



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



# European Technical Assessment

# ETA-16/0637 of 24 January 2017

English translation prepared by DIBt - Original version in German language

# **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Highbond-Anchor FHB II Inject

Torque controlled bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

20 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-16/0637 issued on 22 November 2016

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



# European Technical Assessment ETA-16/0637

Page 2 of 20 | 24 January 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 20 | 24 January 2017

# Specific Part

#### 1 Technical description of the product

The fischer Highbond-Anchor FHB II is a torque controlled bonded anchor consisting of a mortar cartridge with mortar fischer FIS HB and an anchor rod FHB II - A L or FHB II - A S with hexagon nut and washer.

The anchor rod is placed into a drilled hole filled with injection mortar. The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

# 3 Performance of the product and references to the methods used for its assessment

# 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                           | Performance           |
|----------------------------------------------------|-----------------------|
| Characteristic values under tension and shear load | See Annex C 1 to C 4  |
| Displacements under tension and shear loads        | See Annex C 5 and C 6 |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                  |
|--------------------------|----------------------------------------------|
| Reaction to fire         | Anchorages satisfy requirements for Class A1 |
| Resistance to fire       | No performance assessed                      |

# 3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

# 3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.



# European Technical Assessment ETA-16/0637

Page 4 of 20 | 24 January 2017

English translation prepared by DIBt

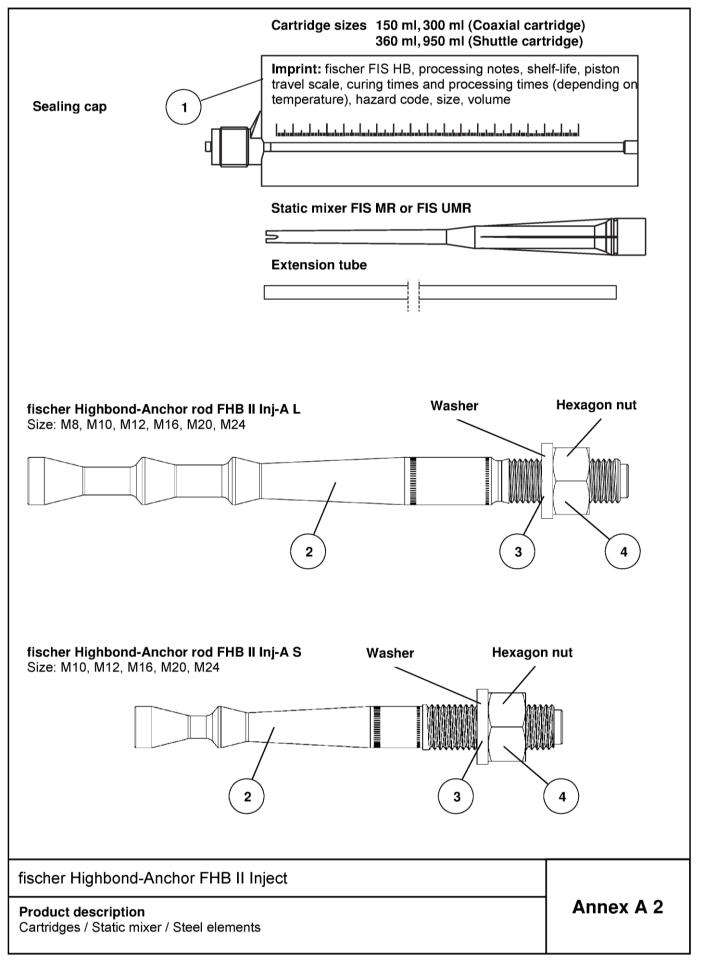
# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 24 January 2017 by Deutsches Institut für Bautechnik


Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider





# Page 6 of European Technical Assessment ETA-16/0637 of 24 January 2017







| Table | e A1: Materials                                                        |                                                                                                                                                                             |                                                                                                                                                                                                                                        |                                                                                                                                                                          |
|-------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part  | Designation                                                            |                                                                                                                                                                             | Material                                                                                                                                                                                                                               |                                                                                                                                                                          |
| 1     | Mortar cartridge                                                       |                                                                                                                                                                             | Mortar, hardener, filler                                                                                                                                                                                                               |                                                                                                                                                                          |
|       | Steel grade                                                            | Steel, zinc plated                                                                                                                                                          | Stainless steel<br>A4                                                                                                                                                                                                                  | High corrosion<br>resistant steel C                                                                                                                                      |
| 2     | fischer Highbond-<br>Anchor rod<br>FHB II Inj-A L or<br>FHB II Inj-A S | Property class 8.8;<br>EN ISO 898-1:2013<br>zinc plated $\geq$ 5 µm,<br>EN ISO 4042:1999 A2K<br>$f_{uk} \leq$ 1000 N/mm <sup>2</sup><br>$A_5 >$ 12 %<br>fracture elongation | Property class 80<br>EN ISO 3506-1:2009<br>1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362;<br>1.4062, 1.4662, 1.4462<br>EN 10088-1:2014<br>f <sub>uk</sub> ≤ 1000 N/mm <sup>2</sup><br>A <sub>5</sub> > 12 %<br>fracture elongation | Property class 80<br>EN ISO 3506-1:2009<br>1.4565; 1.4529<br>EN 10088-1:2014<br>f <sub>uk</sub> ≤ 1000 N/mm <sup>2</sup><br>A <sub>5</sub> > 12 %<br>fracture elongation |
| 3     | Washer<br>ISO 7089:2000                                                | zinc plated ≥ 5 µm,<br>EN ISO 4042:1999 A2K                                                                                                                                 | 1.4401; 1.4404;<br>1.4578;1.4571; 1.4439;<br>1.4362<br>EN 10088-1:2014                                                                                                                                                                 | 1.4565;1.4529<br>EN 10088-1:2014                                                                                                                                         |
| 4     | Hexagon nut                                                            | Property class 8;<br>EN ISO 898-2:2012<br>zinc plated ≥ 5 μm,<br>ISO 4042:1999 A2K                                                                                          | Property class 70<br>EN ISO 3506-1:2009<br>1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362<br>EN 10088-1:2014                                                                                                                        | Property class 70<br>EN ISO 3506-1:2009<br>1.4565; 1.4529<br>EN 10088-1:2014                                                                                             |

fischer Highbond-Anchor FHB II Inject

# Product description Materials

Annex A 3



| Specification                                 |                              |                                                                                             |                                |               |              |  |  |  |  |  |
|-----------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|---------------|--------------|--|--|--|--|--|
| Table B1: Ove                                 |                              | nd performance c                                                                            | ategories<br>fischer Injectior | mortar EIS HB | with         |  |  |  |  |  |
| Anchorages subj                               |                              |                                                                                             | Inj-A L                        |               | B II Inj-A S |  |  |  |  |  |
|                                               |                              |                                                                                             |                                |               |              |  |  |  |  |  |
| Hammer drilling<br>with standard<br>drill bit | <b>640000000</b>             |                                                                                             | all si                         | zes           |              |  |  |  |  |  |
| Static or quasi                               | uncracked<br>concrete        | all sizes                                                                                   | Tables:                        | all sizes     | Tables:      |  |  |  |  |  |
| static load, in                               | cracked<br>concrete          | aii 31263                                                                                   | C1, C3, C5                     |               | C2, C4, C6   |  |  |  |  |  |
| Use category                                  | dry or wet<br>concrete       |                                                                                             | all si                         | zes           |              |  |  |  |  |  |
| Kind of                                       | Pre-<br>positioned<br>anchor | all sizes                                                                                   |                                |               |              |  |  |  |  |  |
| intallation                                   | Push through<br>anchor       | all sizes                                                                                   |                                |               |              |  |  |  |  |  |
| Installation temp                             | erature                      | -5 °C to +40 °C                                                                             |                                |               |              |  |  |  |  |  |
| In-service tempe                              | rature                       | -40 °C to +80 °C (max. long term temperature +50 °C and max. short term temperature +80 °C) |                                |               |              |  |  |  |  |  |
|                                               |                              |                                                                                             |                                |               |              |  |  |  |  |  |
| fischer Highb                                 | ond-Anchor F                 | FHB II Inject                                                                               |                                |               | Annex B 1    |  |  |  |  |  |
| Intended Use<br>Specifications (p             | part 1)                      |                                                                                             |                                |               |              |  |  |  |  |  |



# Specifications of intended use (part 2)

# **Base materials:**

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

# Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
  (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

# Design:

- · Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages under static or quasi-static actions are designed in accordance with
- EOTA ETAG 001 Annex C, 08/2010 or CEN/TS 1992-4:2009

# Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Observe the effective anchorage depth
- Overhead installation is allowed

# fischer Highbond-Anchor FHB II Inject

# Intended Use

Specifications (part 2)

Annex B 2



|                                                        |                                           |                                  | M8              | M10     | M1      | 2                |      | M16  |       | M20                                 | M24 |
|--------------------------------------------------------|-------------------------------------------|----------------------------------|-----------------|---------|---------|------------------|------|------|-------|-------------------------------------|-----|
| Size FHB II Inj-A L                                    |                                           |                                  | х               | x       | x       | x                | x    | x    | x     | x                                   | х   |
|                                                        |                                           |                                  | 60              | 95      | 100     | 120              | 125  | 145  | 160   | 210                                 | 210 |
| Cone diameter                                          | d <sub>k</sub>                            |                                  | 9,4             | 10,7    | 12      | ,5               |      | 16,8 |       | 23                                  | 5,0 |
| Width across flats                                     | SW                                        | 1 [                              | 13              | 17      | 19      | 9                |      | 24   |       | 30                                  | 36  |
| Nominal drill bit diameter                             | $d_0$                                     | 1 [                              | 10              | 12      | 14      | 4                |      | 18   |       | 2                                   | 5   |
| Drill hole depth                                       | $h_0$                                     | ] [                              | 66              | 101     | 106     | 126              | 131  | 151  | 166   | 2                                   | 16  |
| Effective<br>anchorage depth                           | h <sub>ef</sub>                           |                                  | 60              | 95      | 100     | 120              | 125  | 145  | 160   | 2                                   | 10  |
| Minimum spacing and<br>minimum edge distance           | S <sub>min</sub><br>=<br>C <sub>min</sub> | [mm]                             | 4               | 10      | 50      | D                | 55   | 60   | 70    | 9                                   | 0   |
| Diameter of clearance hole pre-positioned              | d <sub>f</sub> ≤                          |                                  | 9               | 12      | 14      | 4                |      | 18   |       | 22                                  | 26  |
| in the fixture <sup>1)</sup> push through<br>anchorage | d <sub>f</sub> ≤                          |                                  | 11              | 14      | 10      | 6                |      | 20   |       | 2                                   | 6   |
| Minimum thickness<br>of concrete member                | h <sub>min</sub>                          |                                  | 100             | 14      | 40      | 17               | 70   | 190  | 220   | 28                                  | 30  |
| Installation torque                                    | $T_{inst}$                                | [Nm]                             | 15              | 20      | 40      | D                |      | 60   |       | 10                                  | 00  |
| FHB II Inj-A L:                                        |                                           |                                  |                 | ing dep | th mark |                  |      |      |       |                                     |     |
| FHB II Inj-A L:                                        | etting d                                  | h <sub>ef</sub>                  | Mar             | king    |         | t <sub>fix</sub> | NS N |      | —— (m | onical re<br>arking f<br>IB II Inj- | or  |
| Marking:                                               | 4. For h<br>el addi                       | lepth. e<br>nigh cor<br>tional m | Mar<br>e. g.: ◄ |         | 110x95  | addition         |      |      | —— (m | arking f                            | or  |

#### Deutsches Institut für Bautechnik

| Size FHB II Inj-A S                                                                      |                                               |             | M          | 10       | M12                 | M16  | M20 | M24 |
|------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|------------|----------|---------------------|------|-----|-----|
|                                                                                          |                                               |             | x          | x        | x                   | x    | x   | x   |
|                                                                                          |                                               |             | 60         | 75       | 75                  | 95   | 170 | 170 |
| Cone diameter                                                                            | d <sub>k</sub>                                |             | ç          | ),4      | 11,3                | 14,5 | 23  | ,0  |
| Width across flats                                                                       | SW                                            |             |            | 17       | 19                  | 24   | 30  | 36  |
| Nominal drill bit diameter                                                               | do                                            |             |            | 10       | 12                  | 16   | 2   | 5   |
| Drill hole depth                                                                         | ho                                            |             | 66         | 81       | 81                  | 101  | 17  | 76  |
| Effective<br>anchorage depth                                                             | h <sub>ef</sub>                               |             | 60         | 75       | 75                  | 95   | 17  | 70  |
| Minimum spacing and<br>minimum edge distance                                             | S <sub>min</sub><br>=<br>C <sub>min</sub>     | [mm]        |            | 40       |                     | 50   | 8   | 0   |
| Diameter of pre-positioned anchorage                                                     | d <sub>f</sub> ≤                              |             |            | 12       | 14                  | 18   | 22  | 26  |
| clearance hole push through anchorage                                                    | d <sub>f</sub> ≤                              |             |            | 12       | 14                  | 18   | 2   | 6   |
| Minimum thickness<br>of concrete member                                                  | h <sub>min</sub>                              |             | 100        |          | 20                  | 150  | 24  |     |
| Installation torque                                                                      | T <sub>inst</sub>                             | [Nm]        |            | 15       | 30                  | 50   | 10  | 00  |
| Thickness of fixure                                                                      | t <sub>fi×</sub> ≤                            | [mm]        |            |          | 15                  | 00   |     |     |
|                                                                                          |                                               | $\setminus$ |            |          |                     |      |     |     |
| ĕ<br>h <sub>et</sub>                                                                     |                                               |             | Could trix |          | ∑<br>V<br>V         |      |     |     |
|                                                                                          | etting de<br>1. For hig                       | gh corro    | g.: 🔿      | < M10x75 | additional <b>C</b> |      |     |     |
| Marking:<br>Work symbol, size of anchor, se<br>For stainless steel additional <b>A</b> 4 | etting de<br><b>1</b> . For hig<br>el additio | gh corro    | g.: 🔿      | < M10x75 | additional <b>C</b> |      |     |     |



| ill bit diameter                                                                     | d <sub>o</sub>            |           | 10                | 12        | 14        | 16                 | 18     | 25              |  |  |
|--------------------------------------------------------------------------------------|---------------------------|-----------|-------------------|-----------|-----------|--------------------|--------|-----------------|--|--|
| eel brush diameter                                                                   | $d_{b}$                   | [mm]      | 11 13             |           | 16        | 2                  | 20     | 27              |  |  |
| σ                                                                                    |                           |           |                   |           | ~~~~      | ~~~                | X      |                 |  |  |
| able B5: Maximum prod<br>(During the curing<br>minimum tempera<br>System temperature | g time of the m<br>ature) |           | concrete te       | emperatur | e may not | fall below         |        | e <sup>1)</sup> |  |  |
|                                                                                      |                           |           | t <sub>work</sub> | gune      |           | 1                  | cure   | -               |  |  |
| [°C]<br>-5 to ±0                                                                     |                           | [n        | ninutes]          |           |           |                    | nutes] |                 |  |  |
| -5 to ±0                                                                             |                           |           |                   |           |           | 6 hours<br>3 hours |        |                 |  |  |
| >+6 to +10                                                                           |                           |           | 15                |           |           |                    | 90     |                 |  |  |
|                                                                                      |                           |           | 6                 |           |           |                    | 35     |                 |  |  |
| > +11 to +20                                                                         |                           |           | 4 20              |           |           |                    |        |                 |  |  |
| > +11 to +20<br>> +21 to +30                                                         |                           |           | 4                 |           |           | 12                 |        |                 |  |  |
| > +21 to +30<br>> +31 to +40                                                         | times must be             | e doubled | 4<br>2            |           |           |                    |        |                 |  |  |
| > +21 to +30                                                                         | times must be             | doubled   |                   |           |           |                    |        |                 |  |  |



|       | allation with injection<br>ng and cleaning the ho |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                                                                  |
|-------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|----------------------------------------------------------------------------------|
| 1     |                                                   | Drill the hole with hamme<br>Drill hole diameter <b>d</b> <sub>0</sub> and<br><b>Tables B2, B3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | h $h_0$ see                            |                                                                                  |
| 0     | min. 2x                                           | Blow out the drill hole twic<br>If necessary, remove star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | t of the bore hole                     |                                                                                  |
| 2     |                                                   | For drill hole diameter<br>$d_0 < 25$ mm with hand-<br>blowout or oil-free<br>compressed air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | þ             | $d_0 = 25$ compre                      | hole diameter<br>mm with oil-free<br>ssed air (p ≥ 6 bar)<br>leaning nozzle.     |
| 3     | min. 2x                                           | Brush the bore hole twice<br>Corresponding brushes<br>see <b>Table B4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | -##################################### |                                                                                  |
| 4     | min. 2x                                           | Blow out the drill hole twice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                        |                                                                                  |
| •     | Richer and                                        | For drill hole diameter $d_0 < 25$ mm with hand-<br>blowout or oil-free<br>compressed air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Þ             | $d_0 = 25$ compre                      | l hole diameter<br>mm with oil-free<br>essed air (p ≥ 6 bar)<br>cleaning nozzle. |
| ⊃rep  | aring the cartridge                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                                                                  |
| 5     |                                                   | Remove the sealing cap<br>Screw on the static mixer<br>(the spiral in the static mix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | early visible)                         |                                                                                  |
| 6     |                                                   | , the second sec | Place the car | tridge into the dis                    | penser                                                                           |
| 7     | X                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | y grey in colour. I                    | of material until the<br>Do not use mortar that                                  |
|       |                                                   | Observe the processing<br>time, t <sub>work</sub><br>see <b>Table B5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | ecessary remove                        | eded, use a new static<br>e encrusted material in                                |
|       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                                                                  |
| fiscl | her Highbond-Anchor F                             | HB II Inject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                        |                                                                                  |
|       | nded use                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        | Annex B 6                                                                        |



|      | allation instruction  <br>ction of the mortar | Jart 2                                                                         |         |                                                                                               |                                                                          |
|------|-----------------------------------------------|--------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|      |                                               | (travel scale on the ca                                                        | artridg | drill hole with mortar. Exact o<br>ge) see instruction sheet.<br>always begin from the botton |                                                                          |
|      |                                               | also filled with mortar                                                        | nchor   | n:<br>rods FHB II Inj-A L the dril<br>HB II Inj-A S are used, this                            |                                                                          |
|      |                                               | For drill hole depth ≥<br>use an extension tube                                |         | nm                                                                                            |                                                                          |
| nsta | allation Highbond-Anc                         | hor rod FHB II Inj-A                                                           | La      | nd FHB II Inj-A S                                                                             |                                                                          |
| )    |                                               | Only use clean and of<br>Push the anchor rod of<br>turning it slightly while   | down    | to the bottom of the hole,                                                                    |                                                                          |
|      |                                               | After inserting the and anchor rod                                             | chor r  | od, excess mortar must be                                                                     | emerged around the                                                       |
| 0    |                                               | For overhead installat<br>anchor rod with wedg<br>(e.g. fischer centering      | es.     |                                                                                               |                                                                          |
| 1    | Ĺ                                             | Wait for the specified<br>curing time<br>t <sub>cure</sub> see <b>Table B5</b> | 12      |                                                                                               | Mounting the fixture<br>T <sub>inst</sub> see<br><b>Tables B2 and B3</b> |
|      |                                               |                                                                                |         |                                                                                               |                                                                          |
|      |                                               |                                                                                |         |                                                                                               |                                                                          |
|      |                                               |                                                                                |         |                                                                                               |                                                                          |
|      |                                               |                                                                                |         |                                                                                               |                                                                          |
| isc  | her Highbond-Anchor                           | FHB II Inject                                                                  |         |                                                                                               |                                                                          |
|      |                                               |                                                                                |         |                                                                                               | Annex B 7                                                                |



|                                                                                                                                                        |                                        |                      |             | M8      | M10                 | M                 | 12       |                     | M16  |      | M20   | M24 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|-------------|---------|---------------------|-------------------|----------|---------------------|------|------|-------|-----|--|
| Size FHB II Inj-A L                                                                                                                                    |                                        |                      |             | x       | x                   | x                 | x        | x                   | х    | x    | x     | x   |  |
|                                                                                                                                                        |                                        |                      |             | 60      | 95                  | 100               | 120      | 125                 | 145  | 160  | 210   | 210 |  |
| Bearing capacity ur                                                                                                                                    |                                        |                      | el fail     |         |                     |                   |          |                     |      |      |       |     |  |
| Characteristic ——                                                                                                                                      | Steel, zinc                            |                      |             | 25,1    | 34,4                | 49                | ,8       |                     | 96,6 |      | 13    | 7,6 |  |
| resistance                                                                                                                                             | Stainless ste                          |                      | [kN]        | 05.4    | 24.4                | 40                |          |                     | 06.6 |      | 10    | 7.6 |  |
| N <sub>Rk,s</sub>                                                                                                                                      | High cor<br>resistant s                |                      |             | 25,1    | 34,4                | 49                | ,8       |                     | 96,6 |      | 13    | 7,6 |  |
| Partial safety factors                                                                                                                                 |                                        |                      |             |         |                     |                   |          |                     |      |      |       |     |  |
| ,                                                                                                                                                      | Steel, zinc                            | plated               |             |         |                     |                   |          | 1,5 <sup>1)</sup>   |      |      |       |     |  |
| Partial safety                                                                                                                                         | Stainless st                           |                      |             |         |                     |                   |          | 1,5 <sup>1)</sup>   |      |      |       |     |  |
| factor<br><sub>YMs.N</sub>                                                                                                                             | High cor                               |                      | [-]         |         |                     |                   |          |                     |      |      |       |     |  |
| / MIS, N                                                                                                                                               | resistant s                            |                      |             |         |                     |                   |          | 1,5 <sup>1)</sup>   |      |      |       |     |  |
| Pullout failure in crac                                                                                                                                | cked concrete                          | C20/25               | 5           |         |                     |                   |          |                     |      |      |       |     |  |
| Characteristic resistan                                                                                                                                |                                        | N <sub>Rk,p</sub>    | [kN]        |         |                     |                   |          | <u> </u>            |      |      |       |     |  |
| Pullout and splitting                                                                                                                                  |                                        |                      |             | ete C20 | /25                 |                   |          | 2)                  |      |      |       |     |  |
| Characteristic resistan                                                                                                                                |                                        | $N_{Rk,p}$           | [kN]        |         |                     |                   |          | <sup>2)</sup>       |      |      |       |     |  |
| Edge distance                                                                                                                                          |                                        | C <sub>cr,sp</sub>   | [mm]        | 300     | 476                 | 380               | 600      | 375                 | 500  | 580  | -     | 30  |  |
| Spacing                                                                                                                                                |                                        | S <sub>cr,sp</sub>   |             | 150     | 238                 | 190               | 300      | 188                 | 250  | 290  | 3     | 15  |  |
| Pullout and splitting                                                                                                                                  |                                        |                      |             |         | 1                   | 10                | 50       | <sup>2)</sup>       | 76   | 0.5  | 1     | _2) |  |
| Characteristic resistan                                                                                                                                | ce                                     | N <sub>Rk,p</sub> 3) | [kN]        | 20      | 35                  | 40                | 50       |                     | 75   | 95   |       |     |  |
| Edge distance                                                                                                                                          |                                        | C <sub>cr,sp</sub>   | [mm]        |         |                     |                   |          | 1,5 h <sub>ef</sub> |      |      |       |     |  |
| Spacing                                                                                                                                                |                                        | S <sub>cr,sp</sub>   |             | 10.00   | 0/05                |                   |          | 3,0 h <sub>ef</sub> |      |      |       |     |  |
| Factors for the comp                                                                                                                                   | C25/30                                 | th of c              | oncre       | te > C2 | 0/25                |                   |          | 1 10                |      |      |       |     |  |
| -                                                                                                                                                      | C25/30                                 |                      |             |         |                     |                   |          | 1,10                |      |      |       |     |  |
|                                                                                                                                                        | C35/45                                 |                      |             | 1,22    |                     |                   |          |                     |      |      |       |     |  |
| Increasing factor  _<br>for N <sub>Rk,p</sub>                                                                                                          | C40/50                                 | $\Psi_{\rm c}$       | [-]         | 1,34    |                     |                   |          |                     |      |      |       |     |  |
|                                                                                                                                                        | C45/55                                 |                      |             |         |                     |                   |          | 1,48                |      |      |       |     |  |
| -                                                                                                                                                      | C50/60                                 |                      |             |         |                     |                   |          | 1,55                |      |      |       |     |  |
| Factors acc. to CEN/                                                                                                                                   |                                        | ) Secti              | on 6.2      | 2.3     |                     |                   |          | 1,00                |      |      |       |     |  |
| Uncracked concrete                                                                                                                                     | 10 1002 4.2000                         | k <sub>ucr</sub>     |             |         |                     |                   |          | 10,1                |      |      |       |     |  |
| Cracked concrete                                                                                                                                       |                                        | k <sub>cr</sub>      | [-]         |         |                     |                   |          | 7,2                 |      |      |       |     |  |
| Concrete cone failur                                                                                                                                   | 9                                      | 01                   |             |         |                     |                   |          | .,_                 |      |      |       |     |  |
| Effective anchorage                                                                                                                                    |                                        | h <sub>ef</sub>      | [mm]        | 60      | 95                  | 100               | 120      | 125                 | 145  | 160  | 2     | 10  |  |
| Partial safety factor 1)4)                                                                                                                             | <u> </u>                               | γмс                  | [-]         | 1,5     |                     |                   |          | 1                   | ,5   |      |       |     |  |
| <sup>1)</sup> In absence of oth<br><sup>2)</sup> Not decisive (prod<br><sup>3)</sup> Proof of splitting f<br><sup>4)</sup> $\gamma_2$ = 1,0 is include | of of splitting fai<br>ailure acc. ETA | ulation:<br>ilure ad | s<br>cc. ET | AG 001  | I, Anne:<br>Section | x C)<br>5.3). Ins | stead of |                     |      | .,p. |       |     |  |
| fischer Highbond                                                                                                                                       | -Anchor FHE                            | 3 II In              | ject        |         |                     |                   |          |                     | Τ    |      |       |     |  |
| <b>Performances</b><br>Characteristic values                                                                                                           | s under static o                       |                      |             |         | n load f<br>cracked |                   |          |                     |      | An   | nex ( | 21  |  |

Z2847.17

8.06.01-10/17



|                                                                                                                                                           |                                     |                                 |           | M                         | 110                      | M12                  | M16                                 | M20   | M24   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-----------|---------------------------|--------------------------|----------------------|-------------------------------------|-------|-------|--|
| Size FHB II Inj-A S                                                                                                                                       |                                     |                                 |           | x                         | x                        | x                    | x                                   | x     | х     |  |
|                                                                                                                                                           |                                     |                                 |           | 60                        | 75                       | 75                   | 95                                  | 170   | 170   |  |
| Bearing capacity une                                                                                                                                      | der tensile lo                      | oad, ste                        | el fail   | ure                       |                          |                      |                                     |       |       |  |
| Characteristic ——                                                                                                                                         | Steel, zinc                         | ·                               |           | 2                         | 5,1                      | 34,4                 | 61,6                                | 12    | 8,5   |  |
| resistance                                                                                                                                                | Stainless st                        |                                 | [kN]      |                           |                          | 34,4                 |                                     |       |       |  |
| N <sub>Rk,s</sub>                                                                                                                                         | High co<br>resistant :              |                                 |           | 2                         | 5,1                      | 61,6                 | 128,5                               |       |       |  |
| Partial safety factors <sup>1</sup>                                                                                                                       | )                                   |                                 |           |                           |                          |                      |                                     |       |       |  |
| Partial safety ——                                                                                                                                         | Steel, zinc                         | plated                          |           |                           |                          |                      | 5 <sup>1)</sup>                     |       |       |  |
| factor                                                                                                                                                    | Stainless s                         | teel A4                         | [-]       |                           |                          | 1,                   | 5 <sup>1)</sup>                     |       |       |  |
| Ϋ́Ms,N                                                                                                                                                    | High co<br>resistant                |                                 |           |                           |                          | 5 <sup>1)</sup>      |                                     |       |       |  |
| Pullout failure in crac                                                                                                                                   | ked concrete                        | C20/25                          | 5         |                           |                          |                      |                                     |       |       |  |
| Characteristic resistance                                                                                                                                 | e                                   | $N_{Rk,p}$                      | [kN]      |                           |                          |                      | _2)                                 |       |       |  |
| Pullout and splitting f                                                                                                                                   | ailure in unci                      |                                 |           | ete C20/25                |                          |                      |                                     |       |       |  |
| Characteristic resistance                                                                                                                                 | e                                   | $N_{Rk,p}$                      | [kN]      |                           |                          |                      | _2)                                 | 1     |       |  |
| Edge distance                                                                                                                                             |                                     | C <sub>cr,sp</sub>              | [mm]      |                           | 300                      |                      | 340                                 |       |       |  |
| Spacing                                                                                                                                                   |                                     | S <sub>cr,sp</sub>              |           |                           | 150                      |                      | 170                                 | 25    | 55    |  |
| Pullout and splitting f                                                                                                                                   |                                     |                                 | concre    | ete C20/25                |                          |                      | 1                                   | 1     | -     |  |
| Characteristic resistance                                                                                                                                 | e                                   | N <sub>Rk,p</sub> <sup>3)</sup> | [kN]      | 20                        | 2                        |                      | 40                                  |       | _2)   |  |
| Edge distance                                                                                                                                             |                                     | C <sub>cr,sp</sub>              | [mm]      |                           |                          |                      | 5 h <sub>ef</sub>                   |       |       |  |
| Spacing                                                                                                                                                   |                                     | S <sub>cr,sp</sub>              |           |                           |                          | 3,0                  | ) h <sub>ef</sub>                   |       |       |  |
| Factors for the comp                                                                                                                                      |                                     | gth of c                        | concret   | e > C20/25                | 5                        |                      |                                     |       |       |  |
|                                                                                                                                                           | C25/30                              |                                 |           |                           |                          |                      | 10                                  |       |       |  |
| _                                                                                                                                                         | C30/37                              |                                 |           |                           |                          |                      | 22                                  |       |       |  |
| Increasing factor                                                                                                                                         | C35/45                              | $\Psi_{c}$                      | [-]       |                           |                          | 1,                   | 34                                  |       |       |  |
| for N <sub>Rk,p</sub>                                                                                                                                     | C40/50                              | 10                              |           | 1,41                      |                          |                      |                                     |       |       |  |
| _                                                                                                                                                         | C45/55                              |                                 |           |                           |                          | 1,                   | 48                                  |       |       |  |
|                                                                                                                                                           | C50/60                              |                                 |           |                           |                          | 1,                   | 55                                  |       |       |  |
| Factors acc. to CEN/T                                                                                                                                     | S 1992-4:200                        |                                 | on 6.2.   | 2.3                       |                          |                      |                                     |       |       |  |
| Uncracked concrete                                                                                                                                        |                                     | $k_{ucr}$                       | [-]       |                           |                          |                      | ),1                                 |       |       |  |
| Cracked concrete                                                                                                                                          |                                     | k <sub>cr</sub>                 |           |                           |                          | 7                    | ,2                                  |       |       |  |
| Concrete cone failure                                                                                                                                     |                                     |                                 |           |                           |                          |                      | 1                                   |       |       |  |
| Effective anchorage d                                                                                                                                     | epth                                | h <sub>ef</sub>                 | [mm]      | 60                        | 7                        | 5                    | 95                                  | 17    | 70    |  |
| Partial safety factor <sup>1)4)</sup>                                                                                                                     |                                     | γмс                             | [-]       | 1,5                       |                          |                      | 1,5                                 |       |       |  |
| <sup>1)</sup> In absence of othe<br><sup>2)</sup> Not decisive (proo<br><sup>3)</sup> Proof of splitting fa<br><sup>4)</sup> $\gamma_2 = 1,0$ is included | f of splitting fa<br>ilure acc. ET. | ailure a                        | cc. ET/   | AG 001, Ai<br>ex C, (Sect | nnex C)<br>ion 5.3). Ins | stead of $N_{1}^{0}$ | <sub>Rk,c</sub> use N <sub>Rk</sub> | p.    |       |  |
| fischer Highbond-                                                                                                                                         | Anchor FH                           | B II In                         | ject      |                           |                          |                      |                                     |       |       |  |
| <b>Performances</b><br>Characteristic values                                                                                                              | under static                        | orquas                          | si-static | tension lo                | ad for                   |                      |                                     | Annex | k C 2 |  |

Characteristic values under static or quasi-static tension load for fischer Highbond-Anchor FHB II Inj-A S (uncracked or cracked concrete)



|                                                                                  | haracteristic valu<br><b>scher Highbond</b>                      |                                |          |         |      |         |     |      |      | d con | crete) |       |
|----------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|----------|---------|------|---------|-----|------|------|-------|--------|-------|
|                                                                                  |                                                                  |                                |          | M8      | M10  | M       | 12  |      | M16  |       | M20    | M24   |
| Size FHB II Inj                                                                  | j-A L                                                            |                                |          | x       | x    | x       | x   | x    | x    | x     | x      | x     |
|                                                                                  |                                                                  |                                |          | 60      | 95   | 100     | 120 | 125  | 145  | 160   | 210    | 210   |
|                                                                                  | city under shear lo                                              | ad, stee                       | el failu | Ire     |      |         |     |      |      |       |        |       |
| without lever                                                                    | -                                                                |                                |          |         |      |         |     |      |      |       |        |       |
|                                                                                  | Steel, zinc plated                                               |                                |          | 13,7    | 20,8 | 30      | ),3 |      | 56,3 |       | 87,9   | 126,9 |
| Characteristic<br>resistance                                                     | Stainless steel A4<br>High corrosion<br>resistant steel C        | $V_{Rk,s}$                     | [kN]     | 14,6    | 23,2 | 33      | 8,7 | 62,7 |      | 97,9  | 141    |       |
| with lever arm                                                                   | ı                                                                |                                |          |         |      |         |     |      |      |       |        |       |
|                                                                                  | Steel, zinc plated                                               |                                |          | 31      | 62   | 10      | )5  |      | 266  |       | 519    | 896   |
| Characteristic<br>bending<br>moment                                              | Stainless steel A4<br>and<br>High corrosion<br>resistant steel C | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]     | 31      | 62   | 105 266 |     |      | 519  | 896   |        |       |
| Partial safety                                                                   | factors                                                          |                                |          |         |      |         |     |      |      |       |        |       |
| Partial safety fa                                                                | actor 1)                                                         | γMs,∨                          | [-]      |         |      |         |     | 1,25 |      |       |        |       |
|                                                                                  | acc. to CEN/TS<br>Section 6.3.2.1                                | k <sub>2</sub>                 | [-]      |         |      |         |     | 1,0  |      |       |        |       |
| Concrete pry-                                                                    | out failure                                                      |                                |          |         |      |         |     |      |      |       |        |       |
| Factor k acc. T<br>Section 5.2.3.3<br>k <sub>3</sub> acc.CEN/TS<br>Section 6.3.3 |                                                                  | k <sub>(3)</sub>               | [-]      | [-] 2,0 |      |         |     |      |      |       |        |       |
| Partial safety fa                                                                | actors <sup>1)</sup>                                             | γ́Мср                          | 1        |         |      |         |     | 1,5  |      |       |        |       |
| Concrete edge                                                                    | e failure                                                        |                                |          |         |      |         |     |      |      |       |        |       |
| Effective length                                                                 | n of anchor                                                      | l <sub>f</sub>                 | [mane ]  | 60      | 95   | 100     | 112 | 125  | 14   | 14    | 2      | 00    |
| Calculation dia                                                                  | meter                                                            | d                              | [mm]     | 10      | 12   | 1       | 4   |      | 18   |       | 2      | 25    |
| Partial safety fa                                                                | actor <sup>1)</sup>                                              | γмс                            | [-]      |         |      |         |     | 1,5  |      |       | ·      |       |
| 1)                                                                               |                                                                  |                                |          |         |      |         |     |      |      |       |        |       |

<sup>1)</sup> In absence of other national regulations

fischer Highbond-Anchor FHB II Inject

# Leistungen

Z2847.17

Charakteristische Werte für statische oder quasi-statische Querzugbelastung von fischer Highbond- Ankern FHB II – A L (ungerissener oder gerissener Beton)



|                                                                                                       | haracteristic valu<br>scher Highbond                             |                    |          |      |             |      |      | d concre | te)   |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------|----------|------|-------------|------|------|----------|-------|--|
|                                                                                                       |                                                                  |                    |          | М    | 10          | M12  | M16  | M20      | M24   |  |
| Size FHB II Inj                                                                                       | x                                                                | x                  | x        | x    | x           | x    |      |          |       |  |
|                                                                                                       | 60                                                               | 75                 | 75       | 95   | 170         | 170  |      |          |       |  |
| Bearing capao                                                                                         | city under shear lo                                              | ad, stee           | el failu | ire  | -           |      |      |          |       |  |
| without lever                                                                                         | arm                                                              |                    |          |      |             |      |      |          |       |  |
|                                                                                                       | Steel, zinc plated                                               |                    |          | 19,7 |             | 27,3 | 50,8 | 80,3     | 114,2 |  |
| Characteristic<br>resistance                                                                          | Stainless steel A4                                               | $V_{Rk,s}$         | [kN]     | 24,1 |             | 33,7 | 62,7 | 97,9     | 124,5 |  |
|                                                                                                       | High corrosion<br>resistant steel C                              |                    |          | 24,1 |             | 33,7 | 62,7 | 97,9     | 141   |  |
| with lever arm                                                                                        | 1                                                                |                    |          |      |             |      |      |          |       |  |
|                                                                                                       | Steel, zinc plated                                               |                    |          | 62   |             | 105  | 266  | 519      | 896   |  |
| Characteristic<br>bending<br>moment                                                                   | Stainless steel A4<br>and<br>High corrosion<br>resistant steel C | M⁰ <sub>Rk,s</sub> | [Nm]     | 6    | 2           | 105  | 266  | 519      | 896   |  |
| Partial safety                                                                                        | factors                                                          |                    |          |      |             |      |      |          |       |  |
| Partial safety factor <sup>1)</sup>                                                                   |                                                                  | γ̂Ms,∨             | [-]      | 1,25 |             |      |      |          |       |  |
| Ductility factor acc. to CEN/TS<br>1992-4-5:2009 Section 6.3.2.1                                      |                                                                  | k <sub>2</sub>     | [-]      | 1,0  |             |      |      |          |       |  |
| Concrete pry-                                                                                         | out failure                                                      |                    |          |      |             |      |      |          |       |  |
| Factor k acc. TR029<br>Section 5.2.3.3 or<br>k <sub>3</sub> acc.CEN/TS 1992-4-5:2009<br>Section 6.3.3 |                                                                  | k <sub>(3)</sub>   | [-]      | 2,0  |             |      |      |          |       |  |
| Partial safety factors <sup>1)</sup> $\gamma_{Mcp}$                                                   |                                                                  | γмср               | [-]      | 1,5  |             |      |      |          |       |  |
| Concrete edge                                                                                         | e failure                                                        |                    |          |      |             |      |      |          |       |  |
| Effective length of anchor                                                                            |                                                                  | l <sub>f</sub>     | [mm]     | 60   | 7           | 75   | 95   | 1        | 70    |  |
| Calculation diameter                                                                                  |                                                                  | d                  | [iiiii]  | 1    | 10 12 16 25 |      |      | 25       |       |  |
| Partial safety factor <sup>1)</sup>                                                                   |                                                                  | γмс                | [-]      | 1,5  |             |      |      |          |       |  |
|                                                                                                       |                                                                  |                    |          |      |             |      |      |          |       |  |

<sup>1)</sup> In absence of other national regulations

fischer Highbond-Anchor FHB II Inject

# Performances

Characteristic values under static or quasi-static shear load for

fischer Highbond-Anchor FHB II Inj-A S (uncracked and cracked concrete)



| Table C5: D         | isplace    | ment fo    | r fischer | Highbo | nd-Anch | or FHB | ll Inj-A I | -    |      |      |  |  |
|---------------------|------------|------------|-----------|--------|---------|--------|------------|------|------|------|--|--|
| Size FHB II Inj-A L |            | M8         | M10       | M      | 12      | M16    |            |      | M20  | M24  |  |  |
|                     |            | x          | x         | x      | x       | x      | x          | x    | x    | x    |  |  |
|                     |            | 60         | 95        | 100    | 120     | 125    | 145        | 160  | 210  | 210  |  |  |
| Displacement        | t under te | ension loa | ad        |        | -       |        |            |      |      | -    |  |  |
| Cracked cond        | rete       |            |           |        |         |        |            |      |      |      |  |  |
| Tension load        | [kN]       | 6,6        | 15,9      | 17,1   | 22,5    | 24,0   | 30,0       | 34,7 | 52,2 | 52,2 |  |  |
| δ <sub>N0</sub>     | [mana]     | 0,8 0,6    |           |        |         |        |            |      |      |      |  |  |
| δ <sub>N∞</sub>     | [mm]       | 1,7        |           |        |         |        |            |      |      |      |  |  |
| Uncracked co        | oncrete    |            |           |        |         |        |            |      |      |      |  |  |
| Tension load        | [kN]       | 9,3        | 22,3      | 24,0   | 31,6    | 33,6   | 42,0       | 48,7 | 73,2 | 73,2 |  |  |
| δ <sub>N0</sub>     | []         | 0,2        |           |        | 0,6     |        |            |      |      |      |  |  |
| δ <sub>N∞</sub>     | [mm]       |            | 1,7       |        |         |        |            |      |      |      |  |  |
| Displacement        | t under s  | hear load  |           |        |         |        |            |      |      |      |  |  |
| Uncracked or        | cracked    | concrete   |           |        |         |        |            |      |      |      |  |  |
| Steel zinc pla      | ted        |            |           |        |         |        |            |      |      |      |  |  |
| Shear load          | [kN]       | 7,8        | 11,9      | 17,3   |         | 32,2   |            |      | 50,2 | 72,5 |  |  |
| δ <sub>V0</sub>     | []         | 1          | ,2        |        |         | 3,5    |            |      |      |      |  |  |
| δ <sub>V∞</sub>     | [mm]       | 1          | ,8        |        |         | 5,3    |            |      |      |      |  |  |
| Stainless stee      | el A4      |            |           |        |         |        |            |      | •    |      |  |  |
| Shear load          | [kN]       | 8,7        | 13,3      | 19,3   |         | 35,8   |            |      | 55,9 | 80,6 |  |  |
| δ <sub>V0</sub>     |            | 1,0        |           | 1,1    |         | 2,2    |            |      | 3,5  |      |  |  |
| $\delta_{V\infty}$  | [mm]       | 1          | ,5        | 1      | ,7      |        | 3,3        | Ę    |      | ,3   |  |  |
| High corrosic       | on resista | nt steel C | ;         |        |         |        |            |      |      |      |  |  |
| Shear load          | [kN]       | 8,7        | 13,3      | 19     | 9,3     |        | 35,8       |      | 55,9 | 80,6 |  |  |
| δ <sub>V0</sub>     | []         | 1,2        |           | 1,3    |         | 2,4    |            |      | 3,7  | 5,0  |  |  |
| δ <sub>V∞</sub>     | [mm]       | 1,8        |           | 2      | 2,0     | 3,6    |            |      | 5,6  | 7,5  |  |  |
|                     |            |            |           |        |         |        |            |      |      |      |  |  |

# Performances

Displacement for fischer Highbond-Anchor FHB II Inj-A L



| Table C6: D         | isplace    | ment for fisc | her <b>Highbo</b> r | nd-Anchor | FHB II Inj-A | S    |      |  |  |
|---------------------|------------|---------------|---------------------|-----------|--------------|------|------|--|--|
|                     |            | M             | 10                  | M12       | M16          | M20  | M24  |  |  |
| Size FHB II Inj-A S |            | x             | x                   | x<br>75   | x            | x    | x    |  |  |
|                     |            | 60            | 75                  |           | 95           | 170  | 170  |  |  |
| Displacement        | t under te | ension load   |                     |           |              |      |      |  |  |
| Cracked cond        | rete       |               |                     |           |              |      |      |  |  |
| Tension load        | [kN]       | 6,6           | 11                  | ,1        | 15,9         | 3    | 8,0  |  |  |
| δ <sub>N0</sub>     | [mm]       | 0,8           | 0,                  | ,3        | 0,4          | 0,6  |      |  |  |
| δ <sub>N∞</sub>     | [mm]       | 1,7           |                     |           |              |      |      |  |  |
| Uncracked co        | oncrete    |               |                     |           |              |      |      |  |  |
| Tension load        | [kN]       | 9,3           | 15                  | i,6       | 22,3         | 53,3 |      |  |  |
| δ <sub>ΝΟ</sub>     | [          | 0,2 0,5       |                     |           |              |      |      |  |  |
| δ <sub>N∞</sub>     | [mm]       | 1,7           |                     |           |              |      |      |  |  |
| Displacement        | t under s  | hear load     |                     |           |              |      |      |  |  |
| Uncracked or        | cracked    | concrete      |                     |           |              |      |      |  |  |
| Steel zinc pla      | ted        |               |                     |           |              |      |      |  |  |
| Shear load          | [kN]       | 11,3          |                     | 12,7      | 29,0         | 45,9 | 65,3 |  |  |
| δ <sub>νο</sub>     | []         | 1,            | 2                   |           | 1,5          | 2,8  |      |  |  |
| δ <sub>V∞</sub>     | [mm]       | 1,            | 8                   | 2         | 2,3          | 4,2  |      |  |  |
| Stainless stee      | el A4      |               |                     |           |              |      |      |  |  |
| Shear load          | [kN]       | 13,8          |                     | 19,3      | 35,8         | 55,9 | 71,1 |  |  |
| δ <sub>V0</sub>     | []         | 1,0           |                     | 1,1 2,2   |              | 3,5  |      |  |  |
| δ <sub>V∞</sub>     | [mm]       | 1,            | 5                   | 1,7 3,3   |              | 5,3  |      |  |  |
| High corrosio       | on resista | nt steel C    |                     |           |              |      |      |  |  |
| Shear load          | [kN]       | 13,8          |                     | 19,3      | 35,8         | 55,9 | 80,6 |  |  |
| δ <sub>V0</sub>     | []         | 1,            | 2                   | 1,3       | 2,4          | 3,7  | 5,0  |  |  |
| δ <sub>V∞</sub>     | [mm]       | 1,            | 8                   | 2,0       | 3,6          | 5,6  | 7,5  |  |  |
|                     |            |               |                     |           | 1            |      | 1    |  |  |

# fischer Highbond-Anchor FHB II Inject

# Performances

Displacement for fischer Highbond-Anchor FHB II Inj-A S