

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0437 vom 12. Dezember 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von Deutsches Institut für Bautechnik

Injektionssystem Power Anchor 287

Injektionssystem zur Verankerung im Beton

Dana Lim A/S Københavnsvej 220 4600 Køge DÄNEMARK

DANA LIM

21 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

ETAG 001 Teil 5: "Verbunddübel", April 2013, verwendet als EAD gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011

Europäische Technische Bewertung ETA-17/0437

Seite 2 von 21 | 12. Dezember 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-17/0437

Seite 3 von 21 | 12. Dezember 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Injektionssystem Power Anchor 287 ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel Power Anchor 287, Power Anchor 287 High Speed oder Power Anchor 287 Low Speed und einem Stahlteil besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte für statische und quasistatische Einwirkungen, Verschiebungen	Siehe Anhang C 1 bis C 6

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

Europäische Technische Bewertung ETA-17/0437

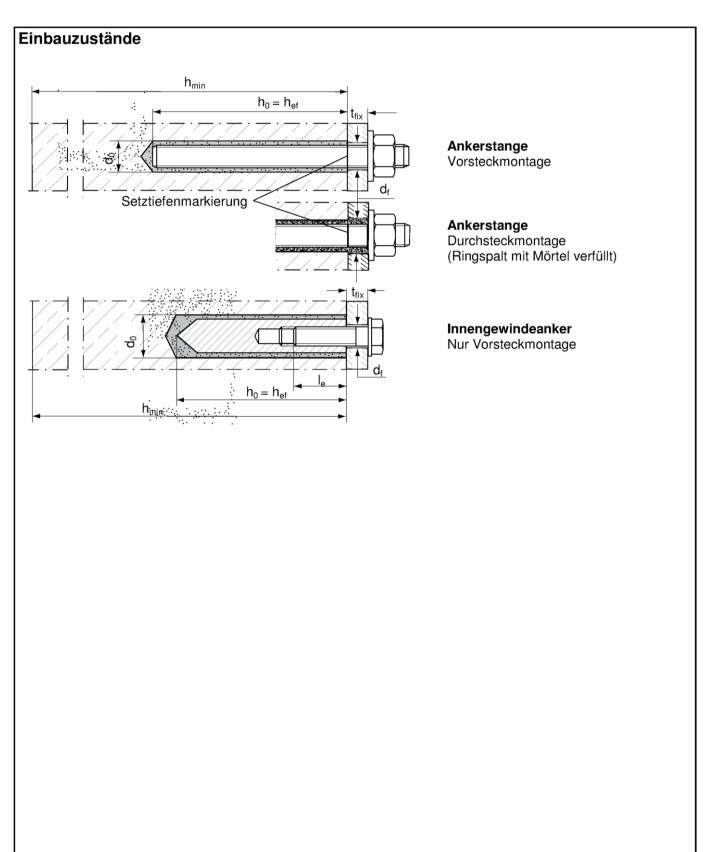
Seite 4 von 21 | 12. Dezember 2017

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäische technische Zulassung ETAG 001, April 2013 verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

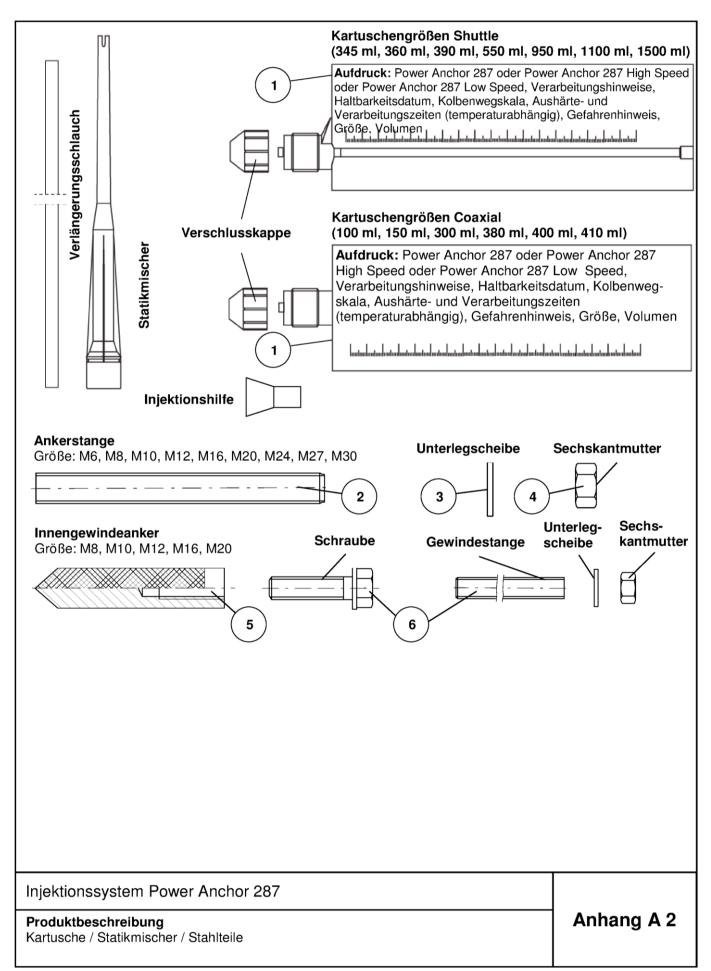
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 12. Dezember 2017 vom Deutschen Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt i.V. Abteilungsleiter

Beglaubigt:


Injektionssystem Power Anchor 287

Produktbeschreibung

Einbauzustände

Anhang A 1

Teil	Bezeichnung		Material			
1	Mörtelkartusche		Mörtel, Härter, Füllstoffe			
	Stahlart	Stahl, verzinkt	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl C		
2	Ankerstange	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 verzinkt \geq 5 μ m, EN ISO 4042:1999 A2K oder feuerverzinkt EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8$ % Bruchdehnung	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8 \%$ Bruchdehnung	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2009 oder Festigkeitsklasse 70 mit f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8$ % Bruchdehnung		
3	Unterlegscheibe ISO 7089:2000	verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014		
4	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 verzinkt ≥ 5 μm, ISO 4042:1999 A2K oder feuerverzinkt EN ISO 10684:2004		Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014		
5	Innengewindeanker	Festigkeitsklasse 5.8 ISO 898-1:2013 verzinkt ≥ 5 µm, ISO 4042:1999 A2K	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014		
6	Handelsübliche Schraube oder Anker- / Gewindestange für Innengewindeanker	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 verzinkt \geq 5 μ m, ISO 4042:1999 A2K $A_5 > 8$ % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 A ₅ > 8 % Bruchdehnung		

Injektionssystem Power Anchor 287	
Produktbeschreibung Materialien	Anhang A 3

Spezifizierung des Verwendungszwecks (Teil 1) Tabelle B1: Übersicht Nutzungs- und Leistungskategorien Power Anchor 287, Power Anchor 287 High Speed oder Power Beanspruchung der Verankerung Anchor 287 Low Speed mit ... Innengewindeanker Ankerstange Hammerbohren alle Größen mit Standardbohrer Hammerbohren mit Hohlbohrer (Heller "Duster Bohrernenndurchmesser (d₀) 12 mm bis 35 mm Expert" oder Hilti "TE-CD, TE-YD") Tabellen: ungerissenen M6 bis M30 M8 bis M20 Statische und Beton C2, C3, C5, C7 Tabellen: quasi-statische C1, C3, C4, C6 gerissenen Belastung, im M10 bis M20 nicht bewertet Beton Trockener oder nasser M6 bis M30 M8 bis M20 Beton Nutzungskategorie Wasseraefülltes M12 bis M30 M8 bis M20 Bohrloch¹⁾ Einbau--10 °C bis +40 °C temperatur Temperatur-(maximale Langzeittemperatur +50 °C und -40 °C bis +80 °C Gebrauchsbereich I maximale Kurzzeittemperatur +80 °C) temperatur-(maximale Langzeittemperatur +72 °C und Temperaturbereiche -40 °C bis +120 °C bereich II maximale Kurzzeittemperatur +120 °C) 1) Nur Koaxial Kartuschen: 380 ml, 400 ml und 410 ml Injektionssystem Power Anchor 287 Anhang B 1 Verwendungszweck Spezifikationen (Teil 1)

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

 Bewehrter oder unbewehrter Normalbeton der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2000

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern)
- Die Bemessung der Verankerungen unter statischer oder quasi-statischer Belastung wird durchgeführt in Übereinstimmung mit: EOTA Technical Report TR 029 "Bemessung von Verbunddübeln", Ausgabe September 2010 oder CEN/TS 1992-4: 2009

Einbau:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

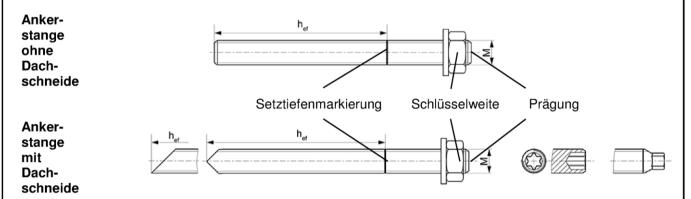

Injektionssystem Power Anchor 287	
Verwendungszweck Spezifikationen (Teil 2)	Anhang B 2

Tabelle B2: Mor	ntagekennw	erte fü	ır Anke	erstanç	gen							
Größe				M6	М8	M10	M12	M16	M20	M24	M27	M30
Schlüsselweite		SW		10	13	17	19	24	30	36	41	46
Bohrernenn- durchmesser		d_0		8	10	12	14	18	24	28	30	35
Bohrlochtiefe		h ₀						$h_0 = h_{ef}$				
Effektive		$h_{\text{ef},\text{min}}$		50	60	60	70	80	90	96	108	120
Verankerungstiefe		$h_{\text{ef},\text{max}}$		72	160	200	240	320	400	480	540	600
Minimaler Achs- und Randabstand		S _{min} = C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Durchmesser des Durchganglochs im	Vorsteck- montage	d _f		7	9	12	14	18	22	26	30	33
Anbauteil ¹⁾	Durchsteck- montage	d_{f}		9	11	14	16	20	26	30	32	40
Mindestdicke des Betonbauteils		h _{min}				- 30 00)			ı	n _{ef} + 2d	0	
Maximales Montage- drehmoment		$T_{inst,max}$	[Nm]	5	10	20	40	60	120	150	200	300

¹⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

Ankerstangen:

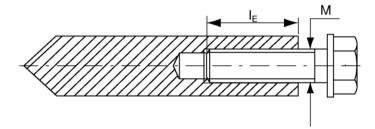
Prägung (an beliebiger Stelle) Ankerstange:

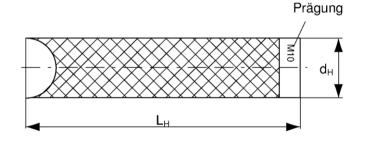
Festigkeitsklasse 8.8, Nichtrostender Stahl A4 Festigkeitsklasse 80 und hochkorrosionsbeständiger Stahl C Festigkeitsklasse 80: ●

Nichtrostender Stahl A4 Festigkeitsklasse 50 und hochkorrosionsbeständiger Stahl C Festigkeitsklasse 50: •• Oder Farbmarkierung nach DIN 976-1

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- · Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 3, Tabelle A1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- Markierung der Verankerungstiefe


Injektionssystem Power Anchor 287	
Verwendungszweck Montagekennwerte Ankerstange	Anhang B 3



Größe			М8	M10	M12	M16	M20			
Hülsendurchmesser	d _H		12	16	18	22	28			
Bohrernenn- durchmesser	d_0		14	18	20	24	32			
Bohrlochtiefe	h_0		$h_0 = h_{ef} = L_H$							
Effektive Verankerungstiefe (h _{ef} = L _H)	h _{ef}	[mm]	90	90	125	160	200			
Minimaler Achs- und Randabstand	S _{min} = C _{min}		55	65	75	95	125			
Durchmesser des Durchgang- lochs im Anbauteil ¹⁾	d _f		9	12	14	18	22			
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260			
Maximale Einschraubtiefe	I _{E,max}		18	23	26	35	45			
Minimale Einschraubtiefe	$I_{E,min}$		8	10	12	16	20			
Maximales Montage- drehmoment	$T_{inst,max}$	[Nm]	10	20	40	80	120			

¹⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1: 2009, 5.2.3.1

Innengewindeanker

Prägung: Ankergröße

z. B.: **M10**

Nichtrostender Stahl zusätzlich **A4**

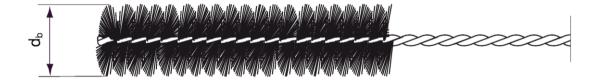
z. B.: **M10 A4**

Hochkorrosionsbeständiger Stahl

zusätzlich C z. B.: M10 C

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen Anhang A 3, Tabelle A1 entsprechen

Injektionssystem Power Anchor 287


Verwendungszweck

Montagekennwerte Innengewindeanker

Anhang B 4

Tabelle B4: D	urchm	esser	der R	einigu	ıngsbi	ürste	BS							
Die Größe der S	tahlbürs	te bezie	eht sich	auf de	n Bohr	ernenn	durchn	nesser						
Bohrernenn- durchmesser	d _o	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Stahlbürsten- durchmesser	d _b	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

Tabelle B5: Maximale Verarbeitungszeit des Mörtels und minimale Wartezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

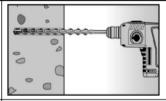
	Maxim	ale Verarbeitur	ngszeit	Minimale Aushärtezeit ¹⁾				
Systemtemperatur		t _{work}			t _{cure}			
[°C]	Power Anchor 287 High Speed	Power Anchor 287	Power Anchor 287 Low Speed	Power Anchor 287 High Speed	Power Anchor 287	Power Anchor 287 Low Speed		
-10 bis -5				12 h				
> -5 bis ±0	5 min			3 h	24 h			
> ±0 bis +5	5 min	13 min		3 h	3 h	6 h		
> +5 bis +10	3 min	9 min	20 min	50 min	90 min	3 h		
> +10 bis +20	1 min	5 min	10 min	30 min	60 min	2 h		
> +20 bis +30		4 min	6 min		45 min	60 min		
> +30 bis +40		2 min	4 min		35 min	30 min		

¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln

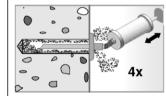
Injektionssystem Power Anchor 287

Verwendungszweck
Reinigungswerkzeug
Verarbeitungs- und Aushärtezeiten

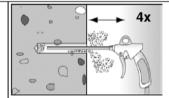
Anhang B 5

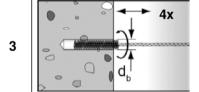


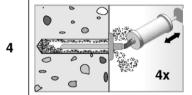
Montageanleitung Teil 1

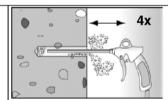

1

2


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

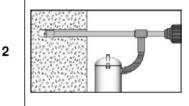

Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B2**, **B3**


Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen


Bei $h_{ef} > 12d$ und / oder $d_0 \ge 18$ mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Bohrloch viermal ausbürsten. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B4**

Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen


Bei $h_{ef} > 12d$ und / oder $d_0 \ge 18$ mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Mit Schritt 5 fortfahren

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

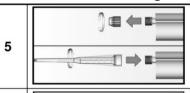
Einen geeigneten Hohlbohrer (siehe **Tabelle B1**) auf Funktion der Staubabsaugung prüfen

Verwendung eines geeigneten Staubabsaugsystems wie z. B. Bosch GAS 35 M AFC oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein.

Bohrlochdurchmesser do und Bohrlochtiefe ho siehe Tabellen B2, B3

Mit Schritt 5 fortfahren


Injektionssystem Power Anchor 287

Verwendungszweck Montageanleitung Teil 1 Anhang B 6

Montageanleitung Teil 2

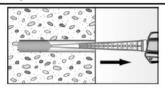
Kartuschenvorbereitung

Verschlusskappe abschrauben

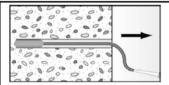
Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

Kartusche in die Auspresspistole legen

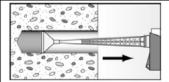
Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen


Mit Schritt 8 fortfahren

Mörtelinjektion


6

7


8

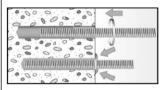
Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden

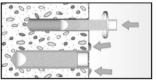
Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden

Bei Überkopfmontage, tiefen Bohrlöchern (h₀ > 250 mm) oder großen Bohrlochdurchmessern (d₀ ≥ 40 mm) Injektionshilfe verwenden

Mit Schritt 9 fortfahren

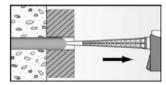
Injektionssystem Power Anchor 287


Verwendungszweck Montageanleitung Teil 2 Anhang B 7



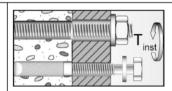
Montageanleitung Teil 3

Montage Ankerstange und Innengewindeanker



Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefe des Ankers markieren. Die Ankerstange oder den Innengewindeanker mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Befestigungselementes muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

Bei Überkopfmontage die Ankerstange mit Keilen (z.B. Zentrierkeile) fixieren bis der Mörtel auszuhärten beginnt


Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

10

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B5**

11

Montage des Anbauteils,

T_{inst,max} siehe **Tabellen B2** und **B3**

Injektionssystem Power Anchor 287

Verwendungszweck Montageanleitung Teil 3 Anhang B 8

Tabe	elle C1: Charak unter Z	teristische ug- / Querz					gfähiç	gkeit v	on A n	kerst	angen	1	
Größe					М6	M8	M10	M12	M16	M20	M24	M27	M30
Zugtra	agfähigkeit, Stahl	versagen											
Z _{RK,s}	Stahl verzinkt		5.8 8.8		10 16	19 29	29 47	43 68	79 126	123 196	177 282	230 368	281 449
Charakt. Widerstand N	Nichtrostender Stahl A4 und	Festigkeits- klasse	50	[kN]	10	19	29	43	79	123	177	230	281
Ch Widers	Hochkorrosions- beständiger	Madde	70 80		14 16	26 30	41	59 68	110 126	172 196	247	322	393 449
	Stahl C	_1\	00		10	30	47	00	120	190	202	300	449
relisi	cherheitsbeiwerte	•'' 							4.50				
eits-	Stahl verzinkt		5.8 8.8						1,50 1,50				
nerh irt יי	Nichtrostender Stahl A4 und	Festigkeits-	50	[-]					2,86				
Teilsicherheits- beiwert ms,n	Hochkorrosions- beständiger	klasse	70		1,87								
	Stahl C		80						1,60				
	ragfähigkeit, Stah	nlversagen											
ohne	Hebelarm	1											
Rk,s	Stahl verzinkt		5.8		5	9	15	21	39	61	89		141
d .: ∫	Nichtrostender	Festigkeits- klasse			8	15	23	34	63	98			225
Charakt. erstand	Stahl A4 und			[kN] .	5 7	9	15 20	21 30	39 55	61 86	124		141
Wide	Nichtrostender Stahl A4 und Hochkorrosionsbeständiger Stahl C		80		8	15	23	34	63	98	141	184	225
Duktilit 1992-4	tätsfaktor gemäß Cl I-5:2009 Abschnitt (EN/TS 6.3.2.1	k ₂	[-]					1,0				
mit He	ebelarm												
ه ۵	Stahl verzinkt		5.8		7	19	37	65	166	324	560	833	1123
Biege-			8.8		12	30	60	105	266	519	896	1333	1797
t. Bie	Nichtrostender Stahl A4 und	Festigkeits- 50	[Nm]	7	19	37	65	166	324	560	833	1123	
Charakt. moment	Hochkorrosions- beständiger		70		10	26	52	92	232	454	784	1167	1573
ה ב	Stahl C		80		12	30	60	105	266	519	896	1333	1797
Teilsi	cherheitsbeiwerte	2 ¹⁾											
۸, ا	Stahl verzinkt		5.8						1,25				
Teits Ms,v		_	8.8						1,25				
her ert γ	Nichtrostender Stahl A4 und	Festigkeits- klasse	50	[-]					2,38			89 115 14 141 184 22 160 833 11 1784 1167 15	
Teilsicherheits- beiwert _{YMs,v}	Hochkorrosions- beständiger	Riasse	70						1,56				
	Stahl C	andan (satistic	80	og ali:	D000000	vlatlans	•		1,33				
F	alls keine abweiche	enden nationa	uen R	egelu	ngen e	xistierei	1						
Leis	ktionssystem Po tungsdaten rakteristische Stahl				rstange	n					Anh	ang (C 1

Tabelle C2:											
	Inneng	jewindeanl	kern	unte	r Zug- / Qu	erzugbean	spruchung				
Größe					M8	M10	M12	M16	M20		
Zugtragfähigke	eit, Stahl	versagen				-					
Charakter-		Festigkeits-	5.8		19	29	43	79	123		
istischer	$N_{Rk,s}$	klasse	8.8	[kN]	29	47	68	108	179		
Widerstand	INRk,s	Festigkeits-	A4	נגואן	26	41	59	110	172		
mit Schraube		Klasse 70	С		26	41	59	110	172		
Teilsicherheits	beiwerte	e ¹⁾									
		Festigkeits-	5.8								
Teilsicherheits-	2/	klasse	8.8		1,50						
beiwert	$\gamma_{Ms,N}$	Festigkeits-	A4 C	1,87							
	Klasse 70						1,87				
Quertragfähigk		niversagen									
ohne Hebelarm	1										
Charakter-		Festigkeits-	5.8		9,2	14,5	21,1	39,2	62,0		
istischer	$V_{Rk,s}$	klasse	Pk s	8.8	[kN]	14,6	23,2	33,7	54,0	90,0	
Widerstand mit Schraube	· nk,s	Festigkeits-	_A4_	[""]	12,8	20,3	29,5	54,8	86,0		
IIII Schraube		Klasse 70	С		12,8	20,3	29,5	54,8	86,0		
Duktilitätsfaktor (1992-4-5:2009 A	gemäß C bschnitt	EN/TS 6.3.2.1	k ₂	[-]			1,0				
mit Hebelarm											
<u> </u>		Festigkeits-	5.8		20	39	68	173	337		
Charak- teristisches	${\sf M}^0_{\sf Rk,s}$	klasse	8.8	[Nm]	30	60	105	266	519		
Biegemoment	IVI Rk,s	restigkeits-	A4	ןנייואון	26	52	92	232	454		
		Klasse 70	С		26	52	92	232	454		
Teilsicherheits	beiwerte	e ¹⁾									
		Festigkeits-	5.8				1,25				
Teilsicherheits-	.,	klasse	8.8	_{[-1}			1,25				
beiwert	$\gamma_{Ms,V}$	Festigkeits-	A4	[-]			1,56				
		Klasse 70	С				1,56				

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

Injektionssystem Power Anchor 287

Leistungsdaten
Charakteristische Stahltragfähigkeiten für Innengewindeanker

Anhang C 2

				Alle Größen								
Zugtragfähigkei	t											
Faktoren gemäß	3 CEN/TS 1992-4:2	009 A	bschni	tt 6.2.3	3.1							
Ungerissener Be	ton	k _{ucr}						10,1				
Gerissener Betor	า	k _{cr}	[-]					7,2				
Faktoren für Be	tondruckfestigkeit	en > 0	220/25									
	C25/30							1,05				
	C30/37							1,10				
Erhöhungs-	C35/45	M	r 1					1,15				
faktor für $ au_{Rk}$	C40/50	Ψ_{c}	[-]					1,19				
	C45/55							1,22				
	C50/60							1,26				
Versagen durch	Spalten											
	h / h _{ef} ≥ 2,0							1,0 h _{ef}				
Randabstand	$2.0 > h / h_{ef} > 1.3$	$C_{cr,sp}$	[]				4,6	6 h _{ef} - 1,	8 h			
	$h / h_{ef} \le 1.3$ 2,26 h_{ef}					f						
Achsabstand		S _{cr,sp}						$2 c_{\text{cr,sp}}$				
Versagen durch	kegelförmigen Be	etonau	ısbruc	h gemä	iß CEN	/TS 199	92-4-5:2	2009 At	oschnit	t 6.2.3.	2	
Randabstand		$\mathbf{C}_{\text{cr},N}$	[mm]					$1,5 h_{ef}$				
Achsabstand $s_{cr,N}$					2 c _{cr,N}							
Querzugtragfäh	igkeit											
Montagesicherh	eitsfaktoren											
		γ2										
Alle Einbaubedin	gungen	=	[-]	1,2								
Datamariahmiah	auf dar laatabaau	γinst	n Coite									
	auf der lastabgew	anate	n Seite	,								
Faktor k gemäß ⁻ Abschnitt 5.2.3.3	r RO29 R bzw. k. gemäß											
CEN/TS 1992-4-		$k_{(3)}$	[-]	2,0								
Abschnitt 6.3.3												
Betonkantenbru												
Der Wert von h _{ef} unter Querbelast			[mm]	min (h _{ef} ; 8d)								
Rechnerische D	urchmesser											
Größe				M6	M8	M10	M12	M16	M20	M24	M27	M30
Ankerstangen		d	[mm]	6	8	10	12	16	20	24	27	30
Ankerstangen	ker	d_{nom}			12	16	18	22	28	ı		

Tabelle C4: Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen im hammergebohrten Bohrloch; ungerissener oder gerissener Beton												
Größe				М6	M8	M10	M12	M16	M20	M24	M27	M30
Kombiniertes Versag	en durc	h Heraus	sziehen u	nd Bet	onaust	ruch						
Rechnerischer Durchn	nesser	d	[mm]	6	8	10	12	16	20	24	27	30
Ungerissener Beton												
Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25												
Hammerbohren mit Sta	andard- (oder Hoh	lbohrer (tr	ockene	r und n	<u>asser E</u>	eton)					
Tempe- I: 50 °C / 80 °C		[N.1/222222]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5	
ratur- II: 72 °C /	120 °C	- τ _{Rk,ucr}	[N/mm²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch) 1)												
			[N]/21				9,5	8,5	8,0	7,5	7,0	7,0
ratur- II: 72 °C /	120 °C	τ _{Rk,ucr}	[N/mm²]				7,5	7,0	6,5	6,0	6,0	6,0
Montagesicherheitsfa	aktoren											
Trockener und nasser Beton				1,2								
Wassergefülltes Bohrl	och	$\gamma_2 = \gamma_{\text{inst}}$	[-]	1,4 ¹⁾								
Gerissener Beton												
Charakteristische Ve	rbundtr	agfähigk	eit im ger	rissene	n Beto	n C20/2	25					
Hammerbohren mit St	andard-	<u>oder Hoh</u>	<u>lbohrer (tr</u>	<u>rockene</u>	<u>r und n</u>	<u>asser E</u>	<u>Beton)</u>					
Tempe- I: 50 °C /	80 °C	_	 [N/mm²]			6,0	6,0	6,0	5,5			
bereich II: 72 °C /	120 °C	- τ _{Rk,cr}				5,0	5,0	5,0	5,0			
Hammerbohren mit St	andard-	oder Hoh	lbohrer (w	asserg	efülltes	Bohrlo	ch) 1)					
Tempe- I: 50 °C /	80 °C		[N]/m= :== 23				5,0	5,0	4,5			
ratur- ————————————————————————————————————	120 °C	- τ _{Rk,cr}	[N/mm ²]				4,0	4,0	4,0			
Montagesicherheitsfa	aktoren											
Trockener und nasser	Beton							1,2				
Wassergefülltes Bohrl	och	$\gamma_2 = \gamma_{\text{inst}}$	[-]						1,	4 ¹⁾		

"Nur Koaxialkartuschen: 380 ml, 400 ml, 410	m	I
---	---	---

Injektionssystem Power Anchor 287

Leistungsdaten

Charakteristische Werte für statische oder quasi-statische Zugbelastung von Ankerstangen (ungerissener oder gerissener Beton)

Anhang C 4

Tabelle C5: Charakteristische Werte für die Zugtragfähigkeit von Innengewindeankern im hammergebohrten Bohrloch; ungerissener Beton

Größe		М8	M10	M12	M16	M20					
Kombiniertes Versagen durch Herausziehen und Betonausbruch											
Rechnerischer Durchmesser d	[mm]	12	16	18	22	28					
Ungerissener Beton											
Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25											
Hammerbohren mit Standard- oder Hoh	nlbohrer (ti	rockener und	nasser Betor	<u>ı)</u>							
Tempe- I: 50 °C / 80 °C	[N/mm ²]	10,5	10,0	9,5	9,0	8,5					
bereich II: 72 °C / 120 °C		9,0	8,0	8,0	7,5	7,0					
Hammerbohren mit Standard- oder Hol	nlbohrer (v	vassergefüllte	es Bohrloch) 1)							
Tempe- I: 50 °C / 80 °C	[N/mm ²]	10,0	9,0	9,0	8,5	8,0					
bereich II: 72 °C / 120 °C		7,5	6,5	6,5	6,0	6,0					
Montagesicherheitsfaktoren											
Trockener und nasser Beton				1,2							
Wassergefülltes Bohrloch $\gamma_2 = \gamma_{inst}$	[-]			1,4 ¹⁾							

¹⁾ Nur Koaxialkartuschen: 380 ml, 400 ml, 410 ml

Injektionssystem Power Anchor 287

Leistungsdaten

Charakteristische Werte für statische oder quasi-statische Zugbelastung von Innengewindeankern und Betonstahl (ungerissener Beton)

Anhang C 5

Tabelle C6: Verschiebungen für Ankerstangen											
Größe		М6	М8	M10	M12	M16	M20	M24	M27	M30	
Verschiebungs-Faktoren für Zuglast ¹⁾											
Ungerissener Beton; Temperaturbereich I, II											
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12	
$\delta_{N_{\infty}\text{-}Faktor}$	[[[[[[]]]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14	
Gerisser	ner Beton; Ten	nperaturb	ereich I, II								
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]			0,12	0,12	0,13	0,13				
$\delta_{N_{\infty}\text{-}Faktor}$	[[[[[[]]]			0,27	0,30	0,30	0,30				
Verschiebungs-Faktoren für Querlast ²⁾											
Ungerise	sener oder ger	issener B	eton; Ten	nperaturb	ereich I, II						
$\delta_{ extsf{V0-Faktor}}$	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07	
$\delta_{V\infty ext{-Faktor}}$	[IIIII/KIN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09	

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \, \cdot \, \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}} : \text{Bemessungswert der einwirkenden Zugspannung})$

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Faktor}} \cdot \text{V}_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C7: Verschiebungen für Innengewindeanker

Größe		М8	M10	M12	M16	M20					
Verschiebungs-Faktoren für Zuglast ¹⁾											
Ungeriss	sener Beton; T	emperaturbereic	h I, II								
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,10	0,11	0,12	0,13	0,14					
$\delta_{\text{N}\infty\text{-Faktor}}$	[111111/(14/111111)]	0,13	0,14	0,15	0,16	0,18					
Verschie	bungs-Faktor	en für Querlast ²⁾									
Ungeriss	Ungerissener Beton; Temperaturbereich I, II										
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,12	0,12	0,12	0,12	0,12					
$\delta_{\text{V}\infty\text{-Faktor}}$	[IIIII/KIN]	0,14	0,14	0,14	0,14	0,14					

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \, \cdot \, \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{Ed}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Injektionssystem Power Anchor 287

Leistungsdaten

Verschiebungen Ankerstangen und Innengewindeanker

Anhang C 6