

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0905 of 20 February 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Injection system AC200+ for concrete Product family Bonded anchor for use in concrete to which the construction product belongs Manufacturer Stanley Black & Decker Deutschland GmbH Richard-Klinger-Straße 11 65510 Idstein DEUTSCHLAND Plant 1 Manufacturing plant This European Technical Assessment 20 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded issued in accordance with Regulation (EU) anchors", April 2013, No 305/2011, on the basis of used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

by the Federa

European Technical Assessment ETA-16/0905

Page 2 of 20 | 20 February 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 20 February 2017

Specific Part

1 Technical description of the product

The "Injection stem AC200+ for concrete" is a bonded anchor consisting of a cartridge with injection mortar AC200+ and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static action and seismic performance categories C1, C2	See Annex C 1 to C 4
Displacements	See Annex C 5 to C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-16/0905

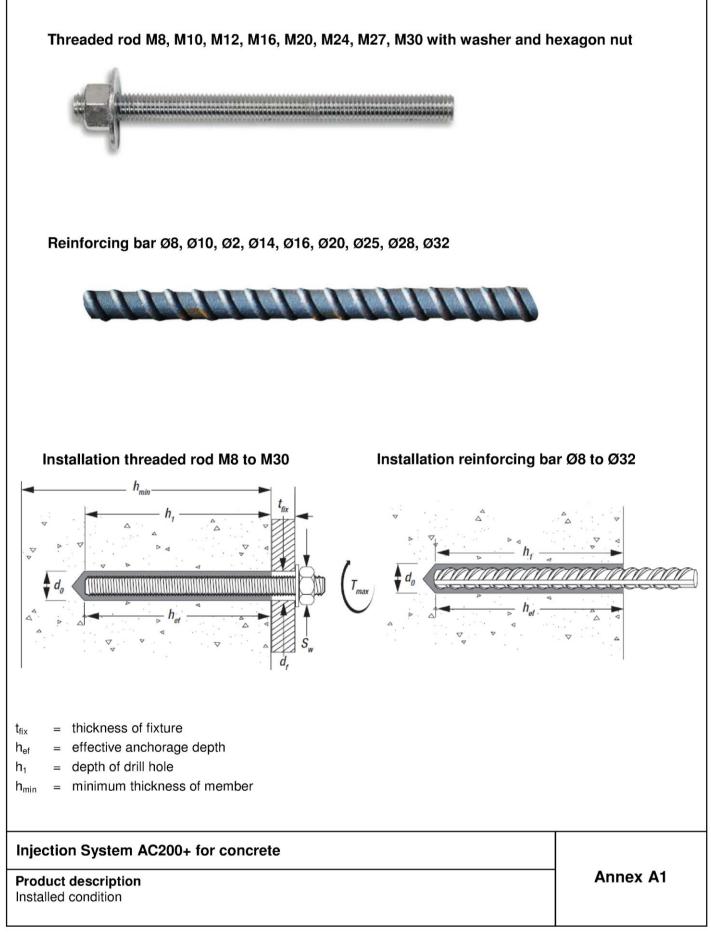
Page 4 of 20 | 20 February 2017

English translation prepared by DIBt

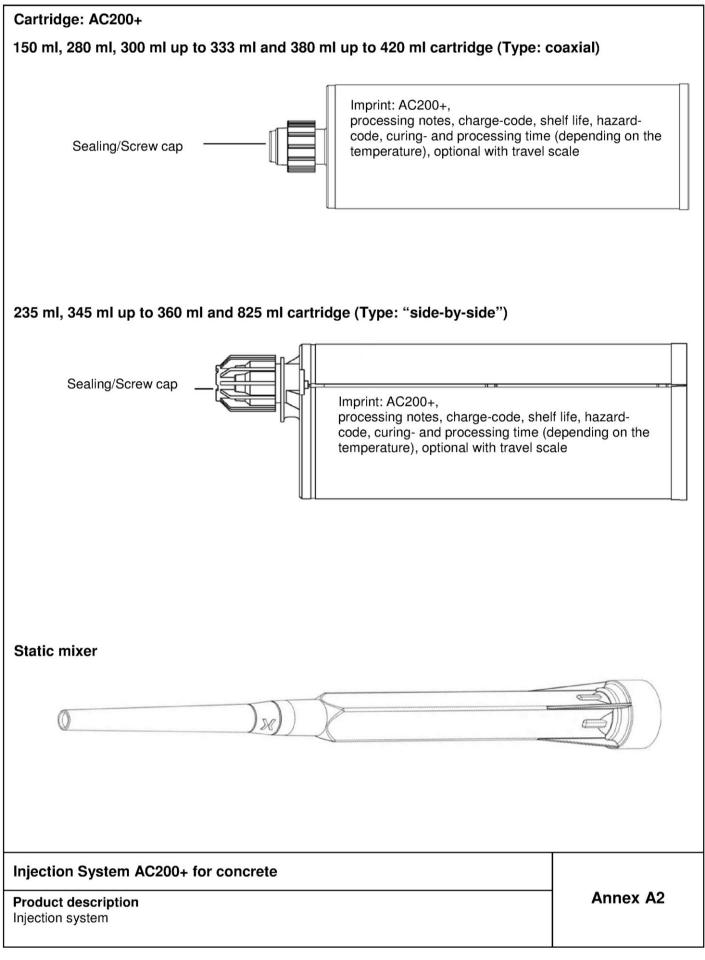
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 20 February 2017 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider

		1 3 2
Part	.	Material
	, zinc plated \ge 5 µm acc. to EN ISO 40 , hot-dip galvanised \ge 40 µm acc. to E)42:1999 or EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009
1	Anchor rod	Steel acc. EN 10087:1998 or EN 10263:2001 Property class 4.6, 4.8, 5.6, 5.8, 8.8 acc. to EN 1993-1-8:2005+AC:2009 $A_5 > 12\%$ fracture elongation
2	Hexagon nut EN ISO 4032:2012	Steel acc. EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod and 4.8 rod) Property class 5 (for class 5.6 rod and 5.8 rod) Property class 8 (for class 8.8 rod) EN ISO 898-2:2012
3	Washer EN ISO 887:2006; EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised
Stain	lless steel A4	
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 \leq M24: Property class 70 EN ISO 3506-1:2009 A ₅ > 12% fracture elongation
2	Hexagon nut EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009
3	Washer EN ISO 887:2006; EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005
High	corrosion resistance steel HCR	
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 \leq M24: Property class 70 EN ISO 3506-1:2009 A ₅ > 12% fracture elongation
2	Hexagon nut EN ISO 4032 :2012	Material 1.4529 / 1.4565 EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009
3	Washer EN ISO 887:2006; EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2005

Injection System AC200+ for concrete

Product description Materials (Threaded rod) Annex A3

Table A1: Materi	als (Rebar)		
		<u>AMAMAMAM</u>	
Part Designation		Material	
1 Rebar according EN 1992-1-1:20	J 09+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 19 $f_{uk} = f_{tk} = k \cdot f_{yk}$	992-1-1/NA:2013
 Rip height of th 	of related rip area f _{R,mir} e bar shall be in the rar meter of the rebar, h: R	according to EN 1992-1-1:2009+AC:2010 age 0,05d \leq h \leq 0,07d lip height of the bar)	
Injection System AC	200+ for concrete		
Product description Materials (Rebar)			Annex A4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- · Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of metal anchors under seismic action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System AC200+ for concrete

Intended use Specifications

Table B1: Installation parameters for threaded rod											
Threaded rod size	M8	M10	M12	M16	M20	M24	M27	M30			
Diameter of threaded rod $d_1 = d_{nom}$ [m	m] 8	10	12	16	20	24	27	30			
Nominal drill hole diameter d ₀ [m	<mark>m]</mark> 10	12	14	18	22	28	32	35			
h _{ef,min} [mm]		60	70	80	90	96	108	120			
Effective anchorage depth h _{ef,max} [m	<mark>m]</mark> 160	200	240	320	400	480	540	600			
Diameter of clearance d _f [m	<mark>m]</mark> 9	12	14	18	22	26	30	33			
Installation torque (max.) T _{inst} [N	<mark>m]</mark> 10	20	40 ²⁾	60	100	170	250	300			
Minimum thickness of h _{min} [m	im]	h _{ef} + 30 m ≥ 100 mi				$h_{ef} + 2d_0$					
Minimum spacing s _{min} [m	<mark>m]</mark> 40	50	60	75	95	115	125	140			
Minimum edge distance c _{min} [m	<mark>m]</mark> 35	40	45	50	60	65	75	80			

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and anchor rod shall be filled force-fit with mortar.

²⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for rebar

Rebar size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Diameter of element	$d = d_{nom} [mm]$	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm]	12	14	16	18	20	25	32	35	40
Effective anchorage depth -	h _{ef,min} [mm]	60	60	70	75	80	90	100	112	128
Ellective anchorage depth -	h _{ef,max} [mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member		80 mm 0 mm				h _{ef} + 2d ₀)			
Minimum spacing	s _{min} [mm]	40	50	60	70	75	95	120	130	150
Minimum edge distance	c _{min} [mm]	35	40	45	50	50	60	70	75	85

Injection System AC200+ for concrete

Intended use Installation parameters

Table B3: Parameter cleaning and setting tools											
		11111111111111111111111		and a second second	alli alli alli alli alli alli alli alli						
	Threaded Rod	Rebar	Drill bit diameter d ₀	Brush d nominal d _b	iameter minimum d _{b,min}	Piston plug Ø	Installation direction and				
	[mm]	[mm]	[mm]	[mm]	[mm]	[No.]	down	horizont	overhead		
	M8	-	10	11,5	10,5	-	-	-	-		
	M10	Ø8	12	13,5	12,5	-	-	-	-		
	M12	Ø10	14	15,5	14,5	-	-	-	-		
	-	Ø12	16	17,5	16,5	-	-	-	-		
	M16	Ø14	18	20,0	18,5	#18					
	-	Ø16	20	22,0	20,5	#20					
	M20	-	22	24,0	22,5	#22					
	-	Ø20	25	27,0	25,5	#25	his	h _{ef} >			
	M24	-	28	30,0	28,5	#28	h _{ef} > 250 mm	250 mm	all		
	M27	-	30	31,8	30,5	#30					
	-	Ø25	32	34,0	32,5	#32					
	M30	Ø28	35	37,0	35,5	#35					
	-	Ø32	40	43,5	40,5	#40					

MAC - Hand pump (volume 750 ml) Drill bit diameter (d_0): 10 mm to 20 mm Drill hole depth (h_0): < 10 ds Only in non-cracked concrete

Piston plug Drill bit diameter (d₀): 18 mm to 40 mm

CAC - Rec. compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Steel brush Drill bit diameter (d₀): all diameters

Injection System AC200+ for concrete

Intended use Cleaning and setting tools

Drilling of the bore	hole	
	Drill with hammer drill a hole into the base material to the size and required by the selected anchor (Table B1, B2). In case of aborter shall be filled with mortar	
	Attention! Standing water in the bore hole must be removed before	ore cleaning.
MAC: Cleaning for	bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_s$ (uncreases)	acked concrete only!)
4x	2a. Starting from the bottom or back of the bore hole, blow the hole of (Annex B3) a minimum of four times. If the bore hole ground is no must be used.	
	2b. Check brush diameter (Table B3). Brush the hole with an appropr d _{b,min} (Table B3) a minimum of four times in a twisting motion. If the not reached with the brush, a brush extension must be used.	
4x	2c. Finally blow the hole clean again with a hand pump (Annex B3) a If the bore hole ground is not reached an extension must be used	
CAC: Cleaning for a	all bore hole diameter in uncracked and cracked concrete	
2x	2a. Starting from the bottom or back of the bore hole, blow the hole c compressed air (min. 6 bar) (Annex B3) a minimum of two times u stream is free of noticeable dust. If the bore hole ground is not rea extension must be used.	ıntil return air
	2b. Check brush diameter (Table B3). Brush the hole with an appropr d _{b,min} (Table B3) a minimum of two times. If the bore hole ground brush, a brush extension must be used.	
2x	2c. Finally blow the hole clean again with compressed air (min. 6 bar) of two times until return air stream is free of noticeable dust. If the reached an extension must be used.	
	After cleaning, the bore hole has to be protected against re-co an appropriate way, until dispensing the mortar in the bore ho the cleaning has to be repeated directly before dispensing the In-flowing water must not contaminate the bore hole again.	ole. If necessary,
Injection System	AC200+ for concrete	
Intended use		Annex B4

Page 13 of European Technical Assessment ETA-16/0905 of 20 February 2017

Preparing								
	3. Attach the supplied static-mixing nozzle to the cartridge and load the correct dispensing tool. For every working interruption longer than working time (Table B4) as well as for new cartridges, a new static	the recommended						
her i	 Prior to inserting the anchor rod into the filled bore hole, the positic depth shall be marked on the anchor rods. 	on of the embedment						
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a r strokes and discard non-uniformly mixed adhesive components unt consistent grey colour.							
Installation								
	6 Starting from the bottom or back of the cleaned anchor hole fill the approximately two-thirds with adhesive. Slowly withdraw the static hole fills to avoid creating air pockets. For embedment larger than a nozzle shall be used. Observe the gel-/ working times given in Table	mixing nozzle as the 190 mm an extension						
	 Piston plugs and mixer nozzle extensions shall be used according to Table B3 for the following applications: Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): For drill bit diameter ≥ 18 mm and embedment depth h_{ef} > 250mm Overhead assembly (vertical upwards direction): For drill bit diameter ≥ 18 mm B. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to 							
	ensure positive distribution of the adhesive until the embedment de The anchor should be free of dirt, grease, oil or other foreign mater							
	Be sure that the anchor is fully seated at the bottom of the hole and visible at the top of the hole. If these requirements are not maintain to be renewed. For overhead application the anchor rod shall be fix	ned, the application has						
Curing and fixture								
+20°C	 Allow the adhesive to cure to the specified time prior to applying an move or load the anchor until it is fully cured (attend Table B4). 	ny load or torque. Do not						
Tint	11. After full curing, the add-on part can be installed with up to the max using a calibrated torque wrench.	x. torque (Table B1) by						
Injection System	AC200+ for concrete							
Intended use Installation instruction	ons (continuation)	Annex B5						

Table B4:	Table B4: Maximum working time and minimum curing time										
Concret	te tem	perature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete						
- 5 °C	to	- 1 °C	50 min	5 h	10 h						
0 °C	to	+ 4 °C	25 min	3,5 h	7 h						
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h						
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h						
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min						
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min						
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min						
Cartridg	ge tem	perature		+5 °C to +40 °C							

Injection System AC200+ for concrete

Intended use Curing time

Table C1: Characteristic values of tension loads for threaded rods under static, quasi-static action and seismic action (performance category C1+C2)

Anchor size threaded	l rod			M 8	M10	M12	M16	M20	M24	M27	M3
Steel failure						· · · · ·					
Characteristic tension	resistance		[kN]	$A_{s} \cdot f_{uk}$							
				N	IPD	$A_s \cdot f_{uk}$			NPD		
Combined pull-out ar	nd concrete cone failur	e									
	sistance in non-cracked	concrete C20/2	5					_			
Temperature range I: 80°C/50°C	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	17	17	16	15	14	13	13	13
Temperature range II: 120°C/72°C	dry and wet concrete	$ au_{\rm Rk,ucr}$	[N/mm ²]	15	14	14	13	12	12	11	11
Temperature range III: 160°C/100°C	dry and wet concrete	$ au_{\rm Rk,ucr}$	[N/mm ²]	12	12	11	10	9,5	9,0	9,0	9,0
Characteristic bond rea	sistance in cracked conc	rete C20/25									
Temperature range I:	dry and wet concrete	$\tau_{Rk,cr} = \tau_{Rk,C1}$	[N/mm ²]	6,5	7,0	7,5	8,5	8,5	8,5	8,5	8,5
80°C/50°C	dry and wet concrete	τ _{Rk,C2}	[N/mm ²]		IPD	3,6			NPD		
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm ²]	5,5	6,0	6,5	7,5	7,5	7,5	7,5	7,
120°C/72°C		τ _{Rk,C2}	[N/mm ²]			3,1			NPD		
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,cr} = \tau_{\rm Rk,C1}$	[N/mm ²]	5,0	5,5	6,0	6,5	6,5	6,5	6,5	6,
160°C/100°C		τ _{Rk,C2}	[N/mm ²]	N	IPD	2,5			NPD		
		C25/3		1,02							
creasing factors for concrete		C30/3 C35/4		1,04							
(only static or quasi-sta		C35/2 C40/5		1,07							
Ψc		C40/5	1,09								
		C50/6		1,09							
Factor according to	Non-cracked concrete	000/0	,0	10,1							
CEN/TS 1992-4-5		k ₃	[-]								
Section 6.2.2.3	Cracked concrete			7,2							
Concrete cone failure	-										
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]				1	0,1			
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]				7	<i>'</i> ,2			
Edge distance		C _{cr,N}	[mm]				1,5	5 h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0) h _{ef}			
Splitting failure											
	h/h _{ef} ≥ 2,0						1,() h _{ef}			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]	2 h _{ef} (2,5-h/h _{ef})							
	h/h _{ef} ≤ 1,3			2,4 h _{ef}							
Axial distance		S _{cr,sp}	[mm]					Ccr,sp			
Installation safety facto	or (CAC)				1.0	$(1 0)^{1}$				0	
(dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]		1,0	(1,2) ¹⁾			1	,2	
Installation safety facto	or (MAC)	$\gamma_2 = \gamma_{inst}$	[-]		1	1,2				-	

¹⁾ Value in brackets for cracked concrete

Injection System AC200+ for concrete

Performances

Characteristic values of tension loads for threaded rods under static, quasi-static action and seismic action (performance category C1+C2)

Annex C1

Table C2: Characteristic static action an								, quas	i-		
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm											
	V _{Rk,s}	[kN]				0,50 ·	$A_{s} \cdot f_{uk}$				
Characteristic shear resistance	V _{Rk,s,C1}	[kN]				0,35 ·	$A_{s} \cdot f_{uk}$				
	V _{Rk,s,C2}	[kN]	NF	PD	0,40 · A _s · f _{uk}			NPD			
Steel failure with lever arm											
	М ⁰ _{Rk,s}	[Nm]				1.2 · V	V _{el} ∙ f _{uk}				
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]			No Perfe	ormance l	Determine	d (NPD)			
	M ⁰ _{Rk,s,C2}	[Nm]			No Perfe	ormance l	Determine	ed (NPD)			
Concrete pry-out failure											
Factor according to EN 1992-4 Section 7.2.2.4	k ₈	[-]				2	,0				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0								
Concrete edge failure											
Effective length of anchor	l _t	[mm]	$I_{f} = min(h_{ef}; 8 d_{nom})$								
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0				

Performances

Characteristic values of shear loads for threaded rods under static, quasi-static action and seismic action (performance category C1+C2)

Annex C2

Anchor size rebar				Ø8	Ø10	Ø12	Ø14	Ø16	Ø 20	Ø25	Ø28	Ø32
Steel failure												
Characteristic tension	resistance	N _{Rk,s} = N _{Rk,s,C1}	[kN]					$A_s \cdot f_{uk}$				
Combined pull-out ar	nd concrete cone failur	e										
Characteristic bond rea	sistance in non-cracked	concrete C20/	25									
Temperature range I: 80°C/50°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	14	14	14	14	13	13	13	13	13
Temperature range II: 120°C/72°C	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	13	12	12	12	12	11	11	11	11
Temperature range III: 160°C/100°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	10	10	9,5	9,5	9,5	9,0	9,0	9,0	9,0
	sistance in cracked conc	rete C20/25										
Temperature range I: 80°C/50°C	dry and wet concrete	$\tau_{\rm Rk,cr} = \tau_{\rm Rk,C1}$	[N/mm²]	5,0	5,5	6,0	6,0	7,5	7,5	7,5	7,5	8,0
Temperature range II: 120°C/72°C	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm²]	4,5	5,0	5,0	5,5	6,5	6,5	6,5	6,5	7,0
Temperature range III: 160°C/100°C	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm²]	4,0	4,5	4,5	5,0	5,5	6,0	6,0	5,5	6,5
		C25/30		1,02								
Increasing factors for c	oncrete	C30/ C35/		1,04								
(only static or quasi-sta	atic action)	C33/						1,07				
Ψc		C45/						1,00				
		C50/	60					1,10				
Factor according to	Non-cracked concrete							10,1				
CEN/TS 1992-4-5 Section 6.2.2.3	Cracked concrete	k ₃	[-]					7,2				
Concrete cone failure	•											
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]					10,1				
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]					7,2				
Edge distance	·	C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure												
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]	2 h _{ef} (2,5-h/h _{ef})								
	h/h _{ef} ≤ 1,3							2,4 h _{ef}				
Axial distance		S _{cr,sp}	[mm]					$2 c_{\text{cr,sp}}$				
Installation safety facto (dry and wet concrete)	or (CAC)	γ2 = γinst	[-]			1,0 (1,2)	1)			1	,2	
Installation safety facto (dry and wet concrete)	or (MAC)	γ2 = γinst	[-]			1,2					-	

Injection System AC200+ for concrete

Performances

Characteristic values of tension loads for rebar under static, quasi-static action and seismic action (performace category C1)

Annex C3

electronic copy of the eta by dibt: eta-16/0905

	stic values o seismic acti							ic, qu	asi-st	atic	
Anchor size rebar			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Steel failure without lever arm											
Characteristic shear resistance	V _{Rk,s}	[kN]				0,	50 · A _s ·	f _{uk}			
	$V_{Rk,s,C1}$	[kN]	0,37 · A _s · f _{uk}								
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	lity factor according to TS 1992-4-5 Section 6.3.2.1k2[-]0,8										
Steel failure with lever arm											
Characteristic bending moment	М ^о _{Rk,s}	[Nm]				1	.2 · W _{el} ·	f _{uk}			
Characteristic behaing moment	M ⁰ _{Rk,s,C1}	[Nm]			No F	Performa	nce Dete	rmined (f	NPD)		
Concrete pry-out failure											
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]					2,0				
Installation safety factor	γ2 = γinst	[-]					1,0				
Concrete edge failure											
Effective length of anchor	l _t	[mm]				$l_{f} = n$	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor	γ2 = γinst	[-]					1,0				

Injection System AC200+ for concrete

Performances

Characteristic values of shear loads for rebar under static, quasi-static action and seismic action (performance category C1)

Annex C4

r	quasi-static action [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [atic and seismic [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)]	0,031 0,040 0,032 0,042 0,121 0,124	0,032 0,042 0,034 0,044 0,126 0,129 erformand 0,083 0,107 0,086 0,111	0,034 0,044 0,035 0,045 0,131 0,135 ce catego 0,085 0,110 0,088	0,037 0,047 0,038 0,049 0,142 0,146 ry C1) 0,090 0,116	0,039 0,051 0,041 0,053 0,153 0,157 0,095	0,042 0,054 0,044 0,056 0,163 0,168 0,099	0,044 0,057 0,046 0,059 0,171 0,176	0,048 0,060 0,048 0,062 0,179 0,184
r i i i i i i i i i i i i i i i i i i i	[mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] atic and seismic [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)]	0,040 0,032 0,042 0,121 0,124 action (p 0,081 0,084 0,084 0,108	0,042 0,034 0,044 0,126 0,129 erformand 0,083 0,107 0,086	0,044 0,035 0,045 0,131 0,135 ce catego 0,085 0,110	0,047 0,038 0,049 0,142 0,146 ry C1) 0,090	0,051 0,041 0,053 0,153 0,157 0,095	0,054 0,044 0,056 0,163 0,168	0,057 0,046 0,059 0,171 0,176	0,060 0,048 0,062 0,179
r r r r r r r r r r r r r r r r r r r	[mm/(N/mm ²)] [mm/(N/mm ²)]	0,032 0,042 0,121 0,124 action (p 0,081 0,104 0,084 0,108	0,034 0,044 0,126 0,129 erformand 0,083 0,107 0,086	0,035 0,045 0,131 0,135 ce catego 0,085 0,110	0,038 0,049 0,142 0,146 ry C1) 0,090	0,041 0,053 0,153 0,157 0,095	0,044 0,056 0,163 0,168	0,046 0,059 0,171 0,176	0,048 0,062 0,179
r seismic action	[mm/(N/mm ²)] [mm/(N/mm ²)] [atic and seismic [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)]	0,042 0,121 0,124 action (p 0,081 0,104 0,084 0,108	0,044 0,126 0,129 erformand 0,083 0,107 0,086	0,045 0,131 0,135 ce catego 0,085 0,110	0,049 0,142 0,146 ry C1) 0,090	0,053 0,153 0,157 0,095	0,056 0,163 0,168	0,059 0,171 0,176	0,062
r static, quasi-st static, quasi-st r r 7 r 7 r 7 r 7 seismic action	[mm/(N/mm ²)] [mm/(N/mm ²)]	0,121 0,124 action (p 0,081 0,104 0,084 0,108	0,126 0,129 erformand 0,083 0,107 0,086	0,131 0,135 ce catego 0,085 0,110	0,142 0,146 ry C1) 0,090	0,153 0,157 0,095	0,163 0,168	0,171 0,176	0,179
r static, quasi-st r r r r r r r r r r seismic action	[mm/(N/mm ²)] atic and seismic [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)]	0,124 action (p 0,081 0,104 0,084 0,108	0,129 erformano 0,083 0,107 0,086	0,135 ce catego 0,085 0,110	0,146 ry C1) 0,090	0,157 0,095	0,168	0,176	,
static, quasi-st r r r r r r seismic action	atic and seismic [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)]	action (p 0,081 0,104 0,084 0,108	0,083 0,107 0,086	ce catego 0,085 0,110	ry C1) 0,090	0,095			0,18
r r r r r r r r r r r r r r r r r r r	[mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)]	0,081 0,104 0,084 0,108	0,083 0,107 0,086	0,085 0,110	0,090	,	0,099	0.102	
r r r r r r r r r r r r r r r r r r r	[mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)]	0,104 0,084 0,108	0,107 0,086	0,110	,	,	0,099	0.100	
r r r r seismic action	[mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)]	0,084 0,108	0,086	,	0,116			0,103	0,10
r r seismic action	[mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)]	0,108	,	0.000		0,122	0,128	0,133	0,13
r r seismic action	[mm/(N/mm ²)] [mm/(N/mm ²)]	· ·	0 1 1 1	0,000	0,093	0,098	0,103	0,107	0,110
r seismic action	[mm/(N/mm²)]	0,312	0,111	0,114	0,121	0,127	0,133	0,138	0,14
seismic action	<u> </u>		0,321	0,330	0,349	0,367	0,385	0,399	0,41
		0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,42
	(performance ca	ategory C2)						
	[mm/(N/mm²)]			0,120					
	[mm/(N/mm ²)]			0,140					
	<u> </u>			0,120		No Para	meter Det	ermined	
- /	<u> </u>					Noraia	(NPD)	ennineu	
	<u> </u>		5)	,					
				,					
ments un	der shear le	oad ¹⁾ (1	hread	ed rod)				
		M8	M10	M12	M16	M20	M24	M27	M30
ete C20/25 und	ler static, quasi-s							M27	M30
	l <mark>er static, quasi-s</mark> [mm/(kN)]							M27 0,03	M30 0,03
r		tatic and	seismic a	ction (pe	formanc	e categor	y C1)		0,03
r r	[mm/(kN)] [mm/(kN)]	tatic and 0,06 0,09	seismic a 0,06 0,08	ction (pe 0,05	r <mark>formanc</mark> 0,04	e categor 0,04	y C1) 0,03	0,03	
r r seismic action	[mm/(kN)] [mm/(kN)] (performance ca	0,06 0,09 0,09	seismic a 0,06 0,08	ction (per 0,05 0,08	r <mark>formanc</mark> 0,04	e categor 0,04 0,06	y C1) 0,03 0,05	0,03 0,05	0,03
r r seismic action	[mm/(kN)] [mm/(kN)]	tatic and 0,06 0,09 tegory C2 No Par	seismic a 0,06 0,08)	ction (pe 0,05	r <mark>formanc</mark> 0,04	e categor 0,04 0,06	y C1) 0,03	0,03 0,05	0,0
	s) s) s) s) nt τ: action	S) [mm/(N/mm²)] S) [mm/(N/mm²)] S) [mm/(N/mm²)] S) [mm/(N/mm²)] S) [mm/(N/mm²)] nt τ: action bond stress for te	s) [mm/(N/mm²)] s) [mm/(N/mm²)] s) [mm/(N/mm²)] s) [mm/(N/mm²)] nt τ: action bond stress for tension	s)[mm/(N/mm²)] [mm/(N/mm²)]No Parameter Determined (NPD)s)[mm/(N/mm²)]s)[mm/(N/mm²)]ntτ: action bond stress for tension	Imm/(N/mm²)] No Parameter Determined (NPD) 0,120 s) [mm/(N/mm²)] 0,140 s) [mm/(N/mm²)] 0,120 s) [mm/(N/mm²)] 0,120 nt [mm/(N/mm²)] 0,120	s) [mm/(N/mm²)] No Parameter Determined (NPD) 0,120 s) [mm/(N/mm²)] 0,140 0,120 s) [mm/(N/mm²)] 0,140 0,140 s) [mm/(N/mm²)] 0,140 0,140	s) [mm/(N/mm²)] No Parameter Determined (NPD) 0,120 No Para s) [mm/(N/mm²)] 0,140 0,140 s) [mm/(N/mm²)] 0,140 0,140 s) [mm/(N/mm²)] 0,140 0,140 nt τ: action bond stress for tension τ τ τ	s) [mm/(N/mm²)] No Parameter Determined (NPD) 0,120 No Parameter Det (NPD) s) [mm/(N/mm²)] 0,120 0,140 s) [mm/(N/mm²)] 0,140 0,140 nt τ: action bond stress for tension τ τ	No Parameter Determined (NPD) 0,120 No Parameter Determined (NPD) No Parameter Determined (NPD) s) [mm/(N/mm²)] 0,140 0,140 s) [mm/(N/mm²)] 0,140 0,140

Anchor size rebar			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Non-cracked concrete	C20/25 und	ler static and quas	i-static ac	tion							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,043	0,045	0,048
80°C/50°C	δ _№ -factor	[mm/(N/mm ²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,055	0,058	0,06
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,045	0,047	0,05
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,057	0,060	0,06
Cemperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,164	0,172	0,18
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,169	0,177	0,19
Cracked concrete C20	/25 under st	atic, quasi-static a	and seismi	ic action (performa	nce categ	ory C1)				_
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,103	0,10
80°C/50°C	δ _№ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,133	0,14
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,107	0,11
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,138	0,14
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,399	0,42
160°C/100°Č	δ _№ -factor	[mm//N1/mm2)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,410	0,44
$ \ \ \ \ \ \ \ \ \ \ \ \ \$	displacemen τ; τ;	t τ: action bond nent under s	stress for t	ension		0,040	0,000		0,000	0,	
¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $d_{N\infty} = \delta_{N\infty}$ -factor $d_{N\infty}$.	displacemen τ; τ;	t τ: action bond	stress for t	ension		Ø14	Ø16	Ø20	Ø25	Ø28	Ø3
$ \ \ \ \ \ \ \ \ \ \ \ \ \$	displacemen τ; isplacen	t τ: action bond	stress for to shear Ic	ension Dad ¹⁾ (r Ø10	ebar) Ø12	Ø14	Ø16	Ø20	Ø25		Ø32
¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\cdot 1$ $\delta_{N\infty} = \delta_{N\infty}$ -factor \cdot Table C8: D Anchor size rebar	displacemen τ; isplacen	t τ: action bond	stress for to shear Ic	ension Dad ¹⁾ (r Ø10	ebar) Ø12	Ø14	Ø16	Ø20	Ø25		Ø32 0,03
¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\cdot 1$ $\delta_{N\infty} = \delta_{N\infty}$ -factor \cdot Table C8: D Inchor size rebar Ion-cracked and crac Solution of the operature states ¹⁾ Calculation of the operature states	displacemen ; τ; isplacen ked concret δ _{vo} -factor δ _{v∞} -factor displacemen	t τ: action bond nent under s e C20/25 under sta [mm/(kN)] [mm/(kN)]	stress for te shear Ic Ø8 atic, quasi- 0,06 0,09	ension Dad ¹⁾ (r Ø10	ebar) Ø12	Ø14 action (pe	Ø16 erformand	Ø20 æ catego	Ø25 ry C1)	Ø28	
¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\cdot 1$ $\delta_{N\infty} = \delta_{N\infty}$ -factor \cdot Table C8: D Anchor size rebar Mon-cracked and crack All temperature ranges	displacemen r; τ ; isplacen ked concret δ_{vo} -factor $\delta_{v\infty}$ -factor displacemen /;	t τ: action bond nent under s e C20/25 under sta [mm/(kN)] [mm/(kN)]	stress for te shear Ic Ø8 atic, quasi- 0,06 0,09	ension Dad ¹⁾ (r Ø10 static and 0,05	ebar) Ø12 seismic 0,05	Ø14 action (po 0,04	Ø16 erformand 0,04	Ø20 ce catego 0,04	Ø25 ry C1) 0,03	Ø28	0,0