

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0548 vom 10. August 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

ESSVE EKD / EKD-K

Wegkontrolliert spreizender Dübel zur Verankerung im ungerissenen Beton

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

Production plant no. 516

16 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Europäisches Bewertungsdokument (EAD) 330232-00-0601, ausgestellt.

Europäische Technische Bewertung ETA-17/0548

Seite 2 von 16 | 10. August 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-17/0548

Seite 3 von 16 | 10. August 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Einschlaganker ESSVE EKD / EKD-K ist ein Dübel aus galvanisch verzinktem Stahl, aus nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung				
Charakteristische Werte des Widerstandes gegen Zug- und Querbeanspruchung sowie Biegung in Beton	Siehe Anhang C 1 bis C 4				
Rand- und Achsabstände	Siehe Anhang C 1 bis C 2				
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 5				

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

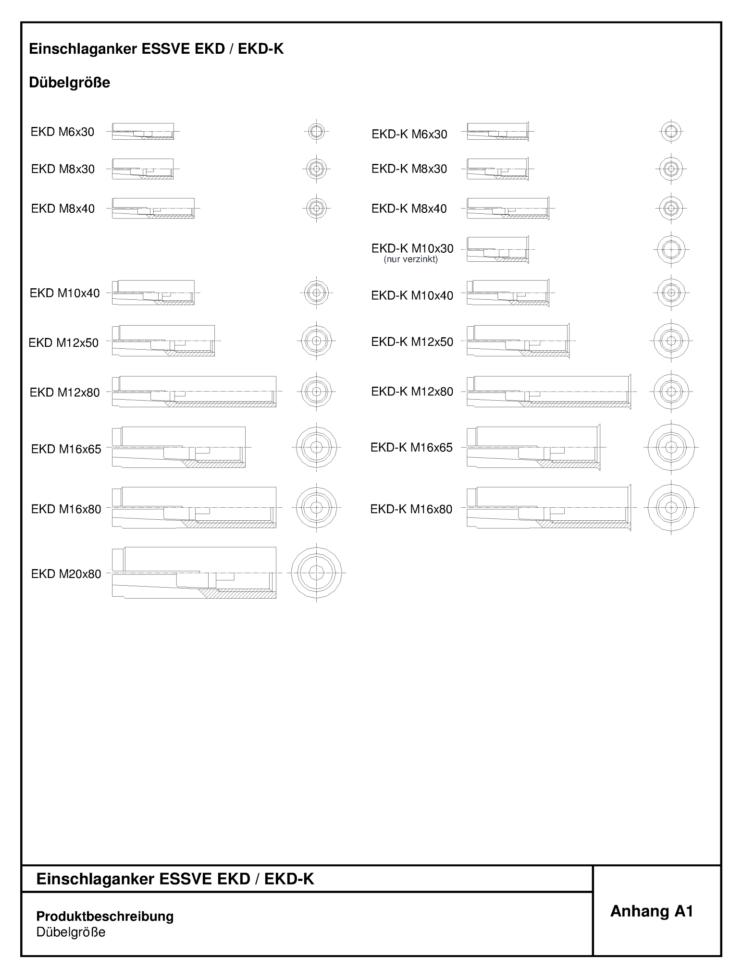
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß den Europäischen Bewertungsdokumenten EAD Nr. 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Europäische Technische Bewertung ETA-17/0548

Seite 4 von 16 | 10. August 2017


Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 10. August 2017 vom Deutschen Institut für Bautechnik

Andreas Kummerow Abteilungsleiter Beglaubigt:

Z37484.17

Einbausituation

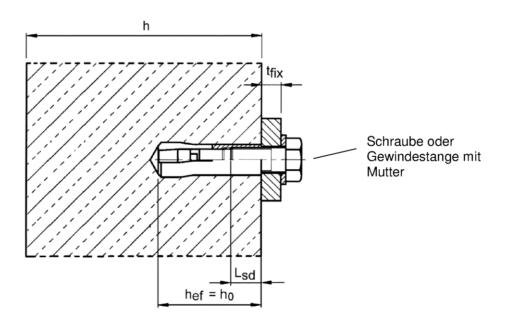
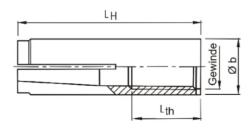
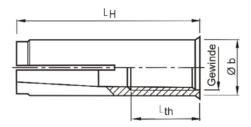


Tabelle A1: Benennung und Werkstoffe


Teil	galvanisch verzinkt		Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl HCR		
1	Dübelhülse	Kaltstauch- bzw. Automatenstahl, galvanisch verzinkt, EN ISO 4042:1999	Nichtrostender Stahl, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, Festigkeitsklasse 70, EN ISO 3506:2010	Nichtrostender Stahl, 1.4529, 1.4565, EN 10088:2005, Festigkeitsklasse 70, EN ISO 3506:2010		
2	Konus	Kaltstauchstahl nach EN 10263-2:2001	Nichtrostender Stahl, 1.4401, 1.4 10088:2005	404, 1.4571, 1.4362, EN		

Einschlaganker ESSVE EKD / EKD-K	
Produktbeschreibung Einbausituation und Werkstoffe	Anhang A2



Dübelhülse

Dübelversion ohne Kragen (EKD)

Dübelversion mit Kragen (EKD-K)

Konus

Prägung: siehe Tabelle A2

z.B.: \bigcirc E M8x40 \bigcirc Werkzeichen E Dübelkennung

ES

(Version ohne Kragen) Dübelkennung

(Version mit Kragen) M8 Gewindegröße

40 VerankerungstiefeA4 zusätzliche Kennung für

nichtrostenden Stahl A4 HCR zusätzliche Kennung für

hochkorrosionsbeständigen Stahl

Tabelle A2: Dübelabmessungen und Prägung

	Dübelhülse			übelhülse Konus			Prägung				
Dübel- größe	Gewinde	Øb	L _H	L _{th}	Øk	L _K Version EKD Version EKD-K (mit Kragen)		alternativ			
M6x30	M6	8	30	13	5,0	13		⇔ ES M6x30			
M8x30	M8	10	30	13	6,5	12		⇔ ES M8x30			
M8x40	M8	10	40	20	6,5	6,5		⇔ ES M8x40			
M10x30	M10	12	30	12	8,2	12	-	⇔ ES M10x30			
M10x40	M10	12	40	15	8,2	16		⇔ ES M10x40			
M12x50	M12	15	50	18	10.0	10,3	20		⇔ ES M12x50		
M12x80	M12	15	80	45	10,3	20		⇔ ES M12x80			
M16x65	M16	19,7	65	23	12.0	29		⇔ ES M16x65			
M16x80	M16	19,7	80	38	13,8	29		⇔ ES M16x80			
M20x80	M20	24,7	80	34	16,5	30					

Maße in mm

Einschlaganker ESSVE EKD / EKD-K

Produktbeschreibung

Dübelabmessungen und Prägung

Anhang A3

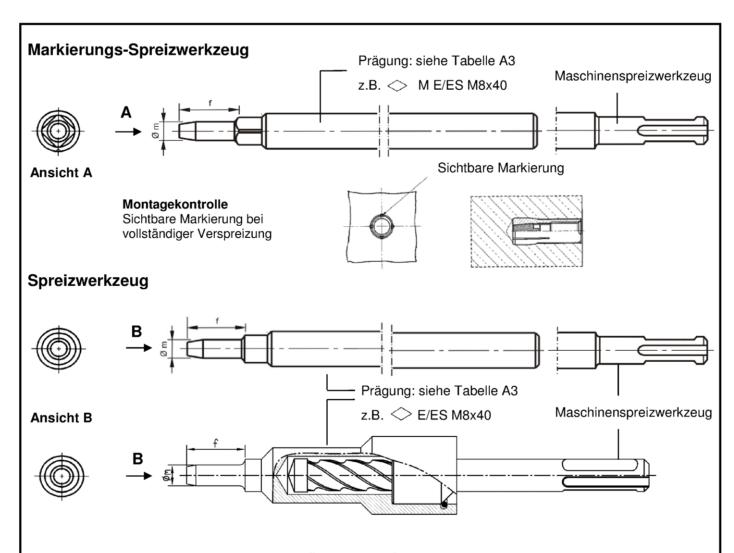


Tabelle A3: Abmessungen und Prägung der Spreizwerkzeuge

Dübel-	_		Markierungs-Sp	reizwerkzeug	Spreizwe	erkzeug
größe	Øm	f	Prägung	Alternative Prägung	Prägung	Alternative Prägung
M6x30	4,9	17	⇔ M E/ES M6x30		⇒ E/ES M6x30	⇒ EM6
M8x30	6,4	18	⇔ M E/ES M8x30		⇒ E/ES M8x30	⇒ E M8
M8x40	6,4	28				⇒ E M8x40
M10x30	8,0	18			⇒ ES M10x30	⇒ E M10x30
M10x40	8,0	24				⇒ E M10
M12x50	10,0	30				⇒ E M12
M12x80	10,0	60				⇒ E M12x80
M16x65	13,5	36				⇒ E M16
M16x80	13,5	51				⇒ E M16x80
M20x80	16,5	50			⇒ E M20x80	⇒ E M20

Maße in mm

Einschlaganker ESSVE EKD / EKD-K	
Produktbeschreibung Setzwerkzeug, Abmessungen und Prägung	Anhang A4

Spezifizierung des Verwendungszwecks

Verankerungen unter:

· Statische oder quasi-statische Einwirkung

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000
- Ungerissener Beton
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206-1:2000

Anwendungsbedingungen:

- Bauteile unter Bedingungen trockener Innenräume (galvanisch verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder Bauteile in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Festigkeitsklasse und die L\u00e4nge der Befestigungsschraube oder der Gewindestange m\u00fcssen vom Planer festgelegt werden.
- Bemessung der Verankerungen erfolgt nach FprEN 1992-4:2016 in Verbindung mit EOTA Technical Report TR 055.

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation angegebenen Spreizwerkzeugen,
- Bohrlocherstellung nur durch Hammerbohren,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.

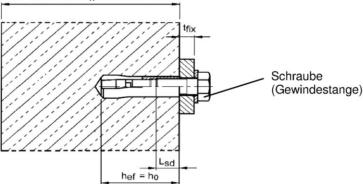

Verwendungszweck Spezifikationen Einschlaganker ESSVE EKD / EKD-K Anhang B1

Tabelle B1: Montage- und Dübelkennwerte

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65	M16x80	M20x80
Bohrlochtiefe	h ₀ =	[mm]	30	30	40	30	40	50	80	65	80	80
Bohrernenndurchmesser	d ₀ =	[mm]	8	10	10	12	12	15	15	20	20	25
Bohrerschneiden- durchmesser	$d_{cut} \leq$	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	15,5	20,55	20,55	25,55
max. Drehmoment beim Verankern 1)	T _{inst} ≤	[Nm]	4	8	8	15	15	35	35	60	60	120
Durchgangsloch im anzuschließenden Bauteil	$d_f \leq$	[mm]	7	9	9	12	12	14	14	18	18	22
Gewindelänge	L_{th}	[mm]	13	13	20	12	15	18	45	23	38	34
Mindesteinschraubtiefe	L _{sdmin}	[mm]	7	9	9	10	11	13	13	18	18	22
Stahl, galvanisch verzink	t											
Mindestbauteildicke	h _{min}	[mm]	100	100	100	120	120	130	130	160	160	200
Minimaler Achsabstand	Smin	[mm]	55	60	80	100	100	120	120	150	150	160
Minimaler Randabstand	C _{min}	[mm]	95	95	95	115	135	165	165	200	200	260
Nichtrostender Stahl A4,		9										
Mindestbauteildicke	h _{min}	[mm]	100	100	100	-	130	140	140	160	160	250
Minimaler Achsabstand	Smin	[mm]	50	60	80	-	100	120	120	150	150	160
Minimaler Randabstand	C _{min}	[mm]	80	95	95	-	135	165	165	200	200	260

Wenn die Schraube oder Gewindestange anderweitig gegen Herausdrehen gesichert ist, kann auf das Drehmoment verzichtet werden.

Anforderungen an die Schraube bzw. an die Gewindestange und Mutter entsprechend Planungsunterlagen:

- Minimale Einschraubtiefe L_{sdmin} siehe Tabelle B1
- Die Länge der Schraube bzw. der Gewindestange muss in Abhängigkeit von der Anbauteildicke t_{fix}, der vorhandenen Gewindelänge L_{th} (= maximale Einschraubtiefe) und der minimalen Einschraubtiefe L_{sdmin} festgelegt werden.
- A₅ > 8 % Duktilität

Stahl, galvanisch verzinkt

Festigkeitsklasse 4.6 / 5.6 / 5.8 oder 8.8 nach EN ISO 898-1:2013 bzw. EN ISO 898-2:2012

Nichtrostender Stahl A4

- Werkstoff 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362, nach EN 10088:2005
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010

Hochkorrosionsbeständiger Stahl (HCR)

- Werkstoff 1.4529; 1.4565, nach EN 10088:2005
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010

Verwendungszweck Montage- und Dübelkennwerte Einschlaganker ESSVE EKD / EKD-K Anhang B2

Montageanweisung Bohrloch senkrecht zur Oberfläche des 1 Verankerungsgrunds erstellen. Bohrloch vom Grund her ausblasen. 2 3 Anker einschlagen. Konus mit Spreizwerkzeug eintreiben. Der Anschlag des Spreizwerkzeugs muss auf dem 5 Ankerrand aufsetzen. TINST Montagedrehmoment T_{inst} mit kalibriertem Drehmomentschlüssel aufbringen. 6

Einschlaganker ESSVE EKD / EKD-K	
Verwendungszweck Montageanweisung	Anhang B3

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80
Montagesicherheitsbeiwert	γinst	[-]					1,2				
Stahlversagen											
Charakteristische Zugtragfähigkeit Stahl 4.6	$N_{Rk,s}$	[kN]	8,0	14,	6	23,	2	33	3,7	62,8	98,0
Teilsicherheitsbeiwert	γMs	[-]					2,0				
Charakteristische Zugtragfähigkeit Stahl 5.6	$N_{\text{Rk},s}$	[kN]	10,0	18,	3	18,0	20,2	42	2,1	78,3	122,4
Teilsicherheitsbeiwert	γMs	[-]		2,0		1,	5		2,	0	
Charakteristische Zugtragfähigkeit Stahl 5.8	$N_{Rk,s}$	[kN]	10,0	17,6	18,3	18,0	20,2	40,2	42,1	67,1	106,4
Teilsicherheitsbeiwert	γMs	[-]			1	,5				1,6	
Charakteristische Zugtragfähigkeit Stahl 8.8	$N_{Rk,s}$	[kN]	15,0	17,6	19,9	18,0	20,2	40,2	43,0	67,1	106,4
Teilsicherheitsbeiwert	γMs	[-]			1	,5				1,	6
Herausziehen											
Charakteristische Tragfähigkeit im Beton C20/25	$N_{Rk,p}$	[kN]	2)	2)	9	2)	2)	2	2)	2)	2)
Spalten											
Charakteristische Tragfähigkeit im Beton C20/25	$N^0_{Rk,sp}$	[kN]	8,1	8,1	9,0	8,1	12,4	17	7,4	25,8	35,2
Randabstand	C _{cr,sp}	[mm]	95	95	95	115	135	16	65	200	260
Erhöhungsfaktor für N _{Rk,p} and N ^o _{Rk,sp}	Ψс	[-]					$\left(\frac{f_{ck}}{20}\right)^{0,3}$				
Betonausbruch											
Verankerungstiefe	h _{ef}	[mm]	30	30	40	30	40	5	0	65	80
Randabstand	$c_{\text{cr},N}$	[mm]					1,5 h _{ef}				
Faktor für k ₁	$k_{\text{ucr},N}$	[-]					11,0				

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen 2) Herausziehen ist nicht maßgebend

Einschlaganker ESSVE EKD / EKD-K	
Leistung Charakteristische Werte bei Zugbeanspruchung, verzinkt	Anhang C1

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl A4, HCR

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80	
Montagesicherheitsbeiwert	γinst	[-]				1,0				
Stahlversagen										
Charakteristische Zugtragfähigkeit (Festigkeitsklasse 70)	$N_{\text{Rk,s}}$	[kN]	14,1	23,	3	29,4	50,2	83,8	133,0	
Charakteristische Zugtragfähigkeit (Festigkeitsklasse 80)	$N_{\text{Rk},s}$	[kN]	17,5	23,	3	29,4	50,2	83,8	133,0	
Teilsicherheitsbeiwert	γMs	[-]				1,87				
Herausziehen				_	-	-	-	-	-	
Charakteristische Tragfähigkeit im Beton C20/25	$N_{Rk,p}$	[kN]	2)	2)	9	2)	2)	2)	2)	
Spalten				_		_	_	_		
Charakteristische Tragfähigkeit im Beton C20/25	$N^0_{Rk,sp}$	[kN]	8,1	8,1	9,0	12,4	17,4	25,8	35,2	
Randabstand	C _{cr,sp}	[mm]	80	95	95	135	165	200	260	
Erhöhungsfaktor für N _{Rk,p} und N ^o _{Rk,sp}	Ψ¢	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$							
Betonausbruch										
Verankerungstiefe	h _{ef}	[mm]	30 ³⁾	30	40	40	50	65	80	
Randabstand c _{cr,N} [mm]				1,5 h _{ef}						
Faktor für k ₁	k _{ucr,N}	[-]				11,0				

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen 2) Herausziehen ist nicht maßgebend.

Einschlaganker ESSVE EKD / EKD-K

Leistung

Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl A4, HCR

Anhang C2

Tabelle C3: Charakteristische Werte bei Querbeans	pruchung, verzinkt
---	--------------------

Dübelgröße	·		M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80	
Stahlversagen ohne He	belarm											
Charakteristische Tragfähigkeit Stahl 4.6	$V_{Rk,s}$	[kN]	4,0	7,3		11,6	9,6	16,8		31,3	49,0	
Teilsicherheitsbeiwert	γMs	[-]					1,67					
Charakteristische Tragfähigkeit Stahl 5.6	$V_{Rk,s}$	[kN]	5,0	9,1		10,1	9,6	21,1		39,2	61,2	
Teilsicherheitsbeiwert	γMs	[-]		1,67		1,25			1,67			
Charakteristische Tragfähigkeit Stahl 5.8	$V_{Rk,s}$	[kN]	5,0	6,	,9	10,1	7,2	19,4	21,1	33,5	53,2	
Teilsicherheitsbeiwert	γMs	[-]				1,25			-	1,	1,33	
Charakteristische Tragfähigkeit Stahl 8.8	$V_{Rk,s}$	[kN]	5,0	6,9		10,1	7,2	19,4	21,5	33,5	53,2	
Teilsicherheitsbeiwert	γMs	[-]		1,25						1,	1,33	
Duktilitätsfaktor	k ₇	[-]		1,0								
Stahlversagen mit Hebe	elarm											
Charakteristisches Biegemoment Stahl 4.6	$M^0_{Rk,s}$	[Nm]	6,1 15			30	30	52		133	259	
Teilsicherheitsbeiwert	γMs	[-]		1,67								
Charakteristisches Biegemoment Stahl 5.6	$M^0_{Rk,s}$	[Nm]	7,6	7,6 19			37	65		166	324	
Teilsicherheitsbeiwert	γMs	[-]		1,67								
Charakteristisches Biegemoment Stahl 5.8	$M^0_{Rk,s}$	[Nm]	7,6	7,6 19			37	65		166	324	
Teilsicherheitsbeiwert	γMs	[-]					1,25					
Charakteristisches Biegemoment Stahl 8.8	$M^0_{Rk,s}$	[Nm]	12	12 30			60	105		266	519	
Teilsicherheitsbeiwert	γMs	[-]		1,25								
Duktilitätsfaktor	k ₇	[-]	1,0									
Betonausbruch auf der	lastabgev	vandte	n Seite									
Faktor	k ₈	[-]	1,0 1,5						2,	0		
Betonkantenbruch												
Wirksame Dübellänge bei Querlast	I _f	[mm]	30	30	40	30	40	5	50	65	80	
Wirksamer Außendurchmesser	d_{nom}	[mm]	8	10	10	12	12	15		20	25	

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen

Einschlaganker ESSVE EKD / EKD-K Leistung Charakteristische Werte bei Querbeanspruchung, verzinkt Anhang C3

Tabelle C4: Charakteristische Werte bei Querbeanspruchung, nichtrostender Stahl A4, HCR

				•	•				•
Dübelgröße	M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80		
Stahlversagen ohne Hebelarm									
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 70)	$V_{Rk,s}$	[kN]	7,0	10,	6	13,4	25,1	41,9	66,5
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 80)	$V_{Rk,s}$	[kN]	8,7	10,	6	13,4	25,1	41,9	66,5
Teilsicherheitsbeiwert	γMs	[-]				1,56			
Duktilitätsfaktor	k ₇	[-]				1,0			
Stahlversagen mit Hebelarm									
Charakteristisches Biegemoment (Festigkeitsklasse 70)	$M^0_{Rk,s}$	[Nm]	11	2	6	52	92	233	454
Teilsicherheitsbeiwert	γMs	[-]	1,56						
Charakteristisches Biegemoment (Festigkeitsklasse 80)	$M^0_{Rk,s}$	[Nm]	12	12 30			105	266	519
Teilsicherheitsbeiwert	γMs	[-]	1,33						
Duktilitätsfaktor	k_7	[-]	1,0						
Betonausbruch auf der lastabgewand	ten Seite								
Faktor	k ₈	[-]	1,0 1,7 1,7 2,0					0	
Betonkantenbruch									
Wirksame Dübellänge bei Querlast	I _f	[mm]	30	30	40	40	50	65	80
Wirksamer Außendurchmesser	d _{nom}	[mm]	8	10	10	12	15	20	25

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen

Einschlaganker ESSVE EKD / EKD-K

_eistung

Charakteristische Werte bei Querbeanspruchung, nichtrostender Stahl A4, HCR

Anhang C4

Tabelle C5: Verschiebungen unter Zuglast

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40		M16x65 M16x80	M20x80
Stahl galvanisch verzinkt										
Zuglast im ungerissenen Beton	Ν	[kN]	3	3	3,6	3,3	4,8	6,4	10	14,8
Verschiebung	δ_{N0}	[mm]	0,24							
	δ_{N_∞}	[mm]				0,	36			
Nichtrostender Stahl A4 / HCR										
Zuglast im ungerissenen Beton	Ν	[kN]	4	4	4,3	-	6,1	8,5	12,6	17,2
Verschiebung	δ_{N0}	[mm]	0,12							
	δ_{N_∞}	[mm]	0,24							

Tabelle C6: Verschiebungen unter Querlast

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	1	M16x65 M16x80	M20x80
Stahl galvanisch verzinkt										
Querlast im ungerissenen Beton	٧	[kN]	2	4	4	5,7	4,0	11,3	18,8	32,2
Verschiebung	δ_{V0}	[mm]	0,9	0,9	1,0	1,5	0,6	1,2	1,2	1,6
	$\delta_{V_{\infty}}$	[mm]	1,3	1,3	1,5	2,3	0,9	1,9	1,9	2,4
Nichtrostender Stahl A4 / HCR	Nichtrostender Stahl A4 / HCR									
Querlast im ungerissenen Beton	٧	[kN]	3,5	5,2	5,2	-	6,5	11,5	19,2	30,4
Verschiebung	δ_{V0}	[mm]	1,9	1,1	0,7	-	1,0	1,7	2,4	2,6
	$\delta_{V\infty}$	[mm]	2,8	1,6	1,0	-	1,5	2,6	3,6	3,8

Einschlaganker I	ESSVE	EKD /	EKD-K
------------------	-------	-------	-------

Leistung Verschiebung Anhang C5