

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0696 of 6 October 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

S&P - ResEP-16 Epoxy Injection System

Bonded anchor for use in concrete

S&P Clever Reinforcement Company AG Seewernstrasse 127 6423 SEEWEN SCHWEIZ

Simpson Strong-Tie® Manufacturing Facilities

21 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-16/0696 issued on 21 October 2016

European Technical Assessment ETA-16/0696 English translation prepared by DIBt

Page 2 of 21 | 6 October 2017

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0696

Page 3 of 21 | 6 October 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The S&P – ResEP-16 Epoxy Injection System is a bonded anchor consisting of a cartridge with injection mortar ResEP-16 and a steel element. The steel elements are either

- Threaded rods in the range of M 12 to M 27 or
- Reinforcing bar in the range of φ 12 to φ 25 mm

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 to C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-16/0696

Page 4 of 21 | 6 October 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable Europan Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 6 October 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

Beglaubigt: Baderschneider

S&P

ResEP-16 Epoxy Injection System

ResEP-16 Injection mortar cartridges: 250 ml, 400 ml, 600 ml, 650 ml, 1500 ml and 1656 ml

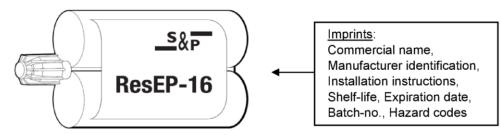
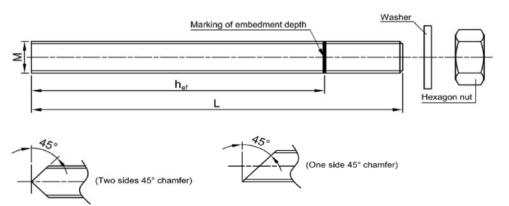


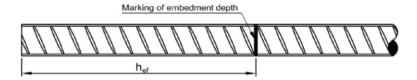
Illustration: 650 ml Injection mortar cartridge (side-by-side)

Mixing nozzle: CTG-NZ2

Extension tubes:

Flexible plastic hose: Ø8,0 - Ø8,5 mm

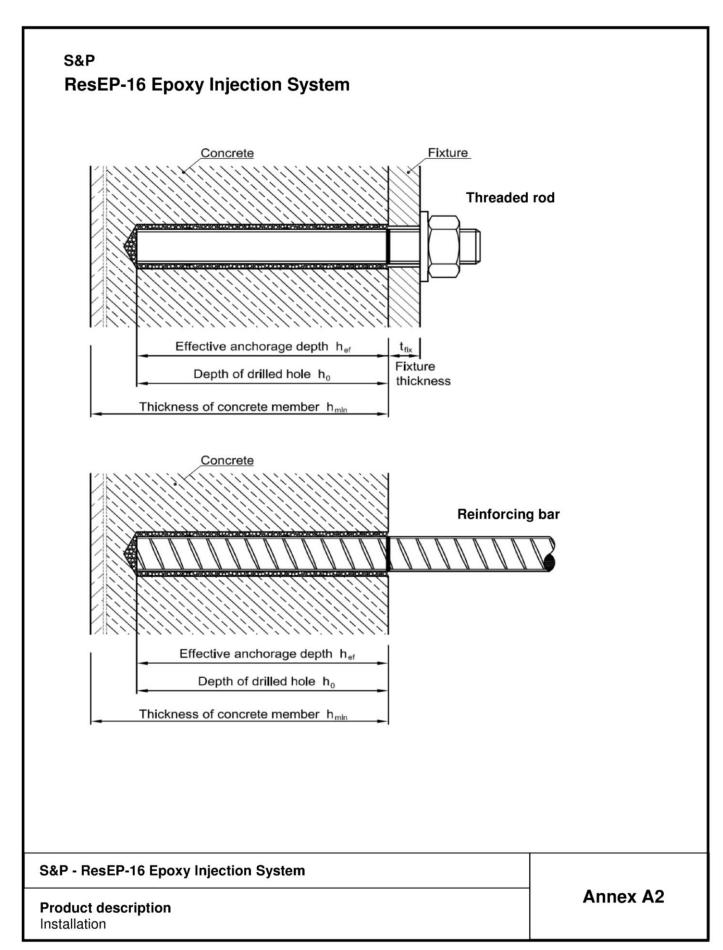



Rigid plastic tube: CTG-NZ-EXT

Threaded rod M12, M16, M20, M24 or M27

Reinforcing bar Ø12, Ø14, Ø16, Ø20 or Ø25

S&P - ResEP-16 Epoxy Injection System


Product description

Injection mortar / Components / Anchoring parts

Annex A1

Z46230.17

S&P

ResEP-16 Epoxy Injection System

Table A1: Threaded rods

Designation	Material			
Steel, zinc plated ≥ 5µm according EN ISO 4042:1999, (A2), passivated Steel, hot-dip galvanised > 40 µm according EN ISO 10684:2004 + AC:2009				
Threaded rod	Carbon steel: Property class 5.8 and 8.8 acc. EN ISO 898-1:2013; A5 ≥ 8% ductile			
Washer	Steel: DIN 125-1:1990-03 (EN ISO 7089:2000), DIN 440:1990-05 (EN ISO 7094:2000), DIN 9021:1990-03 (EN ISO 7093-1:2000)			
Hexagon nut	Steel: DIN 934:1987-10 (EN ISO 4032:2012), property class 8 acc. EN ISO 898-2:2012			
Stainless steel				
Threaded rod	Stainless steel: 1.4362; 1.4401; 1.4404; 1.4439; 1.4571; 1.4578 acc. EN 10088-1:2014 ≤ M24: Property class 70, EN ISO 3506-1;2009; A5 ≥ 8% ductile > M24: Property class 50, EN ISO 3506-1;2009; A5 ≥ 8% ductile			
Washer	DIN 125-1:1990-03 (EN ISO 7089:2000), DIN 440:1990-05 (EN ISO 7094:2000), DIN 9021:1990-03 (EN ISO 7093-1:2000) Stainless steel: 1.4362; 1.4401; 1.4404; 1.4439; 1.4571; 1.4578 acc. EN 10088-1:2014			
Hexagon nut	DIN 934:1987-10 (EN ISO 4032:2012), ≤ M24. Property class 70, EN ISO 3506-2:2009 > M24: Property class 50 or 70, EN ISO 3506-2:2009 Stainless steel: 1.4362; 1.4401; 1.4404; 1.4439; 1.4571; 1.4578 acc. EN 10088-1:2014			
Stainless steel - H	igh corrosion resistance steel			
Threaded rod	Stainless steel: 1.4529; 1.4565 acc. EN 10088-1:2014 ≤ M24: Property class 70,EN ISO 3506-2:2009 ; A5 ≥ 8% ductile > M24: Property class 50, EN ISO 3506-2:2009 ; A5 ≥ 8% ductile			
Washer	DIN 125-1:1990-03 (EN ISO 7089:2000), DIN 440:1990-05 (EN ISO 7094:2000), DIN 9021:1990-03 (EN ISO 7093-1:2000) Stainless steel: 1.4529; 1.4565 acc. EN 10088-1:2014			
Hexagon nut	DIN 934:1987-10 (EN ISO 4032:2012) ≤ M24: Property class 70, EN ISO 3506-2:2009 > M24: Property class 50 or 70, EN ISO 3506-2:2009 Stainless steel: 1.4529; 1.4565 acc. EN 10088-1:2014			
Commercial thread	ded rods with:			
Inspection certificate	e 3.1 according to EN 10204:2004			

Marking of embedment depth

(This may be done by the manufacturer of the rod or by the worker on job site)

S&P -	ResFP-1	6 Fnoxy	Injection	System
JGI -	1/C3L1 - 1	\cup	HILLCHOIL	Ovaleiii

Product description

Materials - Threaded rod

Annex A3

S&P

ResEP-16 Epoxy Injection System

Table A2: Reinforcing bar

Designation	Material
Rebar according EN 1992-1-1:2004 + AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

S&P - ResEP-16 Epoxy Injection System

Product description
Materials - Reinforcement bar

Annex A4

Specification of intended use

Anchorages subject to:

- · Static or quasi-static action
- Cracked concrete
- Non-cracked concrete

Base materials:

- Reinforced and unreinforced normal weight concrete according to EN 206-1: 2000
- Strength classes C20/25 to C50/60 according to EN 206-1: 2000

Temperature Range:

Installation: ≥ 10°C

· Use conditions:

Temperatur Range I: -40° C to +43° C (max. long thern temperature +24° C and max.

short therm temperature +43° C)

Temperatur Range II: -40° C to +65° C (max. long therm temperature +43° C and max.

short therm temperature +65° C)

Use conditions (Environmental conditions)

- Structures subject to dry internal conditions
 (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanenty damp internal condition, if no particular agressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist (hight corrosion resitant steel).

<u>Note</u>: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings prepared are taking account of the loads to be anchored.
 The position of the anchor is indicated on the designed drawings (e.g. position of the anchor relative to reinforcement or to supports).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of Bonded Anchors"; Edition September 2010
 - CEN/TS 1992-4:2009, "Design of Fastenings for use in concrete" part 4-1 and part 4-5,

Installation

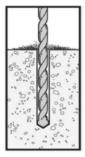
- · Use categorie: Dry or wet concrete (must not be installed in flooded holes).
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · Drilling by hammer-drilling.
- · Overhead installation is allowed.

S&P - ResEP-16 Epoxy Injection System	
Intended use Specifications	Annex B1

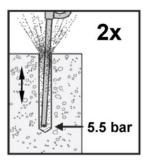
Table B1: Installation data for threaded rods

S&P				Th	readed r	od	
ResEP-16 Epoxy Injection System			M12	M16	M20	M24	M27
Nom. threaded rod diameter	d	[mm]	12	16	20	24	27
Drill hole diameter	d _o	[mm]	14	18	24	28	30
Effective anchorage depth	h _{ef, min}	h _{ef, min}		80	90	100	110
Effective anchorage depth	h _{ef, max}	[mm]	240	320	400	480	540
Diameter of clearance hole in the fixture	d _f ≤	[mm]	14	18	22	26	30
Installation torque	$T_{inst,max}$	[Nm]	40	60	80	100	120
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} +30 mm ≥ 100 mm	h _{ef} + 2d ₀			
Minimum allowable spacing	S _{min}	[mm]	80	100	115	135	155
Minimum allowable edge distance	C _{min}	[mm]	45	60	70	80	90

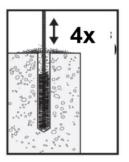
Table B2: Installation data for reinforcing bar


S&P			Reinforcing bar				
ResEP-16 Epoxy Injection System		Ø12	Ø14	Ø16	Ø20	Ø25	
Nom. rebar diameter	d	[mm]	12	14	16	20	25
Drill hole diameter	d _o	[mm]	16	18	20	25	32
Effective anchorage depth	h _{ef, min}	[mm]	70	75	80	90	100
Lifective anchorage depth	h _{ef, max}	נווווון	240	280	320	400	500
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} +30 mm ≥ 100 mm	h _{ef} + 2d ₀			
Minimum allowable spacing	S _{min}	[mm]	80	90	100	115	135
Minimum allowable edge distance	C _{min}	[mm]	45	50	60	70	80

S&P - ResEP-16 Epoxy Injection System	
Intended use Installation data	Annex B2


HOLE PREPARATION

1.


Drill hole to specified diameter and embedment depth.

2.

Blow dust from hole 2 times with oil-free compressed air (min. 5.5 bar) starting from the bottom of the hole.

3.

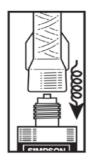
Brush 4 times with specified brush diameter (Annex B7).

4.

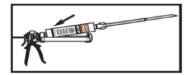
Blow 2 times with oil-free compressed air (min. 5.5 bar) and verify that the threaded rod and rebar can achieve the required embedment depth.

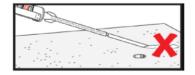
S&P - ResEP-16 Epoxy Injection System

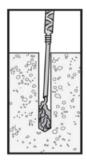
Intended use Installation instructions **Annex B3**


Z46230.17

CARTRIDGE PREPARATION AND HOLE FILLING


 Check cartridge expiration date. Do not use expired product. Product is usable until end of printed expiration month. Open cartridge per package instructions.


Attach proper mixing nozzle supplied by the manufacturer to the cartridge. Do not modify nozzle.

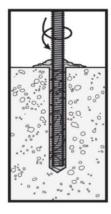

Insert cartridge into the appropriate dispensing tool.

Dispense adhesive to the side until properly mixed, min. 3 strokes (uniform teal color). Discard initial adhesive!

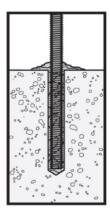
5.

Fill hole approximately 2/3 full, starting from bottom or back of the cleaned drilled hole. Withdraw the nozzle slowly to avoid creating air pockets.

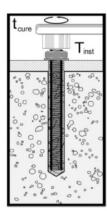
For drilled holes deeper than 150 mm (when $d_0 \le 16$ mm) and drilled holes deeper than 250 mm (when $16 < d_0 \le 30$ mm) an extension tube shall be used. Adhesive retaining caps shall be used in overhead and horizontal installations (Annex B6).


S&P - ResEP-16 Epoxy Injection System

Intended use Installation instructions **Annex B4**


ANCHOR INSTALLATION (vertical downward anchorage)

1.

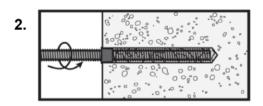

Insert clean, oil free anchor, turning slowly until the anchor contacts the bottom of the hole. Setting control: Excess mortar flows out of the borehole.

2.

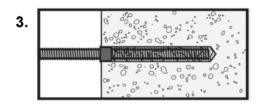
Do not disturb the anchor until fully cured. The curing time $t_{\rm cure}$ is given in table B3.

3.

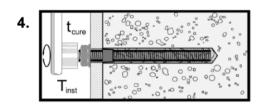
After required curing time $t_{\rm cure}$ anchor can be loaded. Apply the installation torque $T_{\rm inst}$ using calibrated torque-wrench.


S&P - ResEP-16 Epoxy Injection System

Intended use Installation instructions Annex B5



ANCHOR INSTALLATION (horizontal and overhead anchorage)


Install adhesive retaining cap.

Insert clean, oil free anchor, turning slowly until the anchor contacts the bottom of the hole.

Do not disturb the anchor until fully cured. The curing time $t_{\rm cure}$ is given in table B3.

After required curing time $t_{\rm cure}$ anchor can be loaded. Apply the installation torque $T_{\rm inst}$ using calibrated torque-wrench.

Table B3: Maximum working and minimum curing time

Temperature in the anchorage base T _{anchorage base}	Working time t _{gel}	Curing time ¹⁾ t _{cure}
T _{anchorage base} ≥ 10°	≤ 60 minutes	≥ 72 hours
T _{anchorage base} ≥ 21°	≤ 45 minutes	≥ 24 hours
T _{anchorage base} ≥ 32°	≤ 20 minutes	≥ 24 hours
T _{anchorage base} ≥ 43°	≤ 12 minutes	≥ 24 hours

For installation in wet concrete, the curing times shall be doubled (installation in water-filled drilled holes is not allowed).

S&P - ResEP-16 Epoxy Injection System	
Intended use Installation instructions	Annex B6

English translation prepared by DIBt

Table B4: Cleaning equipment

S&P	Threaded rod						
ResEP-16 Epoxy Injection System		M12	M16	M20	M24	M27	
Drill bit	Diameter d ₀	[mm]	14	18	24	28	30
	Diameter d _b	[mm]	19,1	19,1	25,4	31,8	31,8
Cleaning brush	Length I _b	[mm]	100	100	100	100	100
	Part number		ETB6	ETB6	ETB8	ETB10	ETB10

Table B5: Cleaning equipment

S&P			Reinforcing bar				
ResEP-16 Epoxy	/ Injection Syst	em	Ø12 Ø14 Ø16 Ø20				Ø25
Drill bit	Diameter d ₀	[mm]	16	18	20	25	32
	Diameter d _b	[mm]	19,1	19,1	25,4	31,8	41,3
Cleaning brush	Length I _b	[mm]	100	100	100	100	150
	Part number		ETB6	ETB6	ETB8	ETB10	ETB12

Cleaning brush (Nylon):

Compressed air cleaning tool

Air pressure: min. 5,5 bar Orifice opening: min. Ø3,5 mm

S&P - ResEP-16 Er	oxy Injection	System
-------------------	---------------	--------

Intended use Installation equipment **Annex B7**

Table C1: Characteristic values of resistance to tension loads. Design method TR 029 or CEN/TS 1992-4-5

S&P				Thr	eaded	rod	
ResEP-16 Epoxy Injection System			M12	M16	M20	M24	M27
Steel failure							
Characteristic resistance, Steel grade 5.8	$N_{Rk,s}$	[kN]	42	79	123	177	230
Characteristic resistance, Steel grade 8.8	$N_{Rk,s}$	[kN]	67	126	196	282	367
Partial safety factor	γ _{Ms}	[-]			1,5		
Characteristic resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤M24)	$N_{Rk,s}$	[kN]	59	110	172	247	230
Partial safety factor	γ _{Ms} 1)	[-]		1,	,87		2,86
Combined pull-out and concrete cone failure							
Nom. threaded rod diameter	d	[mm]	12	16	20	24	27
Characteristic bond resistance in non-cracked co	oncrete C20/	25					
Temperature range I: 43°C / 24°C ²⁾	$ au_{Rk,ucr}$	[N/mm²]	17	10	10	9	7
Temperature range II: 65°C / 43°C ²⁾	$ au_{Rk,ucr}$	[N/mm²]	16	9,5	9,5	8,5	6,5
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k ₈	[-]			10,1		
Characteristic bond resistance in cracked concre	te C20/25						
Temperature range l: 43°C / 24°C ²⁾	$ au_{Rk,cr}$	[N/mm²]	6	4,5	3	3	3
Temperature range II: 65°C / 43°C ²⁾	$ au_{Rk,cr}$	[N/mm²]	5,5	4,5	3	3	3
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k ₈	[-]			7,2		
Increasing factor for a		C30/37			1,0		
Increasing factor for τ _{Rk,p} in non-cracked and cracked concrete	Ψ_{c}	C40/50			1,0		
III non-clacked and clacked concrete		C50/60			1,0		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4		
Concrete cone failure							
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{cr}	[-]			7,2		
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{ucr}	[-]			10,1		
Edge distance	C _{cr,N}	[mm]			1,5x h _e	f	
Center spacing	S _{cr,N}	[mm]	3x h _{ef}				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,4				
Splitting failure							
Edge distance (splitting)	C _{cr,sp} ³⁾⁴⁾	[mm]	$c_{cr,sp} = hef * \left(\frac{\tau_{k,ucr}}{8}\right)^{0.4} * \left(3.1 - 0.7 \frac{h}{h_{ef}}\right)$				
Center spacing (splitting)	S _{cr,sp}	[mm]	2x c _{cr,sp}				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4		

¹⁾ In absence of other national regulations

2) Maximum short and long term temperatures

3) Ratio value $[h/h_{ef}] \le 2,4$

$$\tau_{k,ucr} \leq \frac{k_{ucr*} \sqrt{h_{ef*} f_{ck}}}{\pi * d}$$

S&P - ResEP-16 Epoxy Injection System

Performances

Characteristic values of resistance to tension loads - Threaded rods Design method: **EOTA TR 029:09/2010** or **CEN/TS 1992-4-5:2009**

Annex C1

Table C2: Characteristic values of resistance to shear loads.

Design method TR 029 or CEN/TS 1992-4-5

S&P				Thr	eaded	rod	
ResEP-16 Epoxy Injection System			M12	M16	M20	M24	M27
Steel failure without lever arm ³⁾							
Characteristic shear resistance, Steel grade 5.8	$V_{Rk,s}$	[kN]	21	39	61	88	115
Characteristic shear resistance, Steel grade 8.8	$V_{Rk,s}$	[kN]	34	63	98	141	184
Partial safety factor	γ _{Ms} ¹⁾	[-]			1,25		
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤M24)	$V_{Rk,s}$	[kN]	30	55	86	124	115
Partial safety factor	γ _{Ms} ¹⁾	[-]		1,	56		2,38
Steel failure with lever arm ³⁾							
Characteristic bending moment, Steel grade 5.8	$M^0_{Rk,s}$	[Nm]	66	166	325	561	832
Characteristic bending moment, Steel grade 8.8	M ⁰ _{Rk,s}	[Nm]	105	266	519	898	1332
Partial safety factor	γ _{Ms} ¹⁾	[-]			1,25		
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤M24)	M ⁰ _{Rk,s}	[Nm]	92	233	454	786	832
Partial safety factor	γ _{Ms} 1)	[-]		1,	56		2,38
Concrete pry-out failure							
Factor in equation (5.7) of TR 029 or in equation (27) to CEN/TS 1992-4-5	k / k ₃	[-]	2				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,0		
Concrete edge failure							
Effective anchor length	l _f	[-]			h _{ef} ²⁾		
Anchor diameter	$d = d_{nom}$	[-]	12	16	20	24	27
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,0		

¹⁾ In absence of other national regulations

S&P - ResEP-16 Epoxy Injection System	
Performances	Annex C2
Characteristic values of resistance to shear loads - Threaded rod	
Design method: EOTA TR 029:09/2010 or CEN/TS 1992-4-5:2009	

²⁾ CEN/TS 1992-4-5: $h_{ef} \le 8 d_{nom}$

³⁾ Ductility factor according to CEN/TS 1992-4-5: 6.3.2.1: $k_2 = 1,0$

Table C3: Characteristic values of resistance to tension loads.

Design method TR 029 or CEN/TS 1992-4-5

S&P				Rein	forcin	g bar	
ResEP-16 Epoxy Injection System			Ø12	Ø14	Ø16	Ø20	Ø25
Steel failure							
Characteristic tension resistance	$N_{Rk,s}$	[kN]	62	85	111	173	270
B500B acc. DIN 488-2:2009-08 4) Partial safety factor	1)	[-]			1,4		
Combined pull-out and concrete cone failure	γ _{Ms} ''	[-]			1,-		
Nom. rebar diameter	d	[mm]	12	14	16	20	25
Characteristic bond resistance in non-cracked co							
Temperature range I: 43°C / 24°C ²⁾	$ au_{Rk,ucr}$	[N/mm²]	13,5	8	8	7	5,5
Temperature range II: 65°C / 43°C ²⁾	$ au_{Rk,ucr}$	[N/mm²]	12,5	7,5	7,5	6,5	5
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k ₈	[-]			10,1		
Characteristic bond resistance in cracked concre	te C20/25						
Temperature range I: 43°C / 24°C ²⁾	$ au_{Rk,cr}$	[N/mm²]	5	3,5	2,5	2,5	2,5
Temperature range II: 65°C / 43°C ²⁾	$ au_{Rk,cr}$	[N/mm²]	4,5	3,5	2,5	2,5	2,5
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k ₈	[-]			7,2		
la conscient factor for a		C30/37	1,0				
Increasing factor for τ _{Rk,p} in non-cracked and cracked concrete	Ψ_{c}	C40/50	1,02				
III Horr-cracked and cracked concrete		C50/60			1,04		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4		
Concrete cone failure							
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{cr}	[-]			7,2		
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{ucr}	[-]			10,1		
Edge distance (splitting)	C _{cr,N}	[mm]			1,5x h _{ef}		
Center spacing (splitting)	s _{cr,N}	[mm]			3x h _{ef}		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,4				
Splitting failure							
Edge distance (splitting)	C _{cr,sp} ³⁾⁵⁾	[mm]	$c_{cr,sp} = hef * \left(\frac{\tau_{k,ucr}}{8}\right)^{0.4} * \left(3.1 - 0.7 \frac{h}{h_{ef}}\right)$				
Center spacing (splitting)	S _{cr,sp}	[mm]			2x c _{cr,sp}		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4		

¹⁾ In absence of other national regulations

2) Maximum short and long term temperatures

$$\tau_{k,ucr} \leq \frac{k_{ucr*} \sqrt{h_{ef*} f_{ck}}}{\pi * d}$$

⁴⁾ For reinforcement bars that do not comply with DIN 488: The characteristic tension resistance N_{Rk,s} shall be determined acc. Technical Report TR 029, equation (5.5) or CEN/TS 1992-4-1, equation (B5).

S&P - ResEP-16 Epoxy Injection System	
Performances	Annex C3
Characteristic values of resistance to tension loads - Reinforcing bar	
Design method: EOTA TR 029:09/2010 or CEN/TS 1992-4-5:2009	

³⁾ Ratio value $[h/h_{ef}] \le 2,4$

Table C4: Characteristic values of resistance to shear loads. Design method TR 029 or CEN/TS 1992-4

S&P				Rein	forcin	g bar	
ResEP-16 Epoxy Injection System			Ø12	Ø14	Ø16	Ø20	Ø25
Steel failure without lever arm ⁵⁾							
Characteristic resistance B500B acc. DIN 488-2:2009-08 ³⁾	$V_{Rk,s}$	[kN]	31	42	55	86	135
Partial safety factor	γ _{Ms} 1)	[-]			1,5		
Steel failure with lever arm ⁵⁾							
Characteristic bending moment B500B acc. DIN 488-2:2009-08 ⁴⁾	M ⁰ _{Rk,s}	[Nm]	112	178	265	518	1012
Partial safety factor	γ _{Ms} 1)	[-]			1,5		
Concrete pry-out failure							
Factor in equation (5.7) of TR 029 or in equation (27) to CEN/TS 1992-4-5	k / k ₃	[-]			2		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,0		
Concrete edge failure							
Effectiv anchor length	I _f	[-]			h _{ef} ²⁾		
Anchor diameter	$d = d_{nom}$	[-]	12	14	16	20	25
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,0		

- 1) In absence of other national regulations
- 2) CEN/TS 1992-4-5: $h_{ef} \le 8 d_{nom}$
- ³⁾ For reinforcing bars that do not comply with DIN 488: The characteristic resistance V_{Rk,s} shall be determined acc. Technical report TR 029, equation (5.5) or CEN/TS 1992-4-1, equation (B8).
- ⁴⁾ For reinforcing bars that do not comply with DIN 488: The characteristic bending moment M⁰_{Rk,s} shall be determined with: M⁰_{Rk,s} = 1,2 x W_{el} x f_{uk}
- ⁵⁾ Ductility factor according to CEN/TS 1992-4-5: 6.3.2.1: $k_2 = 1.0$

S&P - ResEP-16 Epoxy Injection System	
Performances	Annex C4
Characteristic values of resistance to shear loads - Reinforcing bar	
Design method: EOTA TR 029:09/2010 or CEN/TS 1992-4-5:2009	

Table C5: Displacements under tension loads 1)

S&P				Thi	eaded	rod	
ResEP-16 Epoxy Injection System			M12	M16	M20	M24	M27
Non-cracked concrete							
	Temperati	ure range I: 43°C	/ 24°C ²⁾)			
Factor for displacement	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,020	0,030	0,010	0,010	0,030
Factor for displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,024	0,040	0,040	0,044	0,064
	Temperatu	ıre range II: 65°C	C / 43°C ²)			
Factor for displacement	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,020	0,030	0,010	0,012	0,031
Factor for displacement	$\delta_{N∞}$ -factor	[mm/(N/mm²)]	0,025	0,042	0,042	0,047	0,070
Cracked concrete							
	Temperati	ure range I: 43°C	/ 24°C ²⁾)			
Factor for displacement	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,100	0,100	0,230	0,200	0,170
Factor for displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,133	0,180	0,270	0,300	0,300
	Temperatu	re range II: 65°C	C / 43°C ²)			
Easter for displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,100	0,130	0,230	0,200	0,170
Factor for displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,145	0,180	0,270	0,300	0,300

¹⁾ Calculation of the displacement:

 δ_{N0} = δ_{N0} -factor • τ

 τ = action bond stress for tension

Table C6: Displacements under shear loads 3)

S&P				Thi	eaded	rod	
ResEP-16 Epoxy Injection	n System		M12	M16	M20	M24	M27
Factor for displacement	$\delta_{ m V0}$ -factor	[mm/kN]	0,022	0,015	0,012	0,005	0,005
Factor for displacement	δ _{∨∞} -factor	[mm/kN]	0,033	0,022	0,018	0,010	0,010

³⁾ Calculation of the displacement:

 $\delta_{V0} = \delta_{V0}$ -factor • V

V = action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}$ -factor • V

S&P - ResEP-16 Epoxy Injection System

Performances

Displacements - Threaded rod

Annex C5

 $[\]delta_{N\infty} = \delta_{N\infty}$ -factor • τ

Maximum short and long term temperatures

Table C7: Displacements under tension loads 1)

S&P				Reir	forcing	bar	
ResEP-16 Epoxy Injection System		Ø12	Ø14	Ø16	Ø20	Ø25	
Non-cracked concrete							
	Temperat	ure range I: 43°C	/ 24°C ²⁾				
Factor for displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,015	0,030	0,040	0,043	0,055
Factor for displacement	$\delta_{N^{\infty}}$ -factor	[mm/(N/mm²)]	0,033	0,056	0,063	0,071	0,090
	Temperati	ure range II: 65°C	/ 43°C ²⁾				
Factor for displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,020	0,030	0,040	0,045	0,050
Factor for displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,036	0,060	0,066	0,077	0,100
Cracked concrete							
	Temperat	ure range I: 43°C	/ 24°C ²⁾				
Factor for displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,100	0,170	0,280	0,240	0,200
Factor for displacement	$\delta_{N^{\infty}}$ -factor	[mm/(N/mm²)]	0,160	0,220	0,320	0,440	0,440
	Temperati	ure range II: 65°C	/ 43°C ²⁾				
Factor for displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,110	0,170	0,280	0,240	0,200
Factor for displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,178	0,228	0,320	0,440	0,440

¹⁾ Calculation of the displacement:

 $\delta_{N0} = \delta_{N0}$ -factor • τ

 τ = action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor • τ

Table C8: Displacements under shear loads 3)

S&P			Reinforcing bar				
ResEP-16 Epoxy Injection System			Ø12	Ø14	Ø16	Ø20	Ø25
Factor for displacement	$\delta_{ m V0}$ -factor	[mm/kN]	0,010	0,010	0,013	0,015	0,015
	δ _{∨∞} -factor	[mm/kN]	0,013	0,015	0,019	0,023	0,023

3) Calculation of the displacement:

 $\delta_{V0} = \delta_{V0}$ -factor • V

V = action shear load

 $\delta_{\vee \infty} = \delta_{\vee \infty}$ -factor • V

S&P - ResEP-16 Epoxy Injection System	
Performances Displacements - Reinforcing bar	Annex C6

Maximum short and long term temperatures