

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0501 of 6 October 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

TOX Injection system Liquix Multi 1 or Liquix Multi 1 snow for concrete

Injection system for use in concrete

TOX-Dübel-Technik GmbH Brunnenstraße 31 72505 Krauchenwies-Ablach DEUTSCHLAND

Werk 1 Germany

21 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0501

Page 2 of 21 | 6 October 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z31381.17 8.06.01-180/17

European Technical Assessment ETA-17/0501

Page 3 of 21 | 6 October 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "TOX Injection system Liquix Multi 1 or Liquix Multi 1 snow for concrete" is a bonded anchor consisting of a cartridge with injection mortar Liquix Multi 1 or Liquix Multi 1 snow and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance tension and shear loads	See Annex C 1 to C 4		
Displacements under tension and shear loads	See Annex C 5 / C 6		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z31381.17 8.06.01-180/17

European Technical Assessment ETA-17/0501

Page 4 of 21 | 6 October 2017

English translation prepared by DIBt

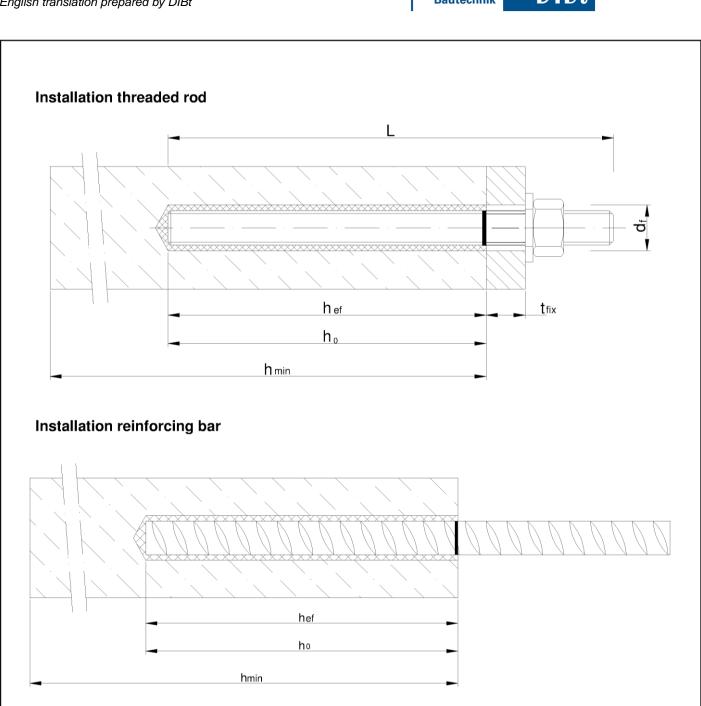
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 6 October 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

Beglaubigt: Baderschneider

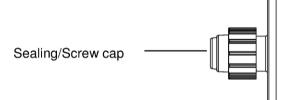
Z31381.17 8.06.01-180/17

diameter of clearance hole in the fixture d_f

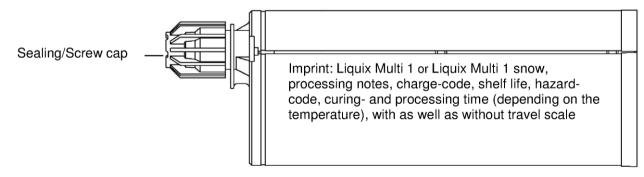
thickness of fixture

effective anchorage depth h_{ef}

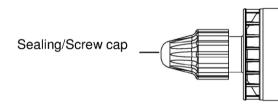
depth of drill hole h_0


 h_{min} minimum thickness of member

TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete	
Product description Installed condition	Annex A 1

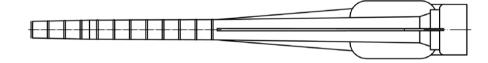

Cartridge: Liquix Multi 1 or Liquix Multi 1 snow

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: Liquix Multi 1 or Liquix Multi 1 snow, processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")



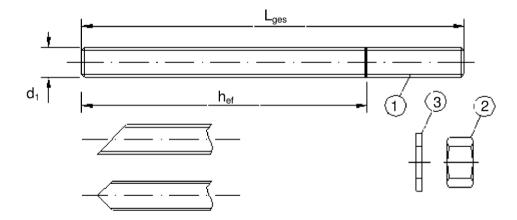
165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: Liquix Multi 1 or Liquix Multi 1 snow, processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

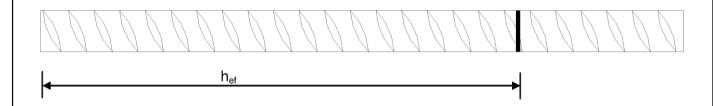
TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete

Product description


Injection system

Annex A 2

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete	
Product description Threaded rod and reinforcing bar	Annex A 3

Z36329.17

English translation prepared by DIBt

Part	Designation	Material			
	, zinc plated ≥ 5 μm acc. to EN ISO 4042:19 , hot-dip galvanised ≥ 40 μm acc. to EN ISO		C:2009		
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 4.8, 5.8, 8.8, EN 199 A ₅ > 8% fracture elongation			
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 102 Property class 4 (for class 4.6 or 4.8 rod Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS) EN ISO 898-2:2012, SO 898-2:2012,		
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised			
Stain	less steel				
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 Property class 50 EN ISO 3506-1:2009 Property class 70 (\leq M24) EN ISO 3506-A ₅ > 8% fracture elongation	·		
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005, Property class 50 (for class 50 rod) EN ISO 3506-2:2009 Property class 70 (≤ M24) (for class 70 rod) EN ISO 3506-2:2009			
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000				
High	corrosion resistance steel				
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:20 Property class 50 EN ISO 3506-1:2009 Property class 70 (\leq M24) EN ISO 3506-A ₅ > 8% fracture elongation			
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:20 Property class 50 (for class 50 rod) EN I Property class 70 (≤ M24) (for class 70 r	SO 3506-2:2009		
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005		
Reinf	orcing bars				
Rebar EN 1992-1-1:2004+AC:2010, Annex C					
		1			
тох	Injection System Liquix Multi 1 or Liquix	Multi 1 snow for concrete			
Prod	duct description	Annex A 4			

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- · Cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- · Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- · Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete	
Intended Use	Annex B 1
Specifications	

English translation prepared by DIBt

Table B1: Installation parameters for threaded rod									
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective encharage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >	0							
Trickness of fixture	t _{fix,max} [mm] <	1500							
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm				h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter d ₀ [mm] =		12	14	16	18	20	24	32	35	40
Effective anchorage depth	$h_{ef,min}$ [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	$h_{ef,max}$ [mm] =	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm				h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40 50		60	70	80	100	125	140	160

TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete	
Intended Use	Annex B 2
Installation parameters	

Steel brush RBT

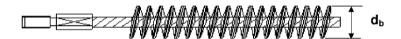
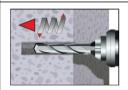


Table B3: Parameter cleaning and setting tools

Threaded Rod	Rebar	d₀ Drill bit - Ø	d _b Brush - Ø		d _{b,min} min. Brush - Ø	Piston plug
(mm)	(mm)	(mm)		(mm)	(mm)	(No.)
M8		10	RBT10	12	10,5	
M10	8	12	RBT12	14	12,5	
M12	10	14	RBT14	16	14,5	No
	12	16	RBT16	18	16,5	piston plug required
M16	14	18	RBT18	20	18,5	,
	16	20	RBT20	22	20,5	
M20	20	24	RBT24	26	24,5	VS24
M24		28	RBT28	30	28,5	VS28
M27	25	32	RBT32	34	32,5	VS32
M30	28	35	RBT35	37	35,5	VS35
	32	40	RBT40	41,5	40,5	VS40

Hand pump (volume 750 ml)

Drill bit diameter (d_0) : 10 mm to 20 mm – uncracked concrete


Drill bit diameter (d₀): 10 mm to 40 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d_0): 24 mm to 40 mm


TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions


1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2). In case of aborted drill hole: the drill hole shall be filled with mortar

or

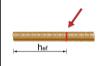
or

Attention! Standing water in the bore hole must be removed before cleaning.

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can **only** be used for anchor sizes in uncracked concrete up to bore hole diameter 20mm or embedment depth up to 240mm.

Compressed air (min. 6 bar) can be used for all sizes in cracked and uncracked concrete.


2b. Check brush diameter (Table B3) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B3).

2c. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used. The hand-pump can **only** be used for anchor sizes in uncracked concrete up to bore hole diameter 20mm or embedment depth up to 240mm. Compressed air (min. 6 bar) can be used for all sizes in cracked and uncracked concrete.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

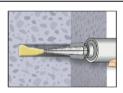
¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 240 mm also in cracked concrete with hand-pump.

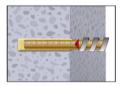
- 3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use.

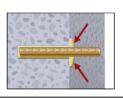
 For every working interruption longer than the recommended working time (Table B4 or B5) as well as for new cartridges, a new static-mixer shall be used.
- 4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
- 5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges is must be discarded a minimum of six full strokes.

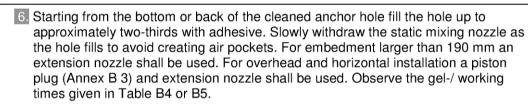
TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete

Intended Use


Installation instructions


Annex B 4


Z36329.17



Installation instructions (continuation)

Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4 or B5).

10. After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Maximum Working time and minimum curing time Table B4: Liquix Multi 1

Concrete temperature		perature	Gelling- / working time	Minimum curing time in dry concrete 1)
-10 °C	to	-6°C	90 min ²⁾	24 h ²⁾
-5 °C	to	-1°C	90 min	14 h
0 °C	to	+4°C	45 min	7 h
+5 °C	to	+9°C	25 min	2 h
+ 10 °C	to	+19°C	15 min	80 min
+ 20 °C	to	+29°C	6 min	45 min
+ 30 °C	to	+34°C	4 min	25 min
+ 35 °C	to	+39°C	2 min	20 min
> + 40 °C 1,5 min		1,5 min	15 min	
Cartridge temperature +5°C to +40°C			+40°C	

¹⁾ In wet concrete the curing time must be doubled.
2) Cartridge temperature must be at min. +15°C.

Maximum Working time and minimum curing time Table B5: Liquix Multi 1 snow

Concre	te tem	perature	Gelling- / working time	Minimum curing time in dry concrete 1)			
-20 °C	to	-16°C	75 min	24 h			
-15 °C	to	-11°C	55 min	16 h			
-10 °C	to	-6°C	35 min	10 h			
-5 °C	to	-1°C	20 min	5 h			
0 °C	to	+4°C	10 min	2,5 h			
+5 °C	to	+9°C	6 min	80 Min			
+	10 °C		6 min	60 Min			
Cartrido	ge tem	perature	-20°C to	o +10°C			

¹⁾ In wet concrete the curing time must be doubled.

TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete	
Intended Use	Annex B 6
Curing time	

2,38

1,56

Tal	ole C1: Characteristic values for s		on res	istar	nce a	nd st	teel s	shea	r		
Size				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Chara	acteristic tension resistance, Steel failure										
Steel,	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Steel,	Property class 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel,	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Nichtr	ostender Stahl A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Nichtr	ostender Stahl A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
Chara	acteristic tension resistance, Partial safety factor	'	_								
Steel,	Property class 4.6	γ _{Ms,N} 1)	[-]				2	,0			
Steel,	Property class 4.8	γ _{Ms,N} 1)	[-]				1	,5			
Steel,	Property class 5.8	γ _{Ms,N} 1)	[-]	1,5							
Steel,	Property class 8.8	γ _{Ms,N} 1)	[-]				1	,5			
Stainl	ess steel A4 and HCR, Property class 50	γ _{Ms,N} 1)	[-]				2,	86			
Stainl	ess steel A4 and HCR, Property class 70	γ _{Ms,N} 1)	[-]				1,	87			
Chara	acteristic shear resistance, Steel failure										
arm	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
er ar	Steel, Property class 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
rt lev	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Without lever	Stainless steel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
>	Stainless steel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
_	Steel, Property class 4.6 and 4.8	M _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
arm	Steel, Property class 5.8	M _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
ever	Steel, Property class 8.8	M _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
With lever	Stainless steel A4 and HCR, Property class 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
>	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
Chara	acteristic shear resistance, Partial safety factor										
	Property class 4.6	γ _{Ms,V} 1)	[-]				1,	67			
	Property class 4.8	γ _{Ms,V} 1)	[-]				1,	25			
	Property class 5.8	γ _{Ms,V} 1)	[-]	1,25							
Steel,	Property class 8.8	γ _{Ms,V} 1)	[-]	1,25							

¹⁾ in absence of national regulation

Stainless steel A4 and HCR, Property class 50

Stainless steel A4 and HCR, Property class 70

TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

γ_{Ms,V} 1)

γ_{Ms,V} 1)

[-]

[-]

Anchor size threaded	rod			М 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel failure		T									
Characteristic tension r	esistance	N _{Rk,s}	[kN]					able C1			
Double Leafabarfactor		N _{Rk,s,C1}	[kN]					N _{Rk,s}			
Partial safety factor	d a a sa a sa da	γMs,N	[-]				see 18	able C1			
Combined pull-out an		000/05									
	sistance in non-cracked co		FN1/ 63	- 10	10	1 40	10				
Temperature range I: 40°C/24°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10	12	12	12	12	11	10	9
	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,5 7,5	8,5 9	8,5 9	8,5 9	9	formance I 8,5	7,5	6,5
Temperature range II: 80°C/50°C	flooded bore hole	T _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	_	formance [
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5.0
120°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	4,0	5,0	5,0	5,0	- /	formance I	,	,
Characteristic bond res	sistance in cracked concre			.,-	- , -	-,-					
		$ au_{Rk,cr}$	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	dry and wet concrete	τ _{Rk,C1}	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	4,0	4,0	5,5	5,5	No Per	formance I	Determine	d (NPE
	nooded bore note	τ _{Rk,C1}	[N/mm ²]	2,5	2,5	3,7	3,7	No Per	formance I	Determine	d (NPE
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:	ary and wet controlled	τ _{Rk,C1}	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	2,5	3,0	4,0	4,0		formance I		
		τ _{Rk,C1}	[N/mm²]	1,6	1,9	2,7	2,7		formance I		<u> </u>
	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III: 120°C/72°C		τ _{Rk,C1}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1 formance I	2,4	2,4 d (NDI
120 0/12 0	flooded bore hole	τ _{Rk,cr}	[N/mm ²] [N/mm ²]	2,0 1,3	2,5 1,6	3,0 2,0	3,0 2,0		formance I		
		τ _{Rk,C1}		1,3	1,0	2,0		02	offinance i	Jeteriiiile	u (INFL
		C30/37					04				
Increasing factors for c		C35/45					07				
(only static or quasi-sta	itic actions)	C40/50)				08				
$\Psi_{ extsf{c}}$		C45/55	5	1,09							
		C50/60)				1,	10			
Factor according to	Non-cracked concrete		.,				10),1			
CEN/TS 1992-4-5 Section 6.2.2.3	Cracked concrete	- k ₈	[-]				,2				
Concrete cone failure)										
Factor according to	Non-cracked concrete	k _{ucr}	[-]				10),1			
CEN/TS 1992-4-5	Cracked concrete	k _{cr}	[-]					,2			
Section 6.2.3.1	Cracked concrete							-			
Edge distance		C _{cr,N}	[mm]					h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0) h _{ef}			
Splitting		ı									
Edge distance		C _{cr,sp}	[mm]		1,0	·h _{ef} ≤2	2 · h _{ef} (2	$5 - \frac{h}{h_{ef}}$	∫ ≤ 2,4 ⋅	h _{ef}	
Axial distance		S _{cr,sp}	[mm]				2 0	cr,sp			
Installation safety facto	r (dry and wet concrete)	$\gamma_2 = \gamma_{inst}$		1,0				1,2			
Installation safety facto		$\gamma_2 = \gamma_{inst}$			1	,4		No Per	formance I	Determine	d (NPI
TOX Injection Sy	rstem Liquix Multi 1		lti 1 sno	w for c	oncret	Α.		<u> </u>			
Performances	es of tension loads unde	·							Ann	ex C	2

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm											
	$V_{Rk,s}$	[kN]				see Ta	able C1				
Characteristic shear resistance	V _{Rk,s,C1}	[kN]	0,70 • V _{Rk,s}								
Partial safety factor	γ _{Ms,V}	[-]				see Ta	ıble C1				
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	•	0,8									
Steel failure with lever arm	'										
Characteristic banding mamont	M ⁰ _{Rk,s}	[Nm]				see Ta	ble C1				
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]	No Performance Determined (NPD)								
Partial safety factor	γMs,V	[-]				see Ta	ble C1				
Concrete pry-out failure		•									
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎					2	,0				
Installation safety factor	$\gamma_2 = \gamma_{inst}$		1,0								
Concrete edge failure											
Effective length of anchor	l _t	[mm]				$I_f = min(h$	l _{ef} ; 8 d _{nom})				
Outside diameter of anchor	d _{nom} [mm] 8 10 12 16 20 24 27								27	30	
Installation safety factor $\gamma_2 = \gamma_{\text{inst}}$ 1,0											

TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)	Annex C 3

Table C4: Chasei	aracteris smic act						er sta	tic, qı	ıasi-s	static	actio	n and	l
Anchor size reinforcin					Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension re	neietanea		$N_{Rk,s}$	[kN]					A _s • f _{uk} ¹				
Characteristic tension re	esistance		N _{Rk,s,C1}	[kN]				1,	0 ⋅ A _s ⋅ f	uk			
Cross section area			As	[mm²]	50	79	113	154	201	214	491	616	804
Partial safety factor			γMs,N	[-]					1,4 ²⁾				
Combined pull-out and	d concrete fa	ilure											
Characteristic bond resi			ncrete C20										
Temperature range I:	dry and wet		$ au_{Rk,ucr}$	[N/mm ²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore		$ au_{Rk,ucr}$	[N/mm²]	7,5	8,5	8,5	8,5	8,5	_	ormance [<u> </u>
Temperature range II: 80°C/50°C	dry and wet		$ au_{Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
	flooded bore		$ au_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	_	ormance [1	`
Temperature range III: 120°C/72°C	dry and wet		τ _{Rk,ucr}	[N/mm²] [N/mm²]	5,5 4,0	6,5 5,0	6,5 5,0	6,5 5,0	6,5 5,0	6,5	6,0 formance [5,0	4,5
Characteristic bond resi			τ _{Rk,ucr}	[IN/IIIII-]	4,0	5,0	5,0	5,0	5,0	I No Pen	offiance i	Jetermine	a (INFL
Characteristic bond resi			τ _{Rk,cr}	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	dry and wet	concrete	τ _{Rk,C1}	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C			τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5	5,5		ormance [,	,
	flooded bore	e hole	τ _{Rk,C1}	[N/mm²]	2,5	2,5	3,7	3,7	3,7		ormance [()
	alms and		$ au_{Rk,cr}$	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:	dry and wet	concrete	τ _{Rk,C1}	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	flooded bore	o holo	$ au_{Rk,cr}$	[N/mm²]	2,5	3,0	4,0	4,0	4,0	No Perf	ormance [Determine	ed (NPD
	llooded bore	e noie	$\tau_{Rk,C1}$	[N/mm²]	1,6	1,9	2,7	2,7	2,7	No Perf	ormance [Determine	ed (NPD
	dry and wet concrete		$\tau_{Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III:	ary and wet	001101010	$\tau_{Rk,C1}$	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
20°C/72°C flooded bore hole		$ au_{Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0		ormance [
			τ _{Rk,C1}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	No Perf	ormance [Determine	ed (NPD
			C25/30 1,02 C30/37 1,04										
Increasing factors for co	ncrete		C35/45 1,07										
(only static or quasi-stat	ic actions)			0/50					1,08				
ψ_{c}				5/55					1,09				
				0/60					1,10				
Factor according to	Non-cracke	d concrete							10,1				
CEN/TS 1992-4-5			- k ₈	[-]									
Section 6.2.2.3	Cracked cor	ncrete							7,2				
Concrete cone failure	I				I								
Factor according to CEN/TS 1992-4-5	Non-cracke	d concrete	k _{ucr}	[-]					10,1				
Section 6.2.3.1	Cracked cor	ncrete	k _{cr}	[-]					7,2				
Edge distance	1		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance				[mm]					3,0 h _{ef}				
Splitting			S _{cr,N}	tumil					O,O Hef				
Edge distance			C _{cr,sp}	[mm]			1,0 · h _{ef}	≤2·h _e	_{of} 2,5 –	$\frac{h}{h_{cf}}$ \leq	2,4 · h _{ef}		
Axial distance			S _{cr,sp}	[mm]					2 C _{cr,sp}	91 /			
Installation safety factor	(dry and wet	concrete)	$\gamma_2 = \gamma_{inst}$		1,0					,2			
Installation safety factor	(flooded bore	e hole)	$\gamma_2 = \gamma_{inst}$				1,4			No Perf	ormance [Determine	ed (NPD
1) f _{uk} shall be tak 2) in absence of	en from the	specificati	ons of rein	forcing ba	rs								
TOX Injection Sys			or Liqui	x Multi 1	snow	for co	ncrete						
Performances Characteristic values seismic action (perfo			er static, q	uasi-static	action a	and					Anne	ex C 4	1

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm									'		
Characteristic shape varietance	$V_{Rk,s}$	[kN]				0,5	0 • A _s •	f _{uk} 1)			
Characteristic shear resistance	V _{Rk,s,C1}	[kN]	0,35 • A _s • f _{uk} ¹⁾								
Cross section area	As	[mm²]	50	79	113	154	201	214	491	616	804
Partial safety factor	[-]					1,5 ²⁾					
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	•	0,8									
Steel failure with lever arm											
Characteristic banding memort	M ⁰ _{Rk,s}	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Characteristic bending moment	M ⁰ Rk,s, C1	[Nm]	No Performance Determined (NPD)								
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial safety factor	γMs,V	[-]					1,5 ²⁾				
Concrete pry-out failure		'	•								
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎		2,0								
Installation safety factor	$\gamma_2 = \gamma_{inst}$						1,0				
Concrete edge failure											
Effective length of anchor	l _t	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$								
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor	γ2 = γinst						1,0				

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars in absence of national regulation

TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)	Annex C 5

English translation prepared by DIBt

Table C6: Di	splaceme	nts under tensio	on load ¹	(threa	ded ro	od)						
Anchor size thread	led rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Non-cracked conc	rete C20/25											
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049		
40°C/24°C	$\delta_{N_{\infty}}\text{-factor}$	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
120°C/72°C	$\delta_{N_{\infty}}\text{-factor}$	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Cracked concrete	C20/25											
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90	0,070							
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,1	05	0,105							
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70				
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245				
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70				
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245				

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Displacements under shear load¹⁾ (threaded rod) Table C7:

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
For non-cracked concrete C20/25												
All temperature ranges	δ _{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03		
	$\delta_{V_\infty}\text{-factor}$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05		
For cracked concrete C20/25												
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07		
	$\delta_{V\infty}\text{-factor}$	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10		

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \quad V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \quad V; \end{split}$$
V: action shear load

TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete	
Performances	Annex C 6
Displacements (threaded rods)	

8.06.01-180/17 Z36329.17

Table C8: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinfo	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Non-cracked concrete C20/25												
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete C20/25												
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,090		0,070							
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,105		0,105							
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,219		0,170							
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,255		0,245							
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,219		0,170							
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,255		0,245							

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$ τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Displacement under shear load¹⁾ (rebar) Table C9:

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete C20/25											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

 $[\]begin{array}{l} ^{1)} \mbox{ Calculation of the displacement} \\ \delta_{V0} = \delta_{V0}\mbox{-factor} \ \cdot \mbox{ V}; \\ \delta_{V\infty} = \delta_{V\infty}\mbox{-factor} \ \cdot \mbox{ V}; \end{array}$

V: action shear load

TOX Injection System Liquix Multi 1 or Liquix Multi 1 snow for concrete	
Performances	Annex C 7
Displacements (rebar)	