5.7	7.6	5.7	9.5	11.9	
cracked	displacement	δ_{N0}	[mm]	0.4	0.6	0.7	0.9	0.5	0.7	1.1	1.0	
concrete		δ _{N∞}	[mm]	0.4	0.4	0.6	1.0	0.9	0.4	1.2	1.2	
Anchor	size W-BS				12				14			
Nominal	embedment de	oth h	[mm]	h _{nom1}	h _{nom2}	h _{nom}	3	h _{nom1}	h _{nom}	2 l	h _{nom3}	
Nominar	embeament de _l	Jul Tinor	n [······]	65	85	100		75	100		115	
	tension load	N	[kN]	5.7	9.4	12.3		7.6	12.0		15.1	
cracked concrete	diamlessment	δ_{N0}	[mm]	0.9	0.5	1.0		0.5	0.8		0.7	
	displacement	δ∞	[mm]	1.0	1.2	1.2		0.9	1.2		1.0	
un-	tension load	N	[kN]	7.6	13.2	17.2		10.6	16.9		21.2	
cracked	dianlessment	δ_{N0}	[mm]	1.0	1.1	1.2		0.9	1.2		0.8	
concrete	displacement	δ _{Ν∞}	[mm]	1.0	1.2	1.2		0.9	1.2		1.0	

Table C4: Displacements under shear load for W-BS

Anchor size W-BS	(8		10						
Nominal embedment depth h _{nom} [mm]			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
			40	55	45	55	65	55	75	85	
shear load	V	[kN]	3		8.6		16.2				
dia al a a a a a a a	δ_{V0}	[mm]	1.		2.7		2.7				
displacement	δ∨∞	[mm]	3.	10		4.1		4.3			
Anchor size W-BS			12				14				
Nominal embedment depth h _{nom} [mm]			h _{nom1}	h _{nom2}	h _{nom3} h _{nom1}			h _{nom2} h _{nom3}		h _{nom3}	
			65	85	100	100 75			100 115		
shear load	N	[kN]		20.0		30.5					
diaminan	δ _{V0}	[mm]					3.1				
displacement	δ√∞	[mm]		6.0				4.7			

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR	
Performances	Annex C 3
Displacements under tension and shear loads	

Table C5: Characteristic values for seismic category C1

Anchor size	W-BS		8	10	12	14				
Nominal embe	dment depth h _{non}		h _{nom3}							
Nominal embe	ument depth mon	1 []		65	85	100	115			
steel failure for tension- and shear load										
characteristic load		$N_{Rk,s,eq}$	[kN]	27.0	45.0	67.0	94.0			
		$V_{Rk,s,eq}$	[kN]	8.5	15.3	21.0	22.4			
partial safety f	actor	$\gamma_{\sf Ms}$	[-]		1.	5				
pull-out failui	re									
characteristic cracked concr	tension load in ete C20/25	$N_{Rk,p,eq}$	[kN]	12.0	12.0 Pull-out failure is not decisive					
concrete con	e failure									
effective anch	h _{ef}	[mm]	52	68	80	92				
concrete	spacing	S _{cr,N}	[mm]	3 x h _{ef}						
cone failure edge distance		C _{cr,N}	[mm]	1.5 x h _{ef}						
installation safety factor γ_{inst} [[-]	1.0						
concrete pry	out failure (pry-	out)								
factor	k ₈	[-]	1.0							
concrete edg	e failure									
effective lengt	h of anchor	I _f = h _{ef}	[mm]	52	68	80	92			
outside diameter of anchor		d _{nom}	[mm]	8	10	12	14			

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR	
Performances	Annex C 4
Characteristic values for seismic category C1	

Table C6: Characteristic values of resistance to fire exposure for W-BS

Anchor size W-BS				6		8		10		12		14					
Nominal embedment depth h_nom [mm]			1	2	1	2	3	1	2	3	1	2	3	1	2	3	
		40	55	45	55	65	55	75	85	65	85	100	75	100	115		
steel failure for tension- and shear load ($F_{Rk,s,fi} = N_{Rk,s,fi} = V_{Rk,s,fi}$)																	
Fire resistance class																	
R30	F _{Rk,s,fi30} [kN]		[kN]	0	,9	2,4		4,4		7,3		10,3					
R60		F _{Rk,s,fi60}	[kN]	0,8		1,7		3,3		5,8		8,2					
R90		F _{Rk,s,fi90}	[kN]	0,6		1,1		2,3		4,2		5,9					
R120	Characteristic	F _{Rk,s,fi120}	[kN]	0,4		0,7		1,7		3,4		4,8					
R30	Resistance	M ⁰ _{Rks,,fi30}	[Nm]	0,7		2,4		5,9		12,3		20,4					
R60	M ⁰ _{Rk,s,fi60}		[Nm]	0,6		1,8		4,5		9,7		15,9					
R90		M ⁰ _{Rk,s,fi90}	[Nm]	n] 0,5		1,2		3,0		7,0		11,6					
R120		M ⁰ Rks,,fi120	[Nm]	0,3		0,9		2,3		5,7		9,4					
edge distance			<u> </u>														
R30 bis R120	C _{cr, fi}			[mm]	2 x h _{ef}											
spacing																	
R30 bis R120	S _{cr, fi}			[mm]	4 x h _{ef}											

The characteristic resistance to fire exposure for pull-out failure, concrete cone failure, concrete pry-out failure and concrete edge failure shall be calculated according to FprEN 1992-4. If no value for $N_{Rk,p}$ is given, in the equation D.4 and D.5 the value of $N_{Rk,p}^0$ shall be inserted instead of $N_{Rk,p}$.

Würth Concrete Screw W-BS/S, W-BS/A4, W-BS/HCR	
Performances	Annex C 5
Characteristic values of resistance to fire exposure	