

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0515 of 13 July 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	HVU2
Product family to which the construction product belongs	Bonded Fastener for use in concrete
Manufacturer	Hilti AG Liechtenstein Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN
Manufacturing plant	Hilti Corporation
This European Technical Assessment contains	26 pages including 3 annexes
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-16/0515

Page 2 of 26 | 13 July 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 26 | 13 July 2017

European Technical Assessment ETA-16/0515 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti HVU is a bonded anchor consisting of a mortar capsule Hilti HVU2 and a steel element. The steel element consist of

- an anchor rod Hilti HAS-(E) with washer and hexagon nut of sizes M8 to M20 or
- an internally threaded sleeve HIS-(R)N of sizes M8 to M16

The mortar capsule is placed in the hole and the steel element is driven by machine as specified in Annex B7.

The anchor rod is anchored via the bond between steel element, chemical mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action, Displacements	See Annex C 1 to C 9

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-16/0515

Page 4 of 26 | 13 July 2017

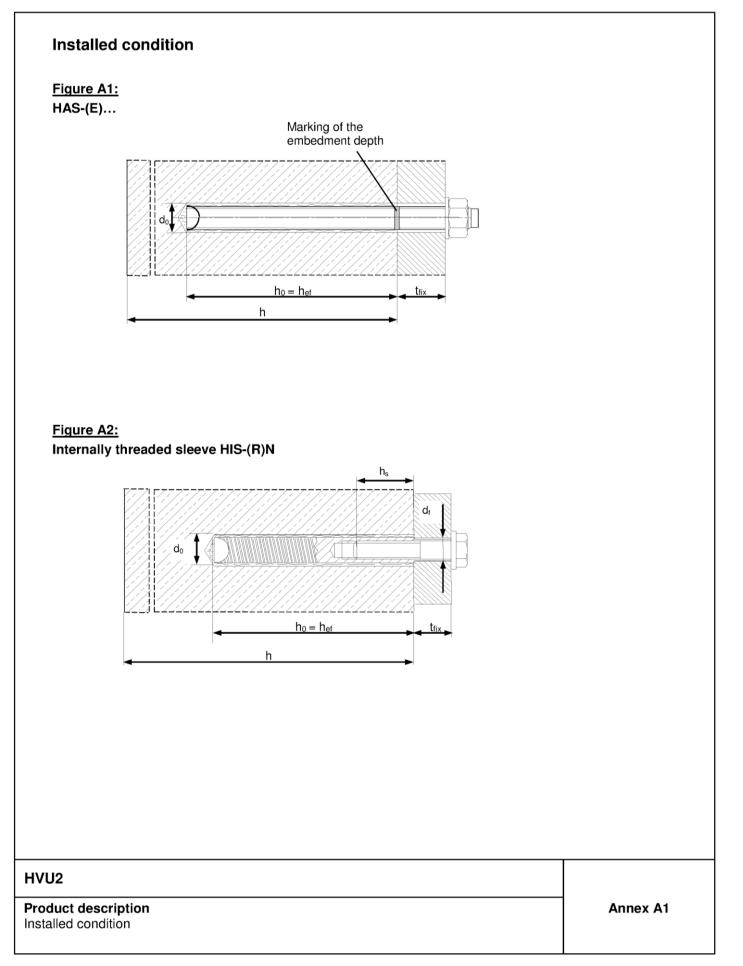
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 13 July 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange

Page 5 of European Technical Assessment ETA-16/0515 of 13 July 2017

English translation prepared by DIBt

electronic copy of the eta by dibt: eta-16/0515

Designation	Material				
Metal parts made of zinc coated steel					
HAS-(E)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
Internally threaded sleeve HIS-N	Electroplated zinc coated \ge 5 μ m				
Washer	Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 45 μ m				
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated $\geq 5 \ \mu$ m, hot dip galvanized $\geq 45 \ \mu$ m				
Metal parts made of	stainless steel				
HAS-(E)R					
Internally threaded sleeve HIS-RN	Stainless steel 1.4401, 1.4571 EN 10088-1:2014				
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014				
Nut	Strength class of nut adapted to strength class of threaded rod. Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014				
Metal parts made of	high corrosion resistant steel				
HAS-(E)HCR	M8 to M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$ Rupture elongation ($l_0 = 5d$) > 8% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014				
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014				
Nut	Strength class of nut adapted to strength class of threaded rod. High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014				

HVU2

Product description Materials Annex A3

Specifications of inte	ended use
 Anchorages subject to: Static and quasi static limits 	oading.
	ced normal weight concrete according to EN 206-1:2000. 5 to C50/60 according to EN 206-1:2000. aed concrete.
Temperature in the base	material:
 At installation -10 °C to +40 °C 	
 In-service Temperature range I: Temperature range II: Temperature range III: 	(max. long term temperature +24 °C and max. short term temperature +40 °C) -40 °C to +80 °C (max. long term temperature +50 °C and max. short term temperature +80 °C)
Table B1: Specifica	tions of intended use

		Foil capsule HVU2 with …				
Elements		Threaded rod HAS-(E)	HIS-(R)N			
Hammer drilling with hollow drill bit TE-CD or TE-YD		M12 to M20	M8 to M16			
Hammer drilling		M8 to M20	M8 to M16			
Diamond coring	€ (¢)	M10 to M20	M8 to M16			

HVU2

Intended Use Specifications

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (zinc coated steel, steinless steel or high corre-
- (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal conditions, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: EOTA Technical Report TR 029, 09/2010, CEN/TS 1992-4:2009

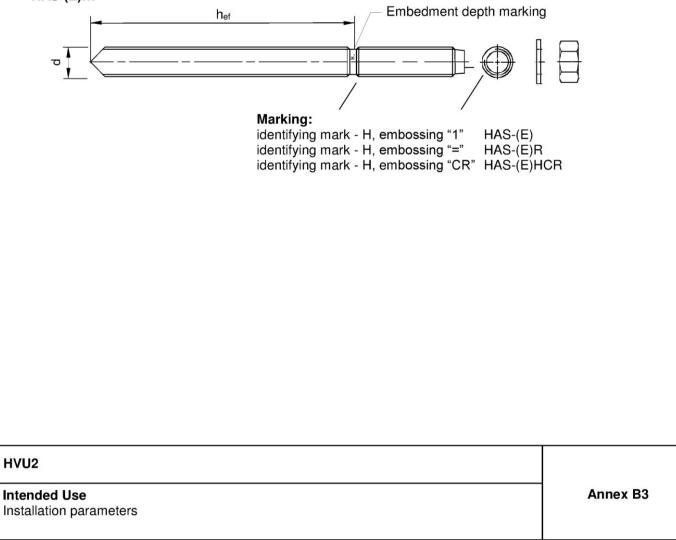
Installation:

- · Use category: dry or wet concrete (not in flooded holes).
- Drilling technique: hammer drilling, diamond coring (e.g. Hilti DD 30-W or other Hilti DD machines), hammer drilling with hollow drill bit TE-CD, TE-YD.
- · Overhead installation is admissible.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

HVU2

Intended Use Specifications

Table B2:	Installation parameters of HAS-(E)
-----------	------------------------------------

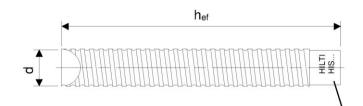

			2		<i></i>	
		M8	M10	M12	M16	M20
		8x80	10x90	12x110	16x125	20x170
$d^{1)}=d_{\text{nom}}{}^{2)}$	[mm]	8	10	12	16	20
do	[mm]	10	12	14	18	22
$h_{\text{ef}} = h_0$	[mm]	80	90	110	125	170
df	[mm]	9	12	14	18	22
h _{min}	[mm]	110	120	140	160	220
T _{max}	[Nm]	10	20	40	80	150
Smin	[mm]	40	50	60	75	90
Cmin	[mm]	40	45	45	50	55
	d_0 $h_{ef} = h_0$ d_f h_{min} T_{max} S_{min}	$\begin{array}{c} h_{ef} = h_0 & [mm] \\ h_{ef} = h_0 & [mm] \\ \\ d_f & [mm] \\ \\ h_{min} & [mm] \\ \\ T_{max} & [Nm] \\ \\ s_{min} & [mm] \end{array}$	Image: state of the	$hmin$ lmm $hmin$ lmm $d^{1)} = d_{nom}^{2}$ $[mm]$ 8 10 d_0 $[mm]$ 10 12 $h_{ef} = h_0$ $[mm]$ 80 90 d_f $[mm]$ 90 12 h_{min} $[mm]$ 91 12 T_{max} $[Nm]$ 110 120 s_{min} $[mm]$ 10 20	Number $d^{1)} = d_{nom}^{2)}$ [mm]8x8010x9012x110 $d^{1)} = d_{nom}^{2)}$ [mm]81012 d_0 [mm]101214 $h_{ef} = h_0$ [mm]8090110 d_f [mm]991214 h_{min} [mm]110120140 T_{max} [Nm]102040 s_{min} [mm]405060	Number $d^{1)} = d_{nom}^{2}$ [mm]8x8010x9012x11016x125 $d^{1)} = d_{nom}^{2}$ [mm]8101216 d_0 [mm]10121418 $h_{ef} = h_0$ [mm]8090110125 d_f [mm]9121418 h_{min} [mm]10120140160 T_{max} [Nm]10204080 s_{min} [mm]40506075

¹⁾ Parameter for design according to EOTA Technical Report TR 029.

²⁾ Parameter for design according to CEN/TS 1992-4:2009.

³⁾ For larger clearance hole see TR 029 section 1.1.

HAS-(E)...



Internally threaded sleeve HIS-	M8	M10	M12	M16		
Foil capsule HVU2 M…			10x90	12x110	16x125	20x170
Outer diameter of sleeve	$d^{1)}=d_{\text{nom}}{}^{2)}$	[mm]	12,5	16,5	20,5	25,4
Nominal diameter of drill bit	do	[mm]	14	18	22	28
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	90	110	125	170
Maximum diameter of clearance hole in the fixture ³⁾	df	[mm]	9	12	14	18
Minimum thickness of concrete member	h _{min}	[mm]	120	150	170	230
Maximum torque moment	T _{max}	[Nm]	10	20	40	80
Thread engagement length min-max	hs	[mm]	8-20	10-25	12-30	16-40
Minimum spacing	Smin	[mm]	60	75	90	115
Minimum edge distance	Cmin	[mm]	40	45	55	65

Table B3: Installation parameters of internally threaded sleeve HIS-(B)N

¹⁾ Parameter for design according to EOTA Technical Report TR 029.
 ²⁾ Parameter for design according to CEN/TS 1992-4:2009.
 ³⁾ For larger clearance hole see TR 029 section 1.1.

Internally threaded sleeve HIS-(R)N...

Marking:

Identifying mark - HILTI and embossing "HIS-N" (for zinc coated steel) embossing "HIS-RN" (for stainless steel)

Annex B4

HVU2

Intended Use Installation parameters

Z35410.17

Table B4: Minimum curing time					
Temperature in the base material T			Minimum curing time t _{cure}		
-10 °C	to	-6 °C	5 hours		
-5 °C	to	-1 °C	3 hours		
0 °C	to	4 °C	40 min		
5 °C	to	9 °C	20 min		
10 °C	to	19 °C	10 min		
20 °C	to	40 °C	5 min		

HVU2

Intended Use Minimum curing time

Table B5:	Parameters of drilling and cleaning tools						
Elem	nents	Drill and clean					
		Hamm	Hammer drilling				
HAS-(E)	HIS-(R)N		Hollow drill bit TE- CD, TE-YD	Diamond coring	Brush		
		<u></u>	e P	€ D	**********		
Size	Name	d₀ [mm]	d₀ [mm]	d₀ [mm]	HIT-RB		
M8	-	10	-	-	-		
M10	-	12	-	12	12		
M12	M8	14	14	14	14		
M16	M10	18	18	18	18		
M20	M12	22	22	22	22		
-	M16	28	28	28	28		

Cleaning alternatives

Manual Cleaning (MC):

Hilti hand pump for blowing out drill holes with diameters $d_0 \le 18$ mm and drill hole depths $h_0 \le 10$ ·d.

Compressed Air Cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Automatic Cleaning (AC):

Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

Intended Use Cleaning tools Annex B6

HVU2

Elements	Setting	Operating mode	
HAS-(E) M8 to M20	TE-C ½" / TE-FY ¾"	HAS-(E) with double nut and TE-C ½" or TE-FY ¾" adapter	Rotary hammer tool in rotation hammer mode
	HAS M8-16	HAS with setting tool delivered in the HAS box	Drill driver in rotation mode or rotation hammer mode
HAS M8 to M16	HAS M8-16 M8-M16 TE-C HVU2 HAS M8-16 M8-M16 TE(-A)	HAS with setting tool delivered in the HAS box and TE-C HVU2 adapter	Rotary hammer tool in rotation hammer mode
	TE-C HEX TE(-A)	HAS with TE-C HEX adapter	Rotary hammer tool in rotation hammer mode
HAS-E M20		HAS E with TE-Y-E adapter	Rotary hammer tool in rotation hammer mode

Table B7: Parameters of setting tools HIS-(R)N...

Elements	Setting	Setting mode	
HIS-(R)N M8 to M16	TE-C ½" / TE-FY ¾" TE(-A) HIS-S	HIS-N with HIS-S and TE-C ½" or TE-FY ¾" adapter	Rotary hammer tool in rotation hammer mode
		HIS-N with screw and TE-C ½" or TE-FY ¾" adapter	Rotary hammer tool in rotation hammer mode

HVU2

Intended Use Setting tools

Installation instruc	ction	
Hole drilling		
a) Hammer drilling:	For dry or wet concrete and installation in flooded holes (no sea	water).
	Drill hole to the required embedment depth with a hammer drill so mode using an appropriately sized carbide drill bit.	et in rotation-hammer
b) Hammer drilling wit	h Hilti hollow drill bit: For dry and wet concrete only.	
TE-CD TE-YD	Drill hole to the required embedment depth with an appropriately TE-YD hollow drill bit with Hilti vacuum attachment. This drilling s dust and cleans the drill hole during drilling when used in accorda manual. After drilling is completed, proceed to the "injection prep installation instruction.	system removes the ance with the user's
c) Diamond coring:	For dry and wet concrete only.	
	Diamond coring is permissible when suitable diamond core drillin corresponding core bits are used.	ng machines and the
Check setting depth		
	Check the setting depth with the marked element. The element has to fit in the hole until the required embedment d If it is not possible to insert the element to the required embedme	
Drill hole cleaning:	Just before setting an anchor, the drill hole must be free of dust a Inadequate hole cleaning = poor load values.	and debris.
Manual Cleaning (MC)	: For drill hole diameters $d_0 \le 18$ mm and drill hole depths $h_0 \le 10$.	d.
4x d ₀ 10-18mm	The Hilti hand pump may be used for blowing out drill holes. Blow out at least 4 times from the back of the drill hole until return noticeable dust.	n air stream is free of
Compressed Air Clear	ning (CAC): For all drill hole diameters do and all drill hole depths h	٦٥.
6bar/90psi 2x do 10-35mm	Blow 2 times from the back of the hole (if needed with nozzle ext length with oil-free compressed air (min. 6 bar at 6 m ³ /h) until retu noticeable dust.	
HVU2		
Intended Use Installation instructions		Annex B8

	Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.
2х	Brush 2 times with the specified brush (see table B5) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.
	Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.
min. 2x 6bar/ 90psi	Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m ³ /h) until return air stream is free of noticeable dust and water.
	Brush 2 times with the specified brush (see table B5) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.
min. 2x 6bar/ 90psi	Blow again with compressed air 2 times until return air stream is free of noticeable dust and water.

HVU2

Intended Use Installation instructions

٦

Setting the element	
HVU2	Insert the foil capsule with the peak ahead to the back of the hole.
IT TE	Drive the anchor rod with the plugged tool into the hole, applying moderate pressure. Rotary hammer tool in rotation hammer mode (450 RPM to maximum 1300 RPM). Setting tool see Annexes B4 and B5. After reaching the embedment depth switch off setting machine immediately.
SF	For HAS-(E) M8 to M16 a drill driver in rotation mode or rotation hammer mode can be used.
	Overhead installation. For overhead installation use the overhead dripping cup HIT-OHC.
	Loading the anchor: After required curing time t_{cure} (see Table B4) the anchor can be loaded. The applied installation torque shall not exceed the values T_{max} given in Table B2 and B3.

HVU2

Intended Use Installation instructions

HAS-(E)			M8	M10	M12	M16	M20
Installation safety factor							
Hammer drilling and drilling with hollow drill bit TE-CD or TE-YD	$\gamma_2{}^{1)}=\gamma_{ins}$	et ²⁾ [-]			1,0		
Diamond coring	$\gamma_2{}^{1)}=\gamma_{ins}$	st ²⁾ [-]			1,0		
Steel failure							
Characteristic resistance HAS-(E) 5.8	N _{Rk,s}	[kN]	18,9	30,1	43,4	82,2	112,2
Partial safety factor	$\gamma_{\text{Ms,N}}$ $^{3)}$	[-]			1,50		
Characteristic resistance HAS-(E) 8.8	N _{Rk,s}	[kN]	26,5	42,2	61,0	115,4	179,5
Partial safety factor	$\gamma_{Ms,N}$ $^{3)}$	[-]			1,50		
Characteristic resistance HAS-R	N _{Rk,s}	[kN]	23,2	37,0	53,3	100,9	157,0
Partial safety factor	$\gamma_{Ms,N}$ $^{3)}$	[-]	1,68	1,68	1,68	1,68	1,87
Characteristic resistance HAS-HCR	N _{Rk,s}	[kN]	26,5	42,2	61,0	115,4	179,5
Partial safety factor	$\gamma_{\text{Ms,N}}$ $^{3)}$	[-]			1,50		
Combined pullout and concrete cone	failure						
Characteristic bond resistance in non-cr	acked con	crete C20/	0/25 in hammer drilled holes				
Temperature range I: 40 °C / 24 °C	$\tau_{Rk,ucr}$	[N/mm²]	12,0	15,0			
Temperature range II: 80 °C / 50 °C	$\tau_{Rk,ucr}$	[N/mm²]	9,5	13,0			
Temperature range III: 120 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,0	6,0			
Characteristic bond resistance in non-cr hollow drill bit TE-CD or TE-YD	acked con	crete C20/	25 in har	nmer dril	led holes	with	
Temperature range I: 40 °C / 24 °C	$ au_{Rk,ucr}$	[N/mm²]				15,0	
Temperature range II: 80 °C / 50 °C	$ au_{Rk,ucr}$	[N/mm ²]		-93		13,0	
Temperature range III: 120 °C / 72 °C	$\tau_{Rk,ucr}$	[N/mm ²]		-2		6,0	
Characteristic bond resistance in non-cr	acked con	crete C20/	25 in dia	mond co	ed holes		
Temperature range I: 40 °C / 24 °C	$ au_{Rk,ucr}$	[N/mm ²]	-		14	4,0	
Temperature range II: 80 °C / 50 °C	$\tau_{Rk,ucr}$	[N/mm ²]	-		12	2,0	
Temperature range III: 120 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm²]	-		5	,5	
		C30/37			1,08		
Increasing factors for τ_{Rk} in concrete for all drilling methods	Ψc	C40/50			1,15		
		C50/60			1,20		
Factor acc. to section 6.2.2.3 of CEN/TS 1992-4:2009 part 5	k ₈ ²⁾	[-]			10,1		

Performances

Characteristic resistance under tension load in concrete Design according to EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009

Table C1: continued

HAS-(E)			M8	M10	M12	M16	M20	
Characteristic bond resistance in cracke	ed concre	te C20/25 ir	h amme	r drilled	holes			
Temperature range I: 40 °C / 24 °C	$\tau_{Rk,cr}$	[N/mm²]	5,0 8,5					
Temperature range II: 80 °C / 50 °C	$ au_{Rk,cr}$	[N/mm ²]	4,0 6,5					
Temperature range III: 120 °C / 72 °C	$\tau_{Rk,cr}$	[N/mm ²]	2,5	,5 4,0				
Characteristic bond resistance in cracke with hollow drill bit TE-CD or TE-YD	ed concre	te C20/25 ir	hamme	er drilled	holes			
Temperature range I: 40 °C / 24 °C	$ au_{Rk,cr}$	[N/mm²]	-			8,5		
Temperature range II: 80 °C / 50 °C	$\tau_{Rk,cr}$	[N/mm²]	- 6,5					
Temperature range III: 120 °C / 72 °C	$ au_{Rk,cr}$	[N/mm ²]	- 4,0					
Increasing factors for τ_{Rk} in concrete		C30/37			1,04			
for hammer drilled holes and hollow drill	Ψc	C40/50			1,07			
bit		C50/60			1,10			
Characteristic bond resistance in cracke	ed concre	te C20/25 ir	n diamon	d cored	holes			
Temperature range I: 40 °C / 24 °C	$ au_{Rk,cr}$	[N/mm²]	-		7	,0		
Temperature range II: 80 °C / 50 °C	$ au_{Rk,cr}$	[N/mm²]	-		6	,0		
Temperature range III: 120 °C / 72 °C	$\tau_{Rk,cr}$	[N/mm ²]	-		3	,5		
Increasing factors for τ_{Rk} in concrete for diamond cored holes	Ψc	C50/60			1,0			
Factor acc. to section 6.2.3 of CEN/TS 1992-4:2009 part 5	k _{cr²⁾}	[-]			7,2			
Concrete cone failure								
Factor acc. to section 6.2.2.3	k _{ucr²⁾}	[-]			10,1			
of CEN/TS 1992-4:2009 part 5	k _{cr} ²⁾				7,2			
Edge distance	C cr,N	[mm]			$1,5 \cdot h_{ef}$			
Spacing	Scr,N	[mm]			$3,0 \cdot h_{ef}$			

HVU2

Performances

Characteristic resistance under tension load in concrete Design according to EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009

HAS-(E)			M8	M10	M12	М	16	M20
Splitting failure								
Factor acc. to section 6.2.2.3	kucr ²⁾	[-]			10,1			
of CEN/TS 1992-4:2009 part 5	k _{cr²⁾}	[-]			7,2			
	h / h	_{ef} ≥ 2,0	1,0	• h _{ef}	h/h _{ef} ▲ 2,0	Ţ		
Edge distance c _{cr.sp} [mm] for	2,0 > h	/ h _{ef} > 1,3	4,6 h _{ef}	- 1,8 h	1,3		~	
	h / h	_{ef} ≤ 1,3	2,26	S h _{ef}	- L	1,0 h _{ef}	2,26 h _{ef}	C _{cr,s}
Spacing	Scr,sp	[mm]			2·c _{cr,sp}			

¹⁾ Parameter for design according to EOTA Technical Report TR 029.
 ²⁾ Parameter for design according to CEN/TS 1992-4:2009.
 ³⁾ In absence of national regulations.

HVU2

Performances

Characteristic resistance under tension load in concrete Design according to EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009

Table C2: Characteristic resistance for internally threaded sleeve HIS-(R)N under tension load in concrete

HIS-(R)N			M8	M10	M12	M16
Installation safety factor				•		
Hammer drilling and drilling with hollow drill bit TE-CD or TE-YD	$\gamma_2{}^{1)}=\gamma_{ir}$	nst ²⁾ [-]		1	,0	
Diamond coring	$\gamma_2{}^{1)} = \gamma_{ir}$	nst ²⁾ [-]		1	,0	
Steel failure						
Characteristic resistance HIS-N with with screw or threaded rod grade 8.8	N _{Rk,s}	[kN]	25	46	67	125
Partial safety factor	γ Ms,N $^{3)}$	[-]		1	,5	
Characteristic resistance HIS-RN with with screw or threaded rod grade 70	N _{Rk,s}	[kN]	26	41	59	110
Partial safety factor	γMs,N ³⁾	[-]		1,	87	
Combined pullout and concrete cone	failure					
Characteristic bond resistance in non-cr in hammer drilled holes and hammer				bit TE-CD o	r TE-YD	
Temperature range I: 40 °C / 24 °C	$ au_{Rk,ucr}$	[N/mm²]		11	1,0	
Temperature range II: 80 °C / 50 °C	$ au_{Rk,ucr}$	[N/mm ²]	9,0			
Temperature range III: 120 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]		5	,5	
Characteristic bond resistance in non-cr	racked co	ncrete C20/	25 in diam	ond cored h	oles	
Temperature range I: 40 °C / 24 °C	$ au_{Rk,ucr}$	[N/mm ²]		11	1,0	
Temperature range II: 80 °C / 50 °C	$ au_{Rk,ucr}$	[N/mm ²]		9	,0	
Temperature range III: 120 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm²]		5	,5	
Increasing factors for τ_{Rk} in concrete for all drilling methods	Ψc	C50/60		1	,0	
Factor acc. to section 6.2.2.3 of CEN/TS 1992-4:2009 part 5	k ₈ 2)	[-]		1(),1	

HVU2

Performances

Characteristic resistance under tension load in concrete Design according to EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009

Table C2: continued HIS-(R)N **M**8 M10 M12 M16 Characteristic bond resistance in cracked concrete C20/25 in hammer drilled holes and hammer drilled holes with hollow drill bit TE-CD or TE-YD Temperature range I: 40 °C / 24 °C [N/mm²] 6,5 $\tau_{\mathsf{Rk},\mathsf{cr}}$ Temperature range II: 80 °C / 50 °C 5,0 [N/mm²] $\tau_{\mathsf{Rk},\mathsf{cr}}$ Temperature range III: 120 °C / 72 °C [N/mm²] 3.0 $\tau_{\mathsf{Rk},\mathsf{cr}}$ C30/37 1,08 Increasing factors for τ_{Rk} in concrete C40/50 1,15 for hammer drilled holes and hollow drill Ψc bit C50/60 1,20 Characteristic bond resistance in cracked concrete C20/25 in diamond cored holes Temperature range I: 40 °C / 24 °C [N/mm²] 5,0 $\tau_{\mathsf{Rk},\mathsf{cr}}$ Temperature range II: 80 °C / 50 °C 4,0 [N/mm²] $\tau_{\mathsf{Rk},\mathsf{cr}}$ Temperature range III: 120 °C / 72 °C [N/mm²] 2,5 $\tau_{\mathsf{Rk.cr}}$ Increasing factors for τ_{Rk} in concrete C50/60 1,0 Ψc for diamond cored holes Factor acc. to section 6.2.2.3 $k_{8}^{2)}$ [-] 7,2 of CEN/TS 1992-4:2009 part 5 Concrete cone failure Factor acc. to section 6.2.3 k_{ucr}²⁾ [-] 10,1 of CEN/TS 1992-4:2009 part 5 $k_{cr}^{2)}$ [-] 7.2 Edge distance Ccr,N [mm] 1,5 · hef Spacing [mm] $3.0 \cdot h_{ef}$ Scr,N Splitting failure k_{ucr}2) 10,1 [-] Factor acc. to section 6.2.3 of CEN/TS 1992-4:2009 part 5 $k_{cr}^{2)}$ 7,2 [-] h/h_{ef} $h/h_{ef} \geq 2,0$ 1,0 · h_{ef} 2,0 Edge distance $2,0 > h / h_{ef} > 1,3$ 4,6 h_{ef} - 1,8 h 1,3 c_{cr,sp} [mm] for $h/h_{ef} \leq 1.3$ 2,26 h_{ef} 1,0 h_{ef} 2.26 h C_{cr.sp} Spacing [mm] 2.ccr,sp Scr.sp

¹⁾ Parameter for design according to EOTA Technical Report TR 029.

²⁾ Parameter for design according to CEN/TS 1992-4:2009.

³⁾ In absence of national regulations.

HVU2

Performances

Characteristic resistance under tension load in concrete Design according to EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009

HAS-(E)			M8	M10	M12	M16	M20
Installation safety factor		I			•		
Hammer drilling and drilling with hollow drill bit TE-CD or TE-YD	$\gamma_2{}^{1)}=\gamma_{inst}{}^{2)}$	[-]			1,0		
Diamond coring	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$	[-]			1,0		
Steel failure without lever arm							
Characteristic resistance HAS-(E) 5.8	V _{Rk,s}	[kN]	9,5	15,1	21,7	41,1	56,1
Partial safety factor	$\gamma_{Ms,V}$ ³⁾	[-]			1,25		
Characteristic resistance HAS-(E) 8.8	V _{Rk,s}	[kN]	13,3	21,1	30,5	57,7	89,7
Partial safety factor	$\gamma_{Ms,V}$ ³⁾	[-]			1,25		
Characteristic resistance HAS-R	V _{Rk,s}	[kN]	11,6	18,5	26,7	50,5	78,5
Partial safety factor	γMs,V ³⁾	[-]		1	,4		1,56
Characteristic resistance HAS-HCR	V _{Rk,s}	[kN]	13,3	21,1	30,5	57,7	89,7
Partial safety factor	γMs,V ³⁾	[-]			1,25		
Ductility factor	k _{2²⁾}	[-]			1,0		
Steel failure with lever arm							
Characteristic resistance HAS-(E) 5.8	M ⁰ Rk,s	[kN]	18	37	64	167	284
Partial safety factor	$\gamma_{Ms,V}$ ³⁾	[-]			1,25		
Characteristic resistance HAS-(E) 8.8	M ⁰ _{Rk,s}	[kN]	26	53	90	234	455
Partial safety factor	γMs,V ³⁾	[-]			1,25		
Characteristic resistance HAS-R	M ⁰ Rk,s	[kN]	23	45	79	205	398
Partial safety factor	$\gamma_{Ms,V}$ ³⁾	[-]		1	,4		1,56
Characteristic resistance HAS-HCR	M ⁰ Rk,s	[kN]	26	52	90	234	455
Partial safety factor	$\gamma_{Ms,V}$ ³⁾	[-]			1,25		
Ductility factor	k ₂ ²⁾	[-]			1,0		
Concrete pry-out failure							
Pry-out factor	$k^{1)} = k_3^{2)}$	[-]			2,0		
Concrete edge failure					_		
Effective length of anchor	lf	[mm]	80	90	110	125	170
The value of h_{ef} for calculation in equations (5.8a) and (5.8b) of Technical Report TR 029 is limited by:	h _{ef}	[mm]			n ¹⁾ (h _{ef} ; 8 ²⁾ (h _{ef} ; 8 ·		
Diameter of anchor	d	[mm]	8	10	12	16	20
 Parameter for design according to EOTA Terminal Parameter for design according to CEN/TS Parameter for design according to CEN/TS In absence of national regulations. 	echnical Repo 1992-4:2009.	ort TR 029	9.			·	
12							

Characteristic resistance under shear load in concrete

Design according to EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009

Characteristic resistance for internally threaded sleeve HIS-(R)N under Table C4: shear load in concrete

HIS-(R)N			M8	M10	M12	M16
Installation safety factor				•	•	
Hammer drilling and drilling with hollow drill bit TE-CD or TE-YD	$\gamma_2{}^{1)}=\gamma_{inst}$	²⁾ [-]		1	,0	
Diamond coring	$\gamma_2{}^{1)} = \gamma_{inst}$	²⁾ [-]		1	,0	
Steel failure without lever arm						
Characteristic resistance HIS-N with screw or threaded rod grade 8.8	V _{Rk,s}	[kN]	13	23	34	63
Partial safety factor	$\gamma_{\rm Ms,V}$ $^{3)}$	[-]	1,25			
Characteristic resistance HIS-RN with screw or threaded rod grade 70	V _{Rk,s}	[kN]	13	20	30	55
Partial safety factor	$\gamma_{\rm Ms,V}$ $^{3)}$	[-]		1,	56	
Ductility factor	K 2 ²⁾	[-]	1,0			
Steel failure with lever arm						
Characteristic resistance HIS-N with screw grade 8.8	M^0 _{Rk,s}	[Nm]	30	60	105	266
Partial safety factor	$\gamma_{\text{Ms,V}}$ $^{3)}$	[-]		1,	25	
Characteristic resistance HIS-RN with screw grade 70	M ⁰ Rk,s	[Nm]	26	52	92	233
Partial safety factor	$\gamma_{\text{Ms,V}}$ $^{3)}$	[-]		1,	56	
Ductility factor	k 2 ²⁾	[-]		1	,0	
Concrete pry-out failure						
Pry-out factor	$k^{1)} = k_3^{2)}$	[-]		2	,0	
Concrete edge failure						
Effective length of anchor	lf	[mm]	90	110	125	170
Diameter of anchor	d	[mm]	12,5	16,5	20,5	25,4

Parameter for design according to EOTA Technical Report TR 029.
 Parameter for design according to CEN/TS 1992-4:2009.
 In absence of national regulations.

electronic copy of the eta by dibt: eta-16/0515

HVU2	
Performances	Annex C7
Characteristic resistance under shear load in concrete	
Design according to EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009	

I

HAS-(E)			M8	M10	M12	M16	M20
Non-cracked co	ncrete			•			
Temperature rai	nge I to III						
Displacement	δ _{N0} -factor	[mm/(N/mm²)]			0,06		
Displacement	δ _{N∞} -factor	[mm/(N/mm²)]			0,10		
Cracked concre	te	•					
Temperature rai	nge I to III						
Displacement	δ_{N0} -factor	[mm/(N/mm²)]			0,10		
Displacement	δ _{N∞} -factor	[mm/(N/mm ²)]			0,14		

Table C6: Displacements for HAS-(E) under shear load¹⁾

HAS-(E)			M8	M10	M12	M16	M20
Displacement	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04
Displacement	δv∞-factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} \text{-factor} \cdot V; \qquad \delta_{V\infty} = \delta_{V\infty} \text{-factor} \cdot V$

(V: action shear load).

HVU2

Performances Displacements

Table C7: Displacements for internally threaded sleeves HIS-(R)N under tension load¹⁾

HIS-(R)N			M8	M10	M12	M16	
Non-cracked concrete		•					
Temperature range I to III							
Displacement	δ_{N0} -factor	[mm/10kN]	0,05				
Displacement	δ _{N∞} -factor	[mm/10kN]	0,10				
Cracked concrete							
Temperature range I to III							
Displacement	δ _{N0} -factor	[mm/10kN]	0,13				
Displacement	δ _{N∞} -factor	[mm/10kN]		0,	15		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} \text{-factor} \cdot N; \qquad \delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot N$

(N: action tension load).

Table C8: Displacements for internally threaded sleeves HIS-(R)N under shear load¹⁾

HIS-(R)N			M8	M10	M12	M16
Displacement	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04
Displacement	δv∞-factor	[mm/kN]	0,09	0,08	0,08	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} \text{-factor} \cdot V; \qquad \delta_{V\infty} = \delta_{V\infty} \text{-factor} \cdot V$

(V: action shear load).

HVU2

Performances Displacements