

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0315 of 14 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system Hilti HIT-HY 170 with HIT-CS-F

Torque controlled bonded anchor for use in concrete

Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

15 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0315

Page 2 of 15 | 14 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z53201.17 8.06.01-104/17

European Technical Assessment ETA-17/0315

Page 3 of 15 | 14 December 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The injection system Hilti HIT-HY 170 with HIT-CS-F is a torque controlled bonded anchor for use in concrete consisting of a foil pack with injection mortar Hilti HIT-HY 170 and a conical rod (including two nuts and a washer) in the sizes of M16 and M20. The conical rod HIT-CS-F (including nuts and washer) is made of hot dip galvanized steel. The conical rod is placed into a drill hole filled with injection mortar. The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the base material (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action, displacements	See Annex C1 – C3
Characteristic resistance for seismic performance category C1 and C2, displacements	See Annex C4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

Z53201.17 8.06.01-104/17

European Technical Assessment ETA-17/0315

Page 4 of 15 | 14 December 2017

English translation prepared by DIBt

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

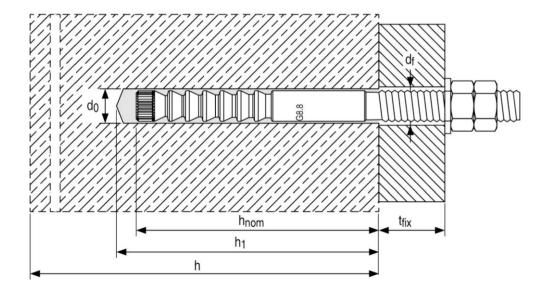
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 14 December 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Lange


Z53201.17 8.06.01-104/17

Installed condition

Figure A1:

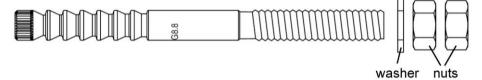
Conical rod HIT-CS-F

Injection system Hilti HIT-HY 170 with HIT-CS-F

Product description
Installed condition

Annex A1

Injection mortar Hilti HIT-HY 170: Hybrid system with aggregate 330 ml and 500 ml


Marking:
HILTI HIT
Production number and
production line
Expiry date mm/yyyy

Product name: "Hilti HIT-HY 170"

Static mixer Hilti HIT-RE-M

Steel elements

Hilti anchor rod HIT-CS-F with washer and 2 nuts

Thread sizes M16, M20

Table A1: Materials

Designation	Material		
Steel elements made	Steel elements made of hot dip galvanized steel		
Anchor rod HIT-CS-F-8.8	Strength class 8.8: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm² Rupture elongation (I_0 =5d) > 12% ductile Hot dip galvanized (F) \geq 55 μ m		
Washer	Hot dip galvanized (F) ≥ 55 μm or ≥ 80 μm		
Nut	Strength class of nut adapted to strength class of threaded rod Hot dip galvanized (F) \geq 55 μm		

Injection system Hilti HIT-HY 170 with HIT-CS-F	
Product description Injection mortar / Static mixer / Steel elements / Materials	Annex A2

Specifications of intended use

Anchorages subject to:

- · Static and quasi static loading.
- · Seismic performance category C1 and C2.

Base material:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Cracked or non-cracked concrete.

Temperature in the base material:

· At installation

-5 °C to +40 °C

In-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Use conditions (Environmental conditions):

Structures subject to dry internal conditions (hot dip galvanized steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- · Anchorages under static or quasi-static loading are designed in accordance with:
 - ETAG 001, Annex C, Design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, Design method A.
- · Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, 02/2013.
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer under seismic action are not covered in this European Technical Assessment (ETA).

Installation:

- · Use category: Dry or wet concrete (not in flooded holes).
- · Drilling technique: Hammer drilling.
- Overhead installation is admissible.
- Anchor installation shall be carried out by appropriately qualified personnel under the supervision of the person responsible for technical matters of the site.

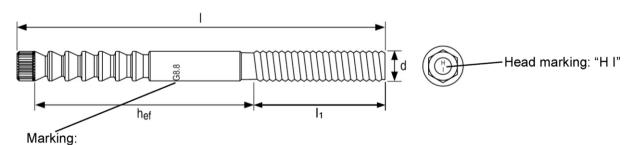

Injection system Hilti HIT-HY 170 with HIT-CS-F	
Intended Use Specifications	Annex B1

Table B1: Installation parameters HIT-CS-F

HIT-HY 170 with HIT-CS-F	Size		M16	M20
Nominal diameter	d	[mm]	16	20
Nominal diameter of drill bit	d ₀	[mm]	18	24
Longth of anchor	min l	[mm]	190	240
Length of anchor	max I	[mm]	675	720
Effective anchorage depth	h _{ef}	[mm]	117	158
Nominal embedment depth	h _{nom}	[mm]	125	170
Depth of drill hole	h ₁	[mm]	130	175
Maximum diameter of clearance hole in the fixture 1)	d _f	[mm]	18	22
Maximum fixture thickness	t _{fix}	[mm]	506	496
Minimum thickness of concrete member	h _{min}	[mm]	170	230
Minimum angeing and adag distance	Smin	[mm]	96	120
Minimum spacing and edge distance	for c ≥	[mm]	220	120
Minimum adag distance and angeling	Cmin	[mm]	96	120
Minimum edge distance and spacing	for s ≥	[mm]	350	120
Installation torque	T _{inst}	[Nm]	80	150

¹⁾ For larger clearance hole see ETAG 001, Annex C, Section 4.2.2 or CEN/TS 1992-4-1, Section 5.2.3.1

Embossing: "M..xh $_{nom}/I_1$ G8.8" hot dip galvanized steel (HIT CS-F) (e.g. M16x125/85 G8.8)

Injection system Hilti HIT-HY 170 with HIT-CS-F	
Intended Use Installation parameters	Annex B2

Table B2: Maximum working time and minimum curing time 1)

Temperature in the base material T	Maximum working time t _{work}	Minimum curing time ¹⁾ t _{cure}
-5°C to 0°C	10 min	12 h
> 0°C to 5°C	10 min	5 h
> 5°C to 10°C	8 min	2,5 h
> 10°C to 20°C	5 min	1,5 h
> 20°C to 30°C	3 min	45 min
> 30°C to 40°C	2 min	30 min

The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

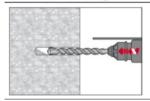
Table B3: Parameters of drilling, cleaning and setting tools

Steel element	Drill an	Installation	
Anchor rod HIT-CS-F	Drill bit	Brush	Piston plug
	G333	#### (Controlled to the control of t	
Size	d₀ [mm]	HIT-RB	HIT-SZ
M16	18	18	18
M20	24	24	24

Cleaning equipment

Compressed air cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

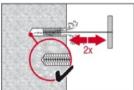

Injection system Hilti HIT-HY 170 with HIT-CS-F	
Intended Use	Annex B3
Maximum working time and minimum curing time	
Drilling, cleaning and setting tools	

Installation instruction

Hole drilling

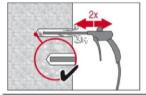
Hammer drilling

Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

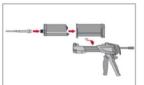

Drill hole cleaning:

Just before setting an anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.

Compressed air cleaning (CAC): For all drill hole diameters do and all drill hole depths h1.



Blow 2 times from the back of the hole (if needed with nozzle extension) over the entire hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.


Brush 2 times with the specified brush (see Table B3) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

Blow again with compressed air 2 times until return air stream is free of noticeable dust.

Injection preparation

Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifold. Do not modify the mixing nozzle.

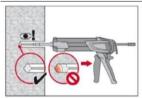
Observe the instruction for use of the dispenser and the mortar.

Check foil pack holder for proper function. Insert foil pack into foil pack holder and put holder into dispenser.

The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discarded quantities are:

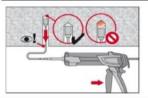
2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack

Injection system	Hilti HIT-HY 170 with HIT-CS-F
IIIIection system	11111 111-11 170 WILLI 111-03-F

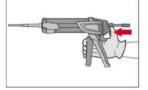

Intended Use

Installation instructions

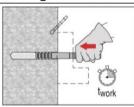
Annex B4



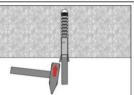
Inject adhesive from the back of the drill hole without forming air voids.


Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

Fill approximately 2/3 of the drill hole to ensure that the annular gap between the anchor rod and the concrete is completely filled with adhesive along the embedment length.

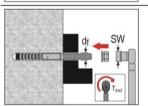

Overhead installation:

For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug HIT-SZ (see Table B3). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.

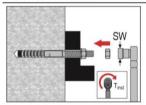


After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

Setting the element



Before use, verify that the anchor rod is dry and free of oil and other contaminants. Set the anchor rod to the required embedment depth before working time t_{work} has elapsed. The working time t_{work} is given in Table B2.


Overhead installation:

For overhead installation use piston plugs and fix embedded parts, e.g. with wedges (HIT-OHW).

After required curing time t_{cure} (see Table B2) remove excess mortar.

Assemble the washer and the first nut and apply the installation torque. The required installation torque T_{inst} is given in Table B1.

Assemble the second nut and apply the installation torque. The required installation torque T_{inst} is given in Table B1.

After torquing the anchor can be loaded.

Injection system Hilti HIT-HY 170 with HIT-CS-F

Intended Use

Installation instructions

Annex B5

Table C1: Characteristic resistance for HIT-CS-F under tension load for static and quasi static loading

	Size		M16	M20
Installation safety factor	$\gamma_2^{(1)} = \gamma_{ins}$	st ²⁾ [-]	[-] 1,0	
Steel failure				
Characteristic resistance	N _{Rk,s}	[kN]	125,6	190,2
Partial safety factor	γMs,N	[-]	1	1,5
Pull-out failure				
Characteristic resistance in uncracked co	ncrete C2	0/25		
Temperature range I: 40 °C / 24 °C	$N_{Rk,p}$	[kN]	_3)	_3)
Temperature range II: 80 °C / 50 °C	$N_{Rk,p}$	[kN]	78,0	_3)
		C30/37	1,10	_3)
Increasing factor for concrete strength class where N _{Rk,p} is decisive.	Ψc	C40/50	1,18	_3)
Glass Where Mak, pile decisive.		C50/60	1,23	_3)
Characteristic resistance in cracked conc	rete C20/2	25		
Temperature range I: 40 °C / 24 °C	$N_{Rk,p}$	[kN]	_3)	_3)
Temperature range II: 80 °C / 50 °C	$N_{Rk,p}$	[kN]	_3)	_3)
Concrete cone failure				
Effective embedment depth for calculation of N _{Rk,c} (ETAG 001, Annex C, 5.2.2.4 or CEN/TS 1992-4:2009 part 4, 6.2.1.4)	n h _{ef}	[mm]	117	158
Factor according to section 6.2.1.4	k _{ucr²⁾}	[-]	10,1	
of CEN/TS 1992-4:2009 part 4	k _{cr} ²⁾	[-]	7	7,2
Edge distance	C _{cr,N}	[mm]	1,5	5 · h _{ef}
Spacing	S _{cr,N}	[mm]	3,0 ⋅ h _{ef}	
Splitting failure				
Effective embedment depth for calculation of N _{Rk,sp} (ETAG 001, Annex C, 5.2.2.6 or CEN/TS 1992-4:2009 part 4, 6.2.1.5)	n h _{ef}	[mm]	117	158
Factor according to section 6.2.1.4	k _{ucr²⁾}	[-]	10,1	
of CEN/TS 1992-4:2009 part 4	k _{cr} ²⁾	[-]	7,2	
Edge distance	C _{cr,sp}	[mm]	2,6·h _{ef}	
Spacing	S _{cr,sp}	[mm]	2.0	C _{cr,sp}

¹⁾ Parameter for design according to ETAG 001, Annex C.

Injection system Hilti HIT-HY 170 with HIT-CS-F	
Performances Characteristic resistance under tension load for static and quasi-static loading Design according to ETAG 001, Annex C" or "CEN/TS 1992-4:2009	Annex C1

²⁾ Parameter for design according to CEN/TS 1992-4:2009.

³⁾ Pull-out failure not decisive.

Table C2: Characteristic resistance for HIT-CS-F under shear load for static and quasi static loading

	Size		M16	M20
Installation safety factor	$\gamma_2^{(1)} = \gamma_{\text{inst}}^{(2)} \qquad [-]$		1	,0
Steel failure without lever arm				
Factor according to section 6.2.2.2 of CEN/TS 1992-4:2009 part 4	k ₂ ²⁾	[-]	1	,0
Characteristic resistance HIT-CS-F	$V_{Rk,s}$	[kN]	62,8	98,0
Partial safety factor	γMs,∨	[-]	1,	25
Steel failure with lever arm				
Characteristic resistance HIT-CS-F	M ⁰ Rk,s	[Nm]	266	519
Partial safety factor	γMs,∨	[-]	1,25	
Concrete pry-out failure				
Factor acc. to equation (5.6) of ETAG 001, Annex C or acc. to equation (16) of CEN/TS 1992-4:2009 part 4	$k^{1)} = k_3^{2)}$	[-]	2,0	
Concrete edge failure				
Effective length of anchor in shear loading	lf	[mm]	h _{ef}	
Diameter of anchor	$d^{1)} = d_{nom}^{2)}$	[mm]	16	20

¹⁾ Parameter for design according to ETAG 001, Annex C.

Injection system Hilti HIT-HY 170 with HIT-CS-F	
Performances	Annex C2
Characteristic resistance under shear load for static and quasi-static loading	
Design according to ETAG 001, Annex C or CEN/TS 1992-4:2009	

²⁾ Parameter for design according to CEN/TS 1992-4:2009.

Table C3: Displacements under tension load for HIT-CS-F for static and quasi static loading ¹⁾

	Size		M16	M20	
Non-cracked concrete					
Temperature range I: 4	10 °C / 24 °C				
Displacement	δ _{N0} -factor	[mm/kN]	0,006	0,006	
Displacement	δ _{N∞} -factor	[mm/kN]	0,029	0,029	
Temperature range II:	80 °C / 50 °C	·			
Displacement	δ _{N0} -factor	[mm/kN]	0,021	0,021	
Displacement	δ _{N∞} -factor	[mm/kN]	0,040	0,040	
Cracked concrete					
Temperature range I: 4	10 °C / 24 °C				
Displacement	δ _{N0} -factor	[mm/kN]	0,020	0,020	
Displacement	δ _{N∞} -factor	[mm/kN]	0,029	0,029	
Temperature range II: 80 °C / 50 °C					
Displacement	δ _{N0} -factor	[mm/kN]	0,035	0,035	
Displacement	δ _{N∞} -factor	[mm/kN]	0,040	0,040	

¹⁾ Calculation of the displacement:

 $\delta_{N0} = \delta_{N0}$ -factor · N; $\delta_{N\infty} = \delta_{N\infty}$ -factor · N; (N: applied tension load in [kN]).

Table C4: Displacements under shear load for HIT-CS-F for static and quasi static loading ¹⁾

	Size		M16	M20
Displacement	$\delta_{ m v0}$ -factor	[mm/kN]	0,040	0,030
Displacement	δ _{∨∞} -factor	[mm/kN]	0,060	0,045

¹⁾ Calculation of the displacement:

 $\delta_{V0} = \delta_{V0}$ -factor · V; $\delta_{V\infty} = \delta_{V\infty}$ -factor · V; (V: applied shear load in [kN])

Injection system Hilti HIT-HY 170 with HIT-CS-F	
Performances Displacements for static and quasi-static loading	Annex C3

Table C5: Characteristic resistance for HIT-CS-F under tension load for seismic performance categories C1 and C2

		Size		M16	M20
Installation safety facto	r	γ2	[-]	1,0	
Steel failure					
Characteristic resistance	e HIT-CS-F	$N_{Rk,s,seis}$	[kN]	125,6	190,2
Pull-out failure					
Characteristic resistance (only C20/25)					
Temperature range I:	40 °C / 24 °C	$N_{Rk,p,seis}$	[kN]	43,1	71,5
Temperature range II:	80 °C / 50 °C	$N_{Rk,p,seis}$	[kN]	43,1	71,5

Table C6: Characteristic resistance for HIT-CS-F under shear load for seismic performance categories C1 and C2

	Size		M16	M20
Steel failure				
Characteristic resistance HIT-CS-F	$V_{Rk,s,seis}$	[kN]	31,6	51,9

Table C7: Displacements for HIT-CS-F under tension load for seismic performance category C2

	Size		M16	M20
Displacement DLS	$\delta_{\text{N,seis}(\text{DLS})}$	[mm]	1,2	1,5
Displacement ULS	δ N,seis(ULS)	[mm]	2,7	2,6

Table C8: Displacements for HIT-CS-F under shear load for seismic performance category C2

	Size		M16	M20
Displacement DLS	$\delta_{V,seis(DLS)}$	[mm]	3,0	3,3
Displacement ULS	$\delta_{V,seis(ULS)}$	[mm]	4,6	5,3

Injection system Hilti HIT-HY 170 with HIT-CS-F	
Performances Characteristic resistances and displacements for seismic performance categories C1 + C2 Design according to EOTA Technical Report TR 045, 02/2013	Annex C4