

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-16/0515 vom 13. Juli 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

HVU2

Verbunddübel zur Verankerung im Beton

Hilti AG Liechtenstein Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Corporation

26 Seiten, davon 3 Anhänge

Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 5: "Verbunddübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU)

Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-16/0515

Seite 2 von 26 | 13. Juli 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z32218.17 8.06.01-173/16

Europäische Technische Bewertung ETA-16/0515

Seite 3 von 26 | 13. Juli 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Hilti HVU ist ein Verbunddübel, der aus einer Mörtelpatrone HVU2 und einem Stahlteil besteht. Das Stahlteil besteht aus

- einer Ankerstange Hilti HAS-(E) mit Scheibe und Mutter in den Größen M8 bis M20 oder
- einer Innengewindehülse HIS-(R)N in den Größen M8 bis M16

Die Mörtelpatrone wird in das Bohrloch gesetzt und das Stahlteil mit einer Maschine, wie in Anhang B7 beschrieben, eingetrieben.

Der Dübel ist durch Verbund zwischen Stahlteil, Mörtel und Beton verankert.

Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte unter statischer und quasistatischer Belastung, Verschiebungen	Siehe Anhang C 1 bis C 9

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

Z32218.17 8.06.01-173/16

Europäische Technische Bewertung ETA-16/0515

Seite 4 von 26 | 13. Juli 2017

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäisch technische Zulassung ETAG 001, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

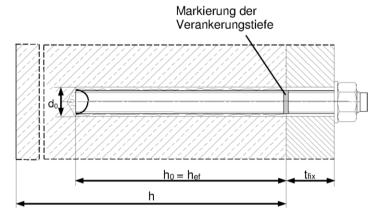
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

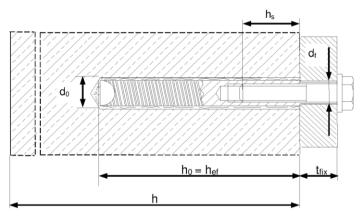
Ausgestellt in Berlin am 13. Juli 2017 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt


Z32218.17 8.06.01-173/16

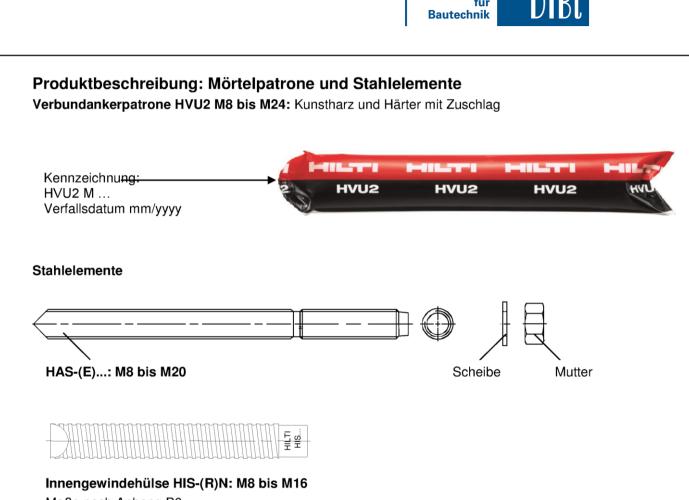
Einbauzustand


Bild A1:

HAS-(E)...

Bild A2:

Innengewindehülse HIS-(R)N



HVU2

Produktbeschreibung
Einbauzustand

Anhang A1

Maße nach Anhang B6.

HVU2

Produktbeschreibung
Verbundankerpatrone / Stahlelemente

Anhang A2

Tabelle A1: Werkstoffe

Bezeichnung	Werkstoff			
Stahlteile aus verzinktem Stahl				
HAS-(E)	M8 bis M16: Festigkeitsklasse 5.8, $f_{uk} = 570 \text{ N/mm}^2$, $f_{yk} = 456 \text{ N/mm}^2$ M20: Festigkeitsklasse 5.8, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$ M8 bis M20: Festigkeitsklasse 8.8, $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$ Bruchdehnung ($I_0 = 5d$) > 8% duktil Galvanisch verzinkt $\geq 5 \mu m$, (F) feuerverzinkt $\geq 45 \mu m$			
Innengewindehülse HIS-N	Galvanisch verzinkt ≥ 5 μm			
Scheibe	Galvanisch verzinkt ≥ 5 μm, feuerverzinkt ≥ 45 μm			
Mutter	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der Gewindestange. Galvanisch verzinkt ≥ 5 μm, feuerverzinkt ≥ 45 μm			
Stahlteile aus nichti	rostendem Stahl			
HAS-(E)R	M8 bis M16: Festigkeitsklasse 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 500 \text{ N/mm}^2$ M20: Festigkeitsklasse 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$ Bruchdehnung ($I_0 = 5d$) > 8% duktil Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014			
Innengewindehülse HIS-RN	Nichtrostender Stahl 1.4401, 1.4571 EN 10088-1:2014			
Scheibe	Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014			
Mutter	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der Gewindestange. Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014			
Stahlteile aus hochl	korrosionsbeständigem Stahl			
HAS-(E)HCR	M8 bis M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm² Bruchdehnung (l_0 = 5d) > 8% duktil Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 EN 10088-1:2014			
Scheibe	Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 EN 10088-1:2014			
Mutter	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der Gewindestange. Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 EN 10088-1:2014			

HVU2	
Produktbeschreibung Werkstoffe	Anhang A3

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

Statische und quasistatische Belastung.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000.
- Festigkeitsklassen C20/25 bis C50/60 nach EN 206-1:2000.
- Gerissener und ungerissener Beton.

Temperatur im Verankerungsgrund:

· Beim Einbau

-10 °C bis +40 °C

Im Nutzungszustand

Temperaturbereich I: -40 °C bis +40 °C

(max. Langzeittemperatur +24 °C und max. Kurzzeittemperatur +40 °C)

Temperaturbereich II: -40 °C bis +80 °C

(max. Langzeittemperatur +50 °C und max. Kurzzeittemperatur +80 °C)

Temperaturbereich III: -40 °C bis +120 °C

(max. Langzeittemperatur +72 °C und max. Kurzzeittemperatur +120 °C)

Tabelle B1: Spezifizierung des Verwendungszwecks

		Folienpatrone HVU2 mit				
Elemente		Gewindestange HAS-(E)	HIS-(R)N			
Hammerbohren mit Hohlbohrer TE-CD oder TE-YD		M12 bis M20	M8 bis M16			
Hammerbohren		M8 bis M20	M8 bis M16			
Diamantbohren	₹ 🗈 🗲	M10 bis M20	M8 bis M16			

HVU2	
Verwendungszweck Spezifikationen	Anhang B1

Anwendungsbedingungen (Umweltbedingungen):

- In Bauteilen unter den Bedingungen trockener Innenräume.
 (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen. (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).
 - Anmerkung: Besonders aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung
 - (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerungen unter statischer und quasistatischer Belastung erfolgt in Übereinstimmung mit:

EOTA Technical Report TR 029, 09/2010, CEN/TS 1992-4:2009

Einbau:

- Nutzungskategorie: trockener oder feuchter Beton (nicht in mit Wasser gefüllten Bohrlöchern).
- Bohrverfahren: Hammerbohren, Diamantbohren (z.B. Hilti DD 30-W oder andere Hilti DD Maschinen),
 Hammerbohren mit Hohlbohrer TE-CD, TE-YD.
- Überkopfmontage ist zulässig.
- · Der Einbau erfolgt durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

HVU2	
Verwendungszweck Spezifikationen	Anhang B2

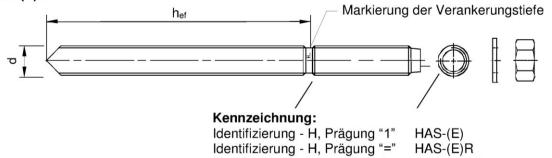


Tabelle B2: Montagekennwerte des HAS-(E)...

HAS-(E)			М8	M10	M12	M16	M20
Folienpatrone HVU2 M			8x80	10x90	12x110	16x125	20x170
Elementdurchmesser	$d^{1)}=d_{nom}{}^{2)} \\$	[mm]	8	10	12	16	20
Bohrernenndurchmesser	d_0	[mm]	10	12	14	18	22
HAS-(E): Effektive Verankerungstiefe und Bohrlochtiefe	$h_{\text{ef}} = h_0$	[mm]	80	90	110	125	170
Maximaler Durchmesser des Durchgangslochs im Anbauteil ³⁾	df	[mm]	9	12	14	18	22
Minimale Bauteildicke	h _{min}	[mm]	110	120	140	160	220
Maximales Anzugsdrehmoment	T _{max}	[Nm]	10	20	40	80	150
Minimaler Achsabstand	Smin	[mm]	40	50	60	75	90
Minimaler Randabstand	Cmin	[mm]	40	45	45	50	55

¹⁾ Parameter für die Bemessung nach EOTA Technical Report TR 029.

HAS-(E)...

Identifizierung - H, Prägung"CR" HAS-(E)HCR

HVU2	
Verwendungszweck Montagekennwerte	Anhang B3

²⁾ Parameter für die Bemessung nach CEN/TS 1992-4:2009.

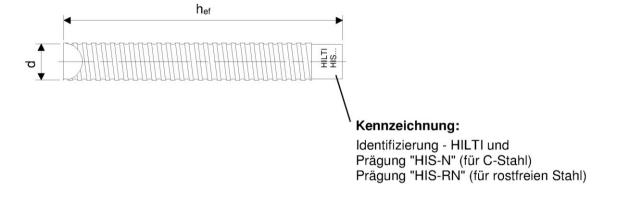

³⁾ Bei größeren Durchgangslöchern siehe TR 029 Abschnitt 1.1.

Tabelle B3: Montagekennwerte des Innengewindehülse HIS-(R)N

Innengewindehülse HIS-(R)N			М8	M10	M12	M16
Folienpatrone HVU2 M			10x90	12x110	16x125	20x170
Hülsenaußendurchmesser, Außendurchmesser Hülse	$d^{1)}=d_{nom}{}^{2)} \\$	[mm]	12,5	16,5	20,5	25,4
Bohrernenndurchmesser	d ₀	[mm]	14	18	22	28
Effektive Verankerungstiefe und Bohrlochtiefe	$h_{\text{ef}} = h_0 $	[mm]	90	110	125	170
Maximaler Durchmesser des Durchgangslochs im Anbauteil ³⁾	df	[mm]	9	12	14	18
Minimale Bauteildicke	h _{min}	[mm]	120	150	170	230
Maximales Anzugsdrehmoment	T _{max}	[Nm]	10	20	40	80
Einschraubtiefe min-max	hs	[mm]	8-20	10-25	12-30	16-40
Minimaler Achsabstand	Smin	[mm]	60	75	90	115
Minimaler Randabstand	Cmin	[mm]	40	45	55	65

¹⁾ Parameter für die Bemessung nach EOTA Technical Report TR 029.

Innengewindehülse HIS-(R)N...

HVU2	
Verwendungszweck Montagekennwerte	Anhang B4

²⁾ Parameter für die Bemessung nach CEN/TS 1992-4:2009.

³⁾ Bei größeren Durchgangslöchern siehe TR 029 Abschnitt 1.1.

Tabelle B4: Minimale Aushärtezeit

Temperatur im Verankerungsgrund T	Minimale Aushärtezeit t _{cure}
-10 °C bis -6 °C	5 h
-5 °C bis -1 °C	3 h
0 °C bis 4 °C	40 min
5 °C bis 9 °C	20 min
10 °C bis 19 °C	10 min
20 °C bis 40 °C	5 min

HVU2

Verwendungszweck
Minimale Aushärtezeit

Anhang B5

Tabelle B5: Angaben zu Bohr- und Reinigungswerkzeugen

Elem	ente	Bohren und Reinigen					
		Hamm	nerbohren				
HAS-(E)	HIS-(R)N		Hohlbohrer TE-CD, TE-YD				
	DIMINIMIMI			₹ >	*******		
Größe	Name	d₀ [mm]	d₀ [mm]	d₀ [mm]	HIT-RB		
M8	-	10	-	-	-		
M10	-	12	-	12	12		
M12	M8	14	14	14	14		
M16	M10	18	18	18	18		
M20	M12	22	22	22	22		
-	M16	28	28	28	28		

Reinigungsalternativen

Handreinigung (MC):

Zum Ausblasen von Bohrlöchern bis zu einem Durchmesser von $d_0 \le 18$ mm und einer Bohrlochtiefe von $h_0 \le 10 \cdot d$ wird die Hilti-Handausblaspumpe empfohlen.

Druckluftreinigung(CAC):

Zum Ausblasen mit Druckluft wird die Verwendung einer Ausblasdüse mit einem Durchmesser von mindestens 3,5 mm empfohlen.

Automatische Reinigung (AC):

Die Reinigung wird während dem Bohren mit dem Hilti TE-CD und TE-YD Bohrsystem inklusive Staubsauger durchgeführt.

HVU2	
Verwendungszweck Reinigungswerkzeuge	Anhang B6

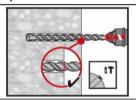
Tabelle B6: Angaben zu Setzwerkzeugen HAS-(E)...

Elemente	Setzwe	rkzeuge	Funktionsweise
HAS-(E) M8 bis M20	TE-C ½" / TE-FY ¾" TE(-A)	HAS-(E) mit Doppelmutter und TE-C ½" oder TE-FY ¾" Adapter	Bohrhammer mit Einstellung drehschlagend
	HAS M8-16	HAS mit in der HAS Schachtel geliefertem Setzwerkzeug	Bohrschrauber mit Einstellung drehend oder drehschlagend
HAS M8 bis M16	TE-C HVU2 HAS M8-16 M8-M16 TE(-A)	HAS mit in der HAS Schachtel geliefertem Setzwerkzeug und TE-C HVU2 Adapter	Bohrhammer mit Einstellung drehschlagend
	TE-C HEX TE(-A)	HAS mit TE-C HEX Adapter	Bohrhammer mit Einstellung drehschlagend
HAS-E M20	TE-Y-E 100 0000000000 [3] TE(-A)	HAS E mit TE-Y-E Adapter	Bohrhammer mit Einstellung drehschlagend

Tabelle B7: Angaben zu Setzwerkzeugen HIS-(R)N...

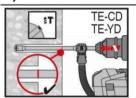
Elemente	Setzwe	Funktionsweise		
HIS-(R)N M8 bis M16	TE-C ½" / TE-FY ¾" TE(-A) HIS-S	HIS-N mit HIS-S und TE-C ½" oder TE-FY ¾" Adapter	Bohrhammer mit Einstellung drehschlagend	
	TE-C ½" / TE-FY ¾" TE(-A)	HIS-N mit Schraube und TE-C ½" oder TE-FY ¾" Adapter	Bohrhammer mit Einstellung drehschlagend	

HVU2	
Verwendungszweck Setzwerkzeuge	Anhang B7



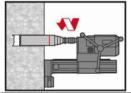
Montageanweisung

Bohrlocherstellung

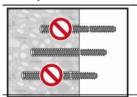

a) Hammerbohren:

Nur im trockenen oder feuchten Beton und in wassergefüllten Bohrlöchern

Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Bohrerdurchmessers auf die richtige Bohrtiefe erstellen.


b) Hammerbohren mit Hilti Hohlbohrer: Für trockenen und feuchten Beton.

Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Hilti Bohrers TE-CD oder TE-YD mit Hilti Staubsaugeranschluss auf die richtige Bohrtiefe erstellen. Dieses Bohrsystem beseitigt bei Anwendung gemäß der Gebrauchsanweisung des Hohlbohrers das Bohrmehl und reinigt das Bohrloch während des Bohrvorgangs. Nach Beendigung des Bohrens kann mit Mörtelverfüllung gemäß Montageanweisung begonnen werden.

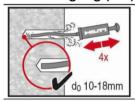

c) Diamantbohren:

Nur im trockenen oder feuchten Beton.

Diamantbohren ist zulässig, wenn geeignete Diamantbohrmaschinen und zugehörige Bohrkronen verwendet werden.

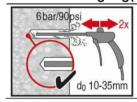
Überprüfen der Setztiefe

Setztiefe mit markierter Ankerstange kontrollieren. Das Bohrloch darf nicht tiefer, als die Setztiefe sein.


Wenn es nicht möglich ist, die Ankerstange bis zur Setztiefenmarkierung in das Bohrloch einzuführen, entsprechend tiefer bohren.

Bohrlochreinigung:

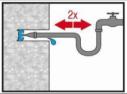
Unmittelbar vor dem Setzen des Dübels muss das Bohrloch frei von Bohrmehl und Verunreinigungen sein.


Handreinigung (MC):

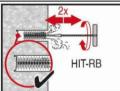
Für Bohrlochdurchmesser $d_0 \le 18$ mm und Bohrlochtiefe $h_0 \le 10 \cdot d$.

Das Bohrloch mindestens 4-mal mit der Hilti Ausblaspumpe vom Bohrlochgrund ausblasen, bis die rückströmende Luft staubfrei ist.

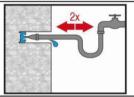
Druckluftreinigung(CAC): Für alle Bohrlochdurchmesser do und Bohrlochtiefen ho.


Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit ölfreier Druckluft (min. 6 bar bei 6 m³/h; falls notwendig mit Verlängerung) ausblasen, bis die rückströmende Luft staubfrei ist.

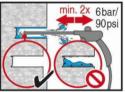
HVU2	
Verwendungszweck Montageanweisung	Anhang B8


235409.17 8.06.01-173/16

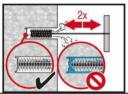
Reinigung von hammergebohrten wassergefüllten Bohrlöchern und diamantgebohrten Bohrlöchern: Für alle Bohrlochdurchmesser do und Bohrlochtiefen ho.



Das Bohrloch 2 mal mittels Wasser mit einem Schlauch vom Bohrlochgrund spülen, bis klares Wasser aus dem Bohrloch austritt. Normaler Wasserleitungsdruck genügt.



2-mal mit Stahlbürste in passender Größe (siehe Tabelle B5) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung).


Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten $\emptyset \ge$ Bohrloch \emptyset). Falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.

Das Bohrloch 2 mal mittels Wasser mit einem Schlauch vom Bohrlochgrund spülen, bis klares Wasser aus dem Bohrloch austritt. Normaler Wasserleitungsdruck genügt.

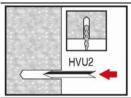
Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit ölfreier Druckluft (min. 6 bar bei 6 m³/h; falls notwendig mit Verlängerung) ausblasen, bis die rückströmende Luft staubfrei und das Bohrloch trocken ist.

2-mal mit Stahlbürste in passender Größe (siehe Tabelle B5) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung).

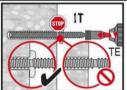
Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten $\emptyset \ge$ Bohrloch \emptyset). Falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.

Bohrloch erneut vom Bohrlochgrund über die gesamte Länge 2-mal mit Druckluft ausblasen, bis die rückströmende Luft staubfrei und das Bohrloch trocken ist.

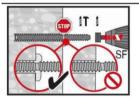
HVU2

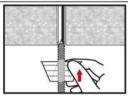

Verwendungszweck

Montageanweisung


Anhang B9

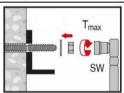
Setzen des Befestigungselementes


Folienpatrone mit der Spitze voraus in das Bohrloch stecken.


Die Ankerstange mit dem aufgesteckten Setzwerkzeug unter mäßigem Druck in das Bohrloch eindrehen. Bohrhammer mit Einstellung drehschlagend (450 U/min bis maximal 1300 U/min).

Setzwerkzeug siehe Anhang B4 und B5.

Nach Erreichen der Setztiefe Setzmaschine sofort ausschalten.



Für HAS-(E) M8 bis M16 darf ein Bohrschrauber mit Einstellung drehend oder drehschlagend verwendet werden.

Überkopfmontage.

Für Überkopfmontage die Tropfscheibe HIT-OHC verwenden.

Last bzw. Drehmoment aufbringen:

Nach Ablauf der Aushärtezeit t_{cure} (siehe Tabelle B4) kann der Anker belastet werden. Das aufzubringende Drehmoment darf die angegebenen Werte T_{max} nach Tabelle B2 und B3 nicht überschreiten.

HVU2	
Verwendungszweck Montageanweisung	Anhang B10

Tabelle C1: Charakteristischer Widerstand für HAS-(E) unter Zugbeanspruchung in Beton

HAS-(E)				М8	M10	M12	M16	M20
Montagesicherheitsbeiwert							•	
Hammerbohren und bohren mit Hohlbohrer TE-CD oder TE-YD	γ ₂ 1)	$= \gamma_{\text{inst}^{2)}}$	[-]			1,0		
Diamantbohren	$\gamma_2^{(1)}$	$= \gamma_{\text{inst}^{2)}}$	[-]			1,0		
Stahlversagen								
Charakteristischer Widerstand HAS-	(E) 5.8	$N_{\text{Rk,s}}$	[kN]	18,9	30,1	43,4	82,2	112,2
Teilsicherheitsbeiwert		γ Ms,N $^{3)}$	[-]			1,50		
Charakteristischer Widerstand HAS-	(E) 8.8	$N_{Rk,s}$	[kN]	26,5	42,2	61,0	115,4	179,5
Teilsicherheitsbeiwert		$\gamma_{\text{Ms,N}}$ $^{3)}$	[-]			1,50		
Charakteristischer Widerstand HAS-	·R	$N_{Rk,s}$	[kN]	23,2	37,0	53,3	100,9	157,0
Teilsicherheitsbeiwert		γ Ms,N $^{3)}$	[-]	1,68	1,68	1,68	1,68	1,87
Charakteristischer Widerstand HAS-	HCR	N _{Rk,s}	[kN]	26,5	42,2	61,0	115,4	179,5
Teilsicherheitsbeiwert γ _{Ms,N} ³⁾ [-]						1,50		
Kombiniertes Versagen durch Her	rauszieh	en und	Betona	usbruch				
Charakteristische Verbundtragfähigk	eit im un	gerisse	nen Bet	eton C20/25 in hammergebohrten Bohrlöchern				öchern
Temperaturbereich I: 40 °C / 24 °C	$\tau_{Rk,i}$	ucr [N/mm ²]	12,0	12,0 15,0			
Temperaturbereich II: 80 °C / 50 °C	$C au_{Rk,I}$	ucr [[N/mm²]	9,5		13	3,0	
Temperaturbereich III: 120 °C / 72	°C $ au_{ ext{Rk,i}}$	ucr [[N/mm²]	6,0		6	,0	
Charakteristische Verbundtragfähigk mit Hohlbohrer TE-CD oder TE-YE		gerisse	nen Bet	on C20/2	5 in hamm	nergebohr	ten Bohrlö	öchern
Temperaturbereich I: 40 °C / 24 °C	$C = au_{Rk,l}$	ucr [[N/mm²]		-		15,0	
Temperaturbereich II: 80 °C / 50 °C	$C au_{Rk,i}$	ucr [N/mm²]		-		13,0	
Temperaturbereich III: 120 °C / 72	°C $ au_{Rk,i}$	ucr [N/mm²]		-		6,0	
Charakteristische Verbundtragfähigk	eit im un	gerisse	nen Bet	on C20/2	5 in diama	ıntgebohr	ten Bohrlö	chern
Temperaturbereich I: 40 °C / 24 °C	C τ _{Rk,i}	ucr [N/mm²]	-		14	1,0	
Temperaturbereich II: 80 °C / 50 °C	$\sigma = \sigma_{Rk,I}$	ucr [N/mm²]	-	- 12,0			
Temperaturbereich III: 120 °C / 72	°C _{TRk,i}	ucr [N/mm²]	- 5,5				
			C30/37			1,08		
Erhöhungsfaktoren für τ_{Rk} in Beton für alle Bohrverfahren	Ψc		C40/50			1,15		
Tai and Doni verianien			C50/60	1,20				
Faktor nach Abschnitt 6.2.2.3 des CEN/TS 1992-4:2009 Teil 5	k ₈ ²⁾		[-]			10,1		

HVU2	
Leistung Charakteristischer Widerstand unter Zuglast in Beton Bemessung nach EOTA Technical Report TR 029, 09/2010 oder CEN/TS 1992-4:2009	Anhang C1

Tabelle C1: fortgesetzt

HAS-(E)			M8 M10 M12 M16 M20					
Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 in hammergebohrten Bohrlöchern								
Temperaturbereich I: 40 °C / 24 °C	$\tau_{Rk,cr}$	[N/mm ²]	5,0		8	,5		
Temperaturbereich II: 80 °C / 50 °C	$\tau_{Rk,cr}$	[N/mm ²]	4,0		6	,5		
Temperaturbereich III: 120 °C / 72 °C	$ au_{Rk,cr}$	[N/mm ²]	2,5		4	,0		
Charakteristische Verbundtragfähigkeit i mit Hohlbohrer TE-CD oder TE-YD	m geriss	enen Beton	C20/25 ir	n hamme	rgebohrter	n Bohrlöch	nern	
Temperaturbereich I: 40 °C / 24 °C	$\tau_{Rk,cr}$	[N/mm ²]	-			8,5		
Temperaturbereich II: 80 °C / 50 °C	$ au_{Rk,cr}$	[N/mm ²]	-			6,5		
Temperaturbereich III: 120 °C / 72 °C	$\tau_{Rk,cr}$	[N/mm ²]	-			4,0		
Erhöhungsfaktoren für τ _{Rk} in Beton		C30/37			1,04			
für hammergebohrte Bohrlöcher und	Ψ¢	C40/50	1,07					
Hohlbohrer		C50/60			1,10			
Charakteristische Verbundtragfähigkeit i	m geriss	enen Beton	C20/25 ir	n diaman	tgebohrter	Bohrlöch	iern	
Temperaturbereich I: 40 °C / 24 °C	$\tau_{Rk,cr}$	[N/mm ²]	-	- 7,0				
Temperaturbereich II: 80 °C / 50 °C	$\tau_{Rk,cr}$	[N/mm ²]	-	6,0				
Temperaturbereich III: 120 °C / 72 °C	$\tau_{Rk,cr}$	[N/mm²]	-		3	,5		
Erhöhungsfaktoren für τ _{Rk} in Beton für diamantgebohrten Bohrlöchern	ψс	C50/60			1,0			
Faktor nach Abschnitt 6.2.3 des CEN/TS 1992-4:2009 Teil 5	k _{cr} ²⁾	[-]	7,2					
Betonausbruch	Betonausbruch							
Faktor nach Abschnitt 6.2.2.3	k _{ucr²⁾}	[-]		10,1				
des CEN/TS 1992-4:2009 Teil 5	k _{cr} ²⁾		7,2					
Randabstand	Ccr,N	[mm]	1,5 · hef					
Achsabstand	S _{cr} ,N	[mm]			$3,\!0\cdot h_{\text{ef}}$			

HVU2	
Leistung Charakteristischer Widerstand unter Zuglast in Beton Bemessung nach EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009	Anhang C2

Tabelle C1: fortgesetzt

HAS-(E)			М8	M10	M12	M16	;	M20
Versagen durch Spalten					•	•		
Faktor nach Abschnitt 6.2.2.3	k _{ucr²⁾}	k _{ucr²⁾ [-]}			10,1			
des CEN/TS 1992-4:2009 Teil 5	k _{cr} ²⁾	[-]			7,2			
	h / h _e	f ≥ 2,0	1,0	· h _{ef}	h/h _{ef}			
Randabstand c _{cr,sp} [mm] für	2,0 > h /	h _{ef} > 1,3	4,6 h _{ef}	- 1,8 h	1,3		γ	
	h / h _e	$h / h_{ef} \le 1,3$		6 h _{ef}		1,0 h _{ef} 2,2	26 h _{ef}	C _{cr,sp}
Achsabstand	S _{cr,sp}	[mm]			2·c _{cr,sp}			

Parameter für die Bemessung nach EOTA Technical Report TR 029.
 Parameter für die Bemessung nach CEN/TS 1992-4:2009.
 Sofern andere nationale Regelungen fehlen.

HVU2	
Leistung Charakteristischer Widerstand unter Zuglast in Beton Bemessung nach EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009	Anhang C3

Tabelle C2: Charakteristischer Widerstand für Innengewindehülse HIS-(R)N unter Zugbeanspruchung in Beton

HIS-(R)N			M8	M10	M12	M16
Montagesicherheitsbeiwert				•		
Hammerbohren und bohren mit Hohlbohrer TE-CD oder TE-YD	$\gamma_2^{1)} = \gamma_{ir}$	nst ²⁾ [-]	[-] 1,0			
Diamantbohren	$\gamma_2{}^{1)}=\gamma_{ir}$	nst ²⁾ [-]		1	,0	
Stahlversagen						
Charakteristischer Widerstand HIS-N mit Schraube oder Gewindestange 8.8	$N_{Rk,s}$	[kN]	25	46	67	125
Teilsicherheitsbeiwert	γ Ms,N $^{3)}$	[-]		1	,5	
Charakteristischer Widerstand HIS-RN mit Schraube oder Gewindestange 70	N _{Rk,s}	[kN]	26	41	59	110
Teilsicherheitsbeiwert	$\gamma_{\text{Ms,N}}$ $^{3)}$	[-]	1,87			
Kombiniertes Versagen durch Herau	sziehen u	ınd Betona	usbruch			
Charakteristische Verbundtragfähigkeit in hammergebohrten Bohrlöchern und i				rlöchern TE	E-CD oder T	E-YD
Temperaturbereich I: 40 °C / 24 °C	$ au_{Rk,ucr}$	[N/mm²]	11,0			
Temperaturbereich II: 80 °C / 50 °C	$ au_{Rk,ucr}$	[N/mm²]		9	,0	
Temperaturbereich III: 120 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm²]		5	,5	
Charakteristische Verbundtragfähigkeit	im ungeri	ssenen Bet	on C20/25 i	n diamantge	bohrten Boh	nrlöchern
Temperaturbereich I: 40 °C / 24 °C	$ au_{Rk,ucr}$	[N/mm²]		11	1,0	
Temperaturbereich II: 80 °C / 50 °C	$ au_{Rk,ucr}$	[N/mm²]	9,0			
Temperaturbereich III: 120 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm²]	5,5			
Erhöhungsfaktoren für τ _{Rk} in Beton für alle Bohrverfahren	Ψc	C50/60	1,0			
Faktor nach Abschnitt 6.2.2.3 des CEN/TS 1992-4:2009 Teil 5	k ₈ ²⁾	[-]		10),1	

HVU2	
Leistung Charakteristischer Widerstand unter Zuglast in Beton Bemessung nach EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009	Anhang C4

Tabelle C2: fortgesetzt

HIS-(R)N			М8	M10	M12	M16
Charakteristische Verbundtragfähigkeit in hammergebohrten Bohrlöchern und r				öchern TE-0	CD oder	TE-YD
Temperaturbereich I: 40 °C / 24 °C	$\tau_{Rk,cr}$	[N/mm²]	6,5			
Temperaturbereich II: 80 °C / 50 °C	$ au_{Rk,cr}$	[N/mm²]		5,0		
Temperaturbereich III: 120 °C / 72 °C	$ au_{Rk,cr}$	[N/mm²]		3,0		
Erhöhungsfaktoren für τ _{Rk} in Beton		C30/37		1,08	3	
für hammergebohrte Bohrlöcher und	ψс	C40/50		1,15	5	
Hohlbohrer		C50/60		1,20)	
Charakteristische Verbundtragfähigkeit	m geriss	senen Beton	C20/25 in dia	amantgebohr	ten Boh	rlöchern
Temperaturbereich I: 40 °C / 24 °C	$\tau_{Rk,cr}$	[N/mm²]		5,0		
Temperaturbereich II: 80 °C / 50 °C	$\tau_{Rk,cr}$	[N/mm²]		4,0		
Temperaturbereich III: 120 °C / 72 °C	$\tau_{Rk,cr}$	[N/mm²]		2,5		
Erhöhungsfaktoren für τ _{Rk} in Beton für diamantgebohrten Bohrlöchern	Ψc	C50/60	0 1,0			
Faktor nach Abschnitt 6.2.2.3 des CEN/TS 1992-4:2009 Teil 5	k ₈ ²⁾	[-]	7,2			
Betonausbruch						
Faktor nach Abschnitt 6.2.3	k _{ucr²⁾}	[-]		10,1		
des CEN/TS 1992-4:2009 Teil 5	k _{cr} ²⁾	[-]		7,2		
Randabstand	C _{cr} ,N	[mm]		1,5 · h	l ef	
Achsabstand	S _{cr} ,N	[mm]		3,0 · h	l ef	
Versagen durch Spalten						
Faktor nach Abschnitt 6.2.3	k _{ucr²⁾}	[-]	10,1			
des CEN/TS 1992-4:2009 Teil 5	k _{cr} ²⁾	[-]		7,2		
	h / l	n _{ef} ≥ 2,0	$1,\!0\cdot h_{\text{ef}}$	h/h _{ef}	<u>_</u>	
Randabstand c _{cr,sp} [mm] für	2,0 > h	n / h _{ef} > 1,3	4,6 h _{ef} - 1,8	, ,		
	h / l	n _{ef} ≤ 1,3	2,26 h _{ef}		1,0 h _{ef}	2,26 h _{ef} c _{cr,sp}
Achsabstand	S _{cr,sp}	[mm]		2.c _{cr,s}	sp	

Parameter für die Bemessung nach EOTA Technical Report TR 029.
 Parameter für die Bemessung nach CEN/TS 1992-4:2009.
 Sofern andere nationale Regelungen fehlen.

HVU2	
Leistung Charakteristischer Widerstand unter Zuglast in Beton Bemessung nach EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009	Anhang C5

8.06.01-173/16 Z35409.17

Tabelle C3: Charakteristischer Widerstand für HAS-(E) unter Querbeanspruchung in **Beton**

HAS-(E)			M8	M10	M12	M16	M20
Montagesicherheitsbeiwert							
Hammerbohren und bohren mit Hohlbohrer TE-CD oder TE-YD	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$) [-]			1,0		
Diamantbohren	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$) [-]			1,0		
Stahlversagen ohne Hebelarm							
Charakteristischer Widerstand HAS-(E) 5.8	$V_{Rk,s}$	[kN]	9,5	15,1	21,7	41,1	56,1
Teilsicherheitsbeiwert	γ Ms,V $^{3)}$	[-]			1,25		
Charakteristischer Widerstand HAS-(E) 8.8	$V_{Rk,s}$	[kN]	13,3	21,1	30,5	57,7	89,7
Teilsicherheitsbeiwert	γ Ms,V $^{3)}$	[-]			1,25		
Charakteristischer Widerstand HAS-R	$V_{Rk,s}$	[kN]	11,6	18,5	26,7	50,5	78,5
Teilsicherheitsbeiwert	γ Ms,V $^{3)}$	[-]		1	,4		1,56
Charakteristischer Widerstand HAS-HCR	$V_{Rk,s}$	[kN]	13,3	21,1	30,5	57,7	89,7
Teilsicherheitsbeiwert	γMs,V ³⁾	[-]			1,25		
Duktilitätsfaktor	k ₂ ²⁾	[-]					
Stahlversagen mit Hebelarm							
Charakteristischer Widerstand HAS-(E) 5.8	$M^0_{Rk,s}$	[kN]	18	37	64	167	284
Teilsicherheitsbeiwert	γ Ms,V $^{3)}$	[-]			1,25		
Charakteristischer Widerstand HAS-(E) 8.8	$M^0_{Rk,s}$	[kN]	26	53	90	234	455
Teilsicherheitsbeiwert	γ Ms,V $^{3)}$	[-]			1,25		
Charakteristischer Widerstand HAS-R	M^0 Rk,s	[kN]	23	45	79	205	398
Teilsicherheitsbeiwert	γ Ms,V $^{3)}$	[-]		1	,4		1,56
Charakteristischer Widerstand HAS-HCR	M^0 Rk,s	[kN]	26	52	90	234	455
Teilsicherheitsbeiwert	γMs,V ³⁾	[-]			1,25		
Duktilitätsfaktor	$k_2^{(2)}$	[-]			1,0		
Betonausbruch auf der lastabgewandten	Seite						
Pry-out Faktor	$k^{1)} = k_3$	²⁾ [-]			2,0		
Betonkantenbruch							
Wirksame Dübellänge	lf	[mm]	80	90	110	125	170
Der Wert hef für die Berechnung in den Gleichungen (5.8a) und (5.8b) des Technica Report TR 029 ist begrenzt durch:	al h _{ef}	[mm]			n ¹⁾ (h _{ef} ; 8 · (
Dübeldurchmesser	d	[mm]	8	10	12	16	20

Parameter für die Bemessung nach EOTA Technical Report TR 029.
 Parameter für die Bemessung nach CEN/TS 1992-4:2009.

³⁾ Sofern andere nationale Regelungen fehlen.

HVU2	
Leistung Charakteristischer Widerstand unter Querlast in Beton Bemessung nach EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009	Anhang C6

Tabelle C4: Charakteristischer Widerstand für Innengewindehülse HIS-(R)N unter Querlast in Beton

HIS-(R)N			M8	M10	M12	M16
Montagesicherheitsbeiwert						
Hammerbohren und bohren mit Hohlbohrer TE-CD oder TE-YD	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$	[-]	1,0			
Diamantbohren	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$	[-]		1	,0	
Stahlversagen ohne Hebelarm						
Charakteristischer Widerstand HIS-N mit Schraube oder Gewindestange 8.8	$V_{Rk,s}$	[kN]	13	23	34	63
Teilsicherheitsbeiwert	γ Ms,V $^{3)}$	[-]		1,	25	
Charakteristischer Widerstand HIS-RN mit Schraube oder Gewindestange 70	$V_{Rk,s}$	[kN]	13	20	30	55
Teilsicherheitsbeiwert	γ Ms,V $^{3)}$	[-]	1,56			
Duktilitätsfaktor	k ₂ ²⁾	[-]		1	,0	
Stahlversagen mit Hebelarm						
Charakteristischer Widerstand HIS-N mit Schraube oder Gewindestange 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266
Teilsicherheitsbeiwert	γ Ms,V $^{3)}$	[-]		1,	25	
Charakteristischer Widerstand HIS-RN mit Schraube oder Gewindestange 70	$M^0_{Rk,s}$	[Nm]	26	52	92	233
Teilsicherheitsbeiwert	γMs,V ³⁾	[-]	1,56			
Duktilitätsfaktor	k ₂ ²⁾	[-]	1,0			
Betonausbruch auf der lastabgewandte	en Seite					
Pry-out Faktor	$k^{1)} = k_3$	⁽²⁾ [-]	2,0			
Betonkantenbruch						
Wirksame Dübellänge	lf	[mm]	90	110	125	170
Dübeldurchmesser	d	[mm]	12,5	16,5	20,5	25,4

¹⁾ Parameter für die Bemessung nach EOTA Technical Report TR 029.

HVU2	
Leistung Charakteristischer Widerstand unter Querlast in Beton Bemessung nach EOTA Technical Report TR 029, 09/2010 or CEN/TS 1992-4:2009	Anhang C7

²⁾ Parameter für die Bemessung nach CEN/TS 1992-4:2009.

³⁾ Sofern andere nationale Regelungen fehlen.

Tabelle C5: Verschiebungen für HAS-(E) unter Zugbeanspruchung¹⁾

HAS-(E)			М8	M10	M12	M16	M20
Ungerissener Beton							
Temperaturber	eich I bis III						
Verschiebung	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]			0,06		
Verschiebung	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,10				
Gerissener Bet	on						
Temperaturber	eich I bis III						
Verschiebung	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]			0,10		
Verschiebung	δ _{N∞} -Faktor	[mm/(N/mm²)]			0,14		

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; δ_{N0}

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau$

(τ: einwirkende Verbundspannung).

Tabelle C6: Verschiebungen für HAS-(E) unter Querbeanspruchung¹⁾

HAS-(E)			М8	M10	M12	M16	M20
Verschiebung	$\delta_{\text{V0}}\text{-Faktor}$	[mm/kN]	0,06	0,06	0,05	0,04	0,04
Verschiebung	δ _{ν∞} -Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06

¹⁾ Berechnung der Verschiebung

 $\delta v_0 = \delta v_0$ -Faktor · V;

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V$

(V: einwirkende Querkraft).

HVU2	
Leistung Verschiebungen	Anhang C8

Tabelle C7: Verschiebungen für Innengewindehülsen HIS-(R)N unter Zugbeanspruchung¹⁾

HIS-(R)N			M8	M10	M12	M16
Ungerissener Beton						
Temperaturbereich I bis III						
Verschiebung	$\delta_{\text{N0}}\text{-Faktor}$	[mm/10kN]	0,05			
Verschiebung	$\delta_{N\infty}\text{-Faktor}$	[mm/10kN]	0,10			
Gerissener Beton						
Temperaturbereich I bis III						
Verschiebung	$\delta_{\text{N0}}\text{-Faktor}$	[mm/10kN]	0,13			
Verschiebung	$\delta_{N\infty}\text{-Faktor}$	[mm/10kN]	0,15			

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor · N;

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor}\cdot N$

(N: einwirkende Zugkraft).

Tabelle C8: Verschiebungen für Innengewindehülsen HIS-(R)N unter Querbeanspruchung¹⁾

HIS-(R)N			M8	M10	M12	M16
Verschiebung	δ_{V0} -Faktor	[mm/kN]	0,06	0,06	0,05	0,04
Verschiebung	$\delta_{V\infty}$ -Faktor	[mm/kN]	0,09	0,08	0,08	0,06

¹⁾ Berechnung der Verschiebung

 $\delta v_0 = \delta v_0$ -Faktor · V;

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty}\text{-Faktor}\cdot\text{V}$

(V: einwirkende Querkraft).

HVU2	
Leistung Verschiebungen	Anhang C9