



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



## European Technical Assessment

## ETA-17/0567 of 10 August 2017

English translation prepared by DIBt - Original version in German language

### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Drop-in Anchor ESSVE EKD / EKD-K

Deformation-controlled expansion anchor for multiple use for non-structural applications in concrete

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

Production plant no. 516

20 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 6: "Anchors for multiple use for non-structural applications", January 2011,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



## **European Technical Assessment** ETA-17/0567

Page 2 of 20 | 10 August 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 20 | 10 August 2017

### European Technical Assessment ETA-17/0567 English translation prepared by DIBt

#### Specific Part

#### 1 Technical description of the product

The Drop-in Anchor ESSVE EKD / EKD-K is an anchor made of zinc-plated steel, of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

### 3 Performance of the product and references to the methods used for its assessment

### 3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding Mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                     |
|--------------------------|-------------------------------------------------|
| Reaction to fire         | Anchorages satisfy requirements for<br>Class A1 |
| Resistance to fire       | See Annex C 4 to C 5                            |

#### 3.3 Safety in use (BWR 4)

| Essential characteristic                                   | Performance          |
|------------------------------------------------------------|----------------------|
| Characteristic values for static and quasi- static actions | See Annex C 1 to C 3 |

# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, January 2011 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+



Page 4 of 20 | 10 August 2017

### European Technical Assessment ETA-17/0567 English translation prepared by DIBt

# Technical details necessary for the implementation of the AVCP system, as provided for

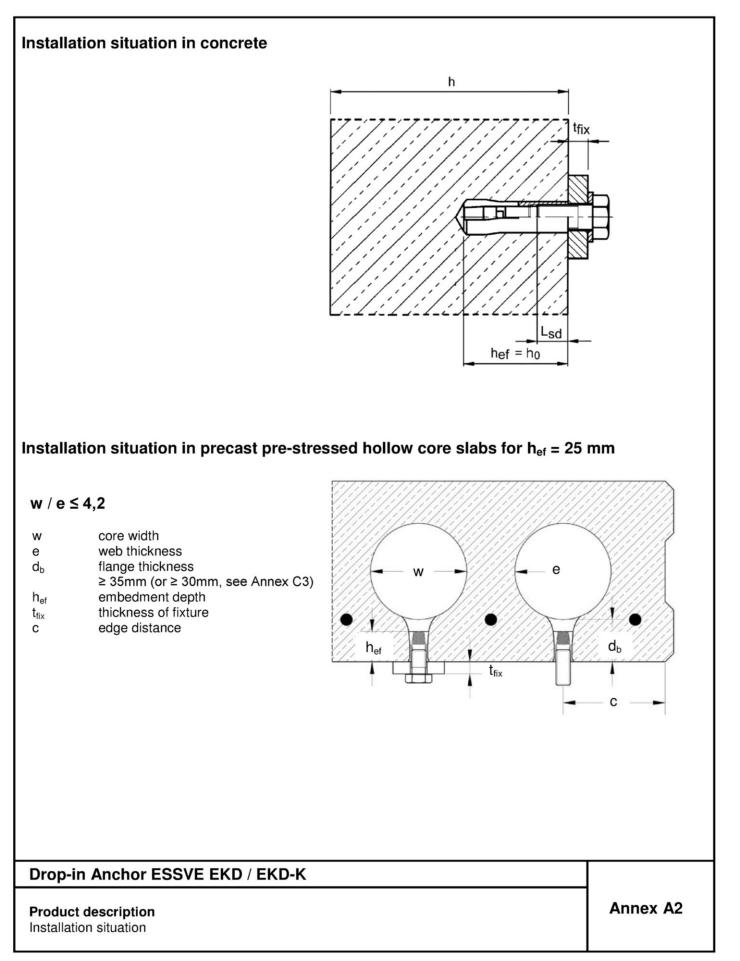
in the applicable European Assessment Document Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 10 August 2017 by Deutsches Institut für Bautechnik

Andreas Kummerow Head of Department

5

*beglaubigt:* Baderschneider




| Drop-in Anchor                     | ESSVE EKD / EKD-K                       |             |            |          |
|------------------------------------|-----------------------------------------|-------------|------------|----------|
| Anchorage depth                    | $h_{ef}$ = 25 mm (zinc plated           | )           |            |          |
| EKD-K M6x25                        |                                         | $\bigcirc$  |            |          |
| EKD-K M8x25                        |                                         |             |            |          |
| EKD-K M10x25                       |                                         | $\bigcirc$  |            |          |
| EKD-K M12x25                       |                                         | $\bigcirc$  |            |          |
| Anchorage depth                    | $h_{ef} \ge 30 \text{ mm}$ (zinc plated | , A4 or HC  | R)         |          |
| EKD-K M6x30                        |                                         | $\bigoplus$ | EKD M6x30  | -        |
| EKD-K M8x30                        |                                         |             | EKD M8x30  |          |
| EKD-K M8x40                        |                                         |             | EKD M8x40  | •        |
| EKD-K M10x30<br>(zinc plated only) |                                         | $\bigcirc$  |            |          |
| EKD-K M10x40                       |                                         | $\bigcirc$  | EKD M10x40 | ۲        |
| EKD-K M12x50                       |                                         |             | EKD M12x50 |          |
| EKD-K M16x65                       |                                         |             | EKD M16x65 |          |
| Drop-in Anchor                     | r ESSVE EKD / EKD-K                     |             |            |          |
| Product descriptic<br>Anchor size  | on                                      |             |            | Annex A1 |

## Page 6 of European Technical Assessment ETA-17/0567 of 10 August 2017

English translation prepared by DIBt





electronic copy of the eta by dibt: eta-17/0567

## Page 7 of European Technical Assessment ETA-17/0567 of 10 August 2017

English translation prepared by DIBt



## Table A1: Designation and Material Drop-in Anchor ESSVE EKD / EKD-K

| Part | Designation   | Steel, zinc plated                                                     | Stainless steel A4                                                                                                   | High corrosion<br>resistant steel HCR                                                           |
|------|---------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1    | Anchor sleeve | Cold formed or<br>machining steel,<br>zinc plated,<br>EN ISO 4042:1999 | Stainless steel (e.g. 1.4401,<br>1.4404, 1.4571, 1.4362)<br>EN 10088:2014,<br>Property class 70,<br>EN ISO 3506:2010 | Stainless steel, 1.4529,<br>1.4565,<br>EN 10088:2014,<br>Property class 70,<br>EN ISO 3506:2010 |
| 2    | Cone          | Cold formed or<br>machining steel                                      | Stainless steel (e.g. 1.4401, 1.44<br>EN 10088:2014                                                                  | 404, 1.4571, 1.4362)                                                                            |

# Requirements on the fastening screw or the threaded rod and nut according to the engineering documents:

- Minimum screw-in depth L<sub>sdmin</sub> see Table B1 and B2
- The length of screw or the threaded rod shall be determined depending on the thickness of fixture t<sub>fix</sub>, available thread length L<sub>th</sub> (= maximum screw-in depth) and the minimum screw-in depth L<sub>sdmin</sub>.
- A<sub>5</sub> > 8 % Ductility

## Steel, zinc plated

Property class 4.6 / 4.8 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012

#### Stainless steel A4

- Material 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088:2014
- Property class 70 or 80 according to EN ISO 3506:2010

#### High corrosion resistant steel (HCR)

- Material 1.4529; 1.4565, according to EN 10088:2014
- Property class 70 or 80 according to EN ISO 3506:2010

| h <sub>er</sub> =h <sub>0</sub><br>Screw<br>(threaded rod)                                                 | t <sub>fix</sub> |
|------------------------------------------------------------------------------------------------------------|------------------|
| Drop-in Anchor ESSVE EKD / EKD-K                                                                           |                  |
| <b>Product description</b><br>Material and requirements on the fastening screw or the threaded rod and nut | Annex A3         |

#### Page 8 of European Technical Assessment ETA-17/0567 of 10 August 2017

English translation prepared by DIBt

Anchor sleeve



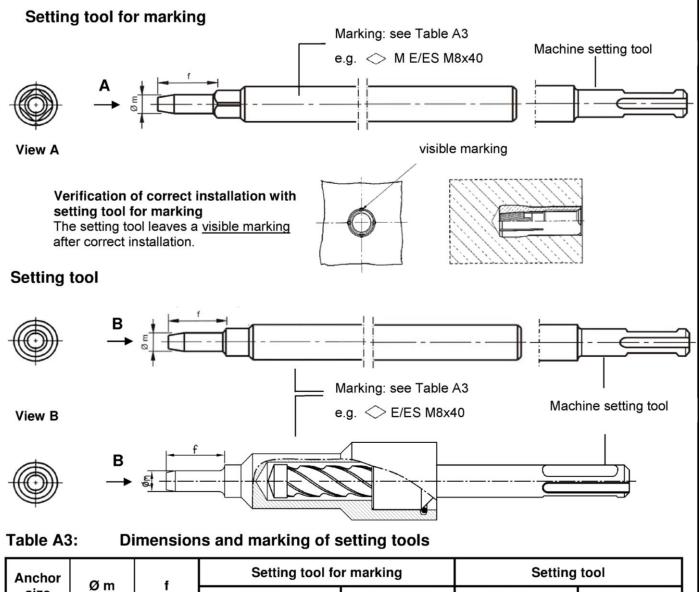
#### Anchor version without shoulder (EKD) Marking: see Table A2 LΗ e.g.: <> E M8x40 $\bigcirc$ Identifying mark of manufacturing plant thread Anchor identity (version without shoulder) Е 9 Ø ES Anchor identity (version with shoulder) M8 Size of thread Anchorage depth 40 Lth Anchor version with shoulder (EKD-K) A4 additional marking of stainless steel A4 LΗ HCR additional marking of high corrosion resistant steel thread q 0 Lth Øk Cone Remaining sizes Size M6x25 to M12x25, M6x30 and M10x30 Lκ

## Table A2: Dimensions and marking

|                | Anc    | hor s | leeve          |                 | Co   | one  |             | Marking       |               |
|----------------|--------|-------|----------------|-----------------|------|------|-------------|---------------|---------------|
| Anchor<br>size | thread | Øb    | L <sub>H</sub> | L <sub>th</sub> | Øk   | Lκ   | version EKD | version EKD-K | alternatively |
| M6x25          | M6     | 8     | 25             | 12              | 4,6  | 9    | -           | ES M6x25      | -             |
| M6x30          | M6     | 8     | 30             | 13              | 5,0  | 13   |             | ES M6x30      | ◇ E M6        |
| M8x25          | M8     | 10    | 25             | 12              | 6,3  | 9    | -           | S ES M8x25    | -             |
| M8x30          | M8     | 10    | 30             | 13              | 6,5  | 12   | ◇ E M8x30   | S ES M8x30    | ◇ E M8        |
| M8x40          | M8     | 10    | 40             | 20              | 6,5  | 12   |             | S ES M8x40    |               |
| M10x25         | M10    | 12    | 25             | 12              | 8,2  | 9    | -           |               | -             |
| M10x30         | M10    | 12    | 30             | 12              | 8,2  | 12   | -           |               |               |
| M10x40         | M10    | 12    | 40             | 15              | 8,2  | 16   | ◇ E M10x40  |               | ◇ E M10       |
| M12x25         | M12    | 15    | 25             | 12              | 9,7  | 10,7 | -           |               | -             |
| M12x50         | M12    | 15    | 50             | 18              | 10,3 | 20   | ◇ E M12x50  |               | ◇ E M12       |
| M16x65         | M16    | 19,7  | 65             | 23              | 13,8 | 29   | ◇ E M16x65  |               | ◇ E M16       |

Dimensions in mm

## Drop-in Anchor ESSVE EKD / EKD-K


Product description

Dimensions and marking

Annex A4

electronic copy of the eta by dibt: eta-17/0567





| Anchor | Øm   |      | Setting tool fo | r marking     | Setting    | tool             |
|--------|------|------|-----------------|---------------|------------|------------------|
| size   | Øm   | •    | Marking         | alternatively | Marking    | alternatively    |
| M6x25  | 4,9  | 17   | → M ES M6x25    | -             | S M6x25    | -                |
| M6x30  | 4,9  | 17   | → M E/ES M6x30  | 🗢 M E M6      | E/ES M6x30 | 🗢 E M6           |
| M8x25  | 6,4  | 17   | → M ES M8x25    | -             | ES M8x25   | -                |
| M8x30  | 6,4  | 18   | → M E/ES M8x30  | ◇ M E M8      |            | 🗢 E M8           |
| M8x40  | 6,4  | 28   | → M E/ES M8x40  | → M E M8x40   | E/ES M8x40 |                  |
| M10x25 | 8,0  | 18   | → M ES M10x25   | -             |            | -                |
| M10x30 | 8,0  | 18   | → M ES M10x30   |               |            |                  |
| M10x40 | 8,0  | 24   | → M E/ES M10x40 |               |            | 🗢 E M10          |
| M12x25 | 10,0 | 15,5 | → M ES M12x25   | -             |            | -                |
| M12x50 | 10,0 | 30   | → M E/ES M12x50 | → M E M12     |            | → E M12          |
| M16x65 | 13,5 | 36   | → M E/ES M16x65 | ◇ M E M16     |            | 🗢 E M16          |
|        |      |      |                 |               |            | Dimensions in mm |

## Dimensions in mm

## Drop-in Anchor ESSVE EKD / EKD-K

#### Product description

Setting tools, dimensions and marking



| Specifications of intended use                                                                                                                                             | е     |                                       |                       |              |        |        |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|-----------------------|--------------|--------|--------|--------|
| Drop-in Anchor                                                                                                                                                             |       |                                       |                       |              |        |        |        |
| Anchorage depth h <sub>ef</sub> ≥ 30 mm                                                                                                                                    | M6x30 | M8x30                                 | M8x40                 | M10x30       | M10x40 | M12x50 | M16x65 |
| Steel, zinc plated                                                                                                                                                         |       |                                       |                       | √            |        |        |        |
| Stainless steel A4 and<br>high corrosion resistant steel HCR                                                                                                               |       | $\checkmark$                          |                       | -            |        | ✓      |        |
| Static and quasi-static loads                                                                                                                                              |       |                                       |                       | $\checkmark$ |        |        |        |
| Fire exposure                                                                                                                                                              |       |                                       |                       | ✓            |        |        |        |
| Cracked and uncracked concrete                                                                                                                                             |       |                                       |                       | ✓            |        |        |        |
| Solid concrete C20/25 to C50/60                                                                                                                                            |       |                                       |                       | ✓            |        |        |        |
| Anchorage depth h <sub>ef</sub> = 25 mm                                                                                                                                    |       |                                       |                       |              |        |        |        |
|                                                                                                                                                                            | M6x25 | M8x25                                 | M10x25                | M12x25       |        |        |        |
| Steel, zinc plated                                                                                                                                                         | M6x25 | M8x25                                 | M10x25                | M12x25       |        |        |        |
|                                                                                                                                                                            | M6x25 | M8x25                                 | M10x25<br>✓           | M12x25       |        |        |        |
| Steel, zinc plated<br>Stainless steel A4 and                                                                                                                               | M6x25 |                                       | M10x25<br>✓<br>-<br>✓ | M12x25       |        |        |        |
| Steel, zinc plated<br>Stainless steel A4 and<br>high corrosion resistant steel HCR                                                                                         | M6x25 |                                       | -                     | M12x25       |        |        |        |
| Steel, zinc plated<br>Stainless steel A4 and<br>high corrosion resistant steel HCR<br>Static and quasi-static loads<br>Fire exposure                                       | M6x25 | · · · · · · · · · · · · · · · · · · · | -                     | M12x25       |        |        |        |
| Steel, zinc plated<br>Stainless steel A4 and<br>high corrosion resistant steel HCR<br>Static and quasi-static loads<br>Fire exposure<br>(solid concrete, C20/25 to C50/60) | M6x25 |                                       | -                     | M12x25       |        |        |        |

#### **Base materials:**

reinforced or unreinforced normal weight concrete according to EN 206-1:2000 •

## Use conditions:

- Structures subject to dry internal conditions • (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other • particular aggressive conditions (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

## Drop-in Anchor ESSVE EKD / EKD-K

### Intended use Specifications



## Specifications of intended use

### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
  position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
  reinforcement or to supports, etc.).
- The strength class and the length of the fastening screw or threaded rod shall be defined by the designing engineer
- Anchorages under static or quasi-static actions for multiple use for non-structural applications are designed in accordance with:
  - ETAG 001, Annex C, design method B, Edition August 2010 or
  - CEN/TS 1992-4:2009, design method B
- Anchorages under static or quasi-static actions for precast pre-stressed hollow core slabs:
  - ETAG 001, Annex C, design method C, Edition August 2010.
  - CEN/TS 1992-4:2009, design method C
- Anchorages under fire exposure are designed in accordance with:
  - ETAG 001, Annex C, design method B, Edition August 2010 and EOTA Technical Report TR 020, Edition May 2004 or
  - CEN/TS 1992-4:2009, Annex D
  - It must be ensured that local spalling of the concrete cover does not occur.

### Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools,
- Drill hole by hammer drilling only (use of vacuum drill bits is admissible),
- · Positioning of the drill holes without damaging the reinforcement.

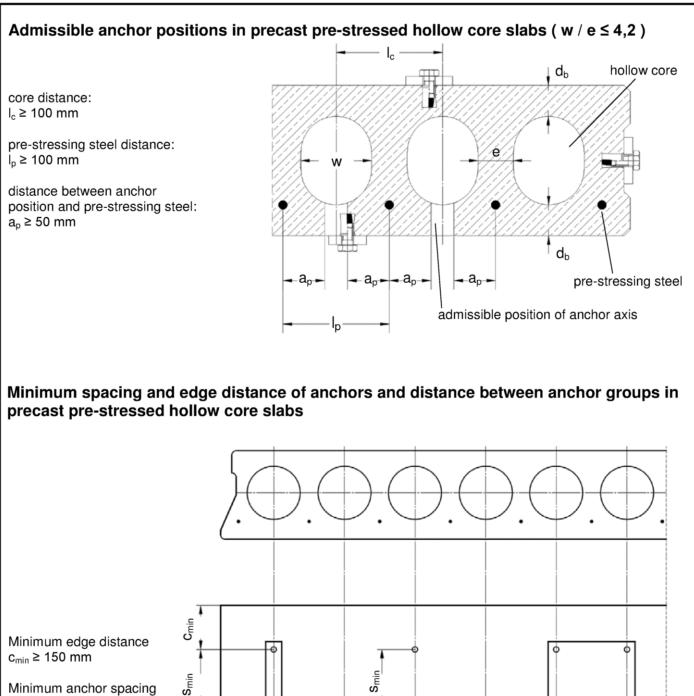
## Drop-in Anchor ESSVE EKD / EKD-K

#### Intended use Specifications



| Table B1: Installation                    | on para               | ameter | s for h <sub>ef</sub> | ≥ 30 mi | n     |        |        |        |        |
|-------------------------------------------|-----------------------|--------|-----------------------|---------|-------|--------|--------|--------|--------|
| Anchor size                               |                       |        | M6x30                 | M8x30   | M8x40 | M10x30 | M10x40 | M12x50 | M16x65 |
| Depth of drill hole                       | h <sub>0</sub> =      | [mm]   | 30                    | 30      | 40    | 30     | 40     | 50     | 65     |
| Drill hole diameter                       | d <sub>0</sub> =      | [mm]   | 8                     | 10      | 10    | 12     | 12     | 15     | 20     |
| Cutting diameter of drill bit             | $d_{\text{cut}} \leq$ | [mm]   | 8,45                  | 10,45   | 10,45 | 12,5   | 12,5   | 15,5   | 20,55  |
| Max. recommended<br>installation torque   | T <sub>inst</sub> ≤   | [Nm]   | 4                     | 8       | 8     | 15     | 15     | 35     | 60     |
| Diameter of clearance hole in the fixture | $d_{\rm f} \leq$      | [mm]   | 7                     | 9       | 9     | 12     | 12     | 14     | 18     |
| Available thread length                   | L <sub>th</sub>       | [mm]   | 13                    | 13      | 20    | 12     | 15     | 18     | 23     |
| Minimum screw-in depth                    | $L_{sdmin}$           | [mm]   | 7                     | 9       | 9     | 10     | 11     | 13     | 18     |
| Steel, zinc plated                        |                       |        |                       |         |       |        |        |        |        |
| Minimum thickness of member               | h <sub>min</sub>      | [mm]   | 100                   | 100     | 100   | 120    | 120    | 130    | 160    |
| Minimum spacing                           | S <sub>min</sub>      | [mm]   | 55                    | 60      | 80    | 100    | 100    | 120    | 150    |
| Minimum distance                          | C <sub>min</sub>      | [mm]   | 95                    | 95      | 95    | 115    | 135    | 165    | 200    |
| Stainless steel A4, HCR                   |                       |        |                       |         |       |        |        |        |        |
| Minimum thickness of member               | h <sub>min</sub>      | [mm]   | 100                   | 100     | 100   | -      | 130    | 140    | 160    |
| Minimum spacing                           | S <sub>min</sub>      | [mm]   | 50                    | 60      | 80    | -      | 100    | 120    | 150    |
| Minimum distance                          | C <sub>min</sub>      | [mm]   | 80                    | 95      | 95    | -      | 135    | 165    | 200    |

## Table B2: Installation parameters for h<sub>ef</sub> = 25 mm


| Anchor size                                 |                     |         | M6x25       | M8x25 | M10x25 | M12x25 |
|---------------------------------------------|---------------------|---------|-------------|-------|--------|--------|
| Depth of drill hole                         | h <sub>0</sub> =    | [mm]    | 25          | 25    | 25     | 25     |
| Drill hole diameter                         | d <sub>0</sub> =    | [mm]    | 8           | 10    | 12     | 15     |
| Cutting diameter of drill bit               | $d_{cut} \leq$      | [mm]    | 8,45        | 10,45 | 12,5   | 15,5   |
| Max. recommended installation torque        | T <sub>inst</sub> ≤ | [Nm]    | 4           | 8     | 15     | 35     |
| Diameter of clearance hole in the fixture   | $d_{\rm f} \leq$    | [mm]    | 7           | 9     | 12     | 14     |
| Available thread length                     | L <sub>th</sub>     | [mm]    | 12          | 12    | 12     | 12     |
| Minimum screw-in depth                      | L <sub>sdmin</sub>  | [mm]    | 6           | 8     | 10     | 12     |
| Minimum thickness of member                 | h <sub>min,1</sub>  | [mm]    |             | 8     | 0      |        |
| Minimum spacing                             | S <sub>min</sub>    | [mm]    | 30          | 70    | 70     | 100    |
| Minimum edge distance                       | C <sub>min</sub>    | [mm]    | 60          | 100   | 100    | 130    |
| Standard thickness of member                | h <sub>min,2</sub>  | [mm]    |             | 1(    | 00     |        |
| Minimum spacing                             | S <sub>min</sub>    | [mm]    | 30          | 50    | 60     | 100    |
| Minimum edge distance                       | C <sub>min</sub>    | [mm]    | 60          | 100   | 100    | 110    |
| Installation in precast pre-stressed hollow | core slabs          | s C30/3 | 7 to C50/60 |       |        |        |
| Spacing                                     | S <sub>min</sub>    | [mm]    |             | 20    | 00     |        |
| Edge distance                               | C <sub>min</sub>    | [mm]    |             | 15    | 50     |        |

## Drop-in Anchor ESSVE EKD / EKD-K

## Intended use

Installation parameters





 $\mathbf{S}_{min}$ 

Smin

Smin

 $\mathbf{S}_{min}$ 

Smin

## Drop-in Anchor ESSVE EKD / EKD-K

#### Intended use

Installation in precast pre-stressed hollow core slabs

C<sub>min</sub>



| nstallation | instructions for solid c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oncrete slabs                                                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 1           | 90°+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drill hole perpendicular to concrete surface. When using vacuum drill bit proceed with step 3. |
| 2           | Contraction of the second seco | Blow out dust. Alternatively vacuum-clean down to the bottom of the hole.                      |
| 3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drive in anchor.                                                                               |
| 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drive in cone by using setting tool.                                                           |
| 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shoulder of setting tool must fit on anchor rim.                                               |
| 6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apply installation torque T <sub>inst</sub> by using calibrated torque wrench.                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |

## Drop-in Anchor ESSVE EKD / EKD-K

## Intended use

Installation instructions for solid concrete slabs

Г



| 1 |        | Search for the position of the reinforcement.                                                 |
|---|--------|-----------------------------------------------------------------------------------------------|
| 2 |        | Mark the position of the reinforcement and search for the other position of the reinforcement |
| 3 |        | Mark the positions of reinforcement.                                                          |
| 4 | 2 50mm | Drill hole while maintaining the required distances.                                          |
| 5 |        | Blow out dust. Alternatively vacuum clean down to the bottom of the hole.                     |
| 6 |        | Drive in anchor.                                                                              |
| 7 |        | Drive in cone by using setting tool.                                                          |
| 8 |        | Shoulder of setting tool must fit on anchor rim.                                              |
| 9 |        | Apply installation torque T <sub>inst</sub> by using calibrated torque wrench.                |

## Intended use

Installation instructions for precast pre-stressed hollow core slabs



| Anchor size                                            |                                              |      | M6x30 | M8x30 | M8x40 | M10x30 | M10x40 | M12x50 | M16x65 |
|--------------------------------------------------------|----------------------------------------------|------|-------|-------|-------|--------|--------|--------|--------|
| Load in any direction                                  |                                              |      |       |       |       |        |        |        |        |
| Characteristic resistance in concrete C20/25 to C50/60 | $F^0_{Rk}$                                   | [kN] | 3     | 5     | 6     | 6      | 6      | 6      | 16     |
| Partial safety factor                                  | γм                                           | [-]  | 1,8   | 2,    | 16    | 2,1    | 2,16   | 1,8    | 1,8    |
| Spacing                                                | S <sub>cr</sub>                              | [mm] | 130   | 180   | 210   | 230    | 170    | 170    | 400    |
| Edge distance                                          | C <sub>cr</sub>                              | [mm] | 65    | 90    | 105   | 115    | 85     | 85     | 200    |
| Shear load with lever arm, St                          |                                              |      |       |       |       |        |        |        |        |
| Characteristic resistance (Steel 4.6)                  | M <sup>0</sup> <sub>Rk,s</sub> <sup>1)</sup> | [Nm] | 6,1   | 15    | 15    | 30     | 30     | 52     | 133    |
| Partial safety factor                                  | $\gamma_{Ms}$                                | [-]  |       |       |       | 1,67   |        |        |        |
| Characteristic resistance (Steel 4.8)                  | M <sup>0</sup> <sub>Rk,s</sub> <sup>1)</sup> | [Nm] | 6,1   | 15    | 15    | 30     | 30     | 52     | 133    |
| Partial safety factor                                  | $\gamma_{Ms}$                                | [-]  |       |       |       | 1,25   |        |        |        |
| Characteristic resistance (Steel 5.6)                  | M <sup>0</sup> <sub>Rk,s</sub> <sup>1)</sup> | [Nm] | 7,6   | 19    | 19    | 37     | 37     | 65     | 166    |
| Partial safety factor                                  | $\gamma_{Ms}$                                | [-]  |       |       |       | 1,67   |        |        |        |
| Characteristic resistance (Steel 5.8)                  | $M^0_{Rk,s}$ 1)                              | [Nm] | 7,6   | 19    | 19    | 37     | 37     | 65     | 166    |
| Partial safety factor                                  | $\gamma_{Ms}$                                | [-]  |       |       |       | 1,25   |        |        |        |
| Characteristic resistance (Steel 8.8)                  | M <sup>0</sup> <sub>Rk,s</sub> <sup>1)</sup> | [Nm] | 12    | 30    | 30    | 59     | 60     | 105    | 266    |
| Partial safety factor                                  | $\gamma_{Ms}$                                | [-]  |       |       |       | 1,25   |        |        |        |
| Shear load with lever arm, Stainless steel A4 / HCR    |                                              |      |       |       |       |        |        |        |        |
| Characteristic resistance<br>(Property class 70)       | $M^0_{Rk,s}$ 1)                              | [Nm] | 11    | 26    | 26    | -      | 52     | 92     | 233    |
| Partial safety factor                                  | $\gamma_{Ms}$                                | [-]  |       |       |       | 1,56   |        |        |        |
| Characteristic resistance<br>(Property class 80)       | $M^0_{\ Rk,s}{}^{1)}$                        | [Nm] | 12    | 30    | 30    | -      | 60     | 105    | 266    |
| Partial safety factor                                  | $\gamma_{Ms}$                                | [-]  |       |       |       | 1,33   |        |        |        |

1) Characteristic bending moment M<sup>0</sup><sub>Rk,s</sub> for equation (5.5) in ETAG 001, Annex C or for equation (14) in CEN/TS 1992-4-4

## Drop-in Anchor ESSVE EKD / EKD-K

## Performance

Characteristic resistance for  $h_{ef} \ge 30 \text{ mm}$  in solid concrete



## Table C2: Characteristic resistance for hef = 25 mm in solid concrete slabs

| Anchor size                                                            |                                              |      | M6x25 | M8x25 | M10x25 | M12x25 |  |
|------------------------------------------------------------------------|----------------------------------------------|------|-------|-------|--------|--------|--|
| Load in any direction                                                  |                                              | I    |       |       |        |        |  |
| Characteristic resistance in concrete C12/15 and C16/20                | $F^0_{Rk}$                                   | [kN] | 2,5   | 2,5   | 3,5    | 3,5    |  |
| Characteristic resistance in concrete C20/25 to C50/60                 | F <sup>0</sup> <sub>Rk</sub>                 | [kN] | 3,5   | 4,0   | 4,5    | 4,5    |  |
| Partial safety factor                                                  | γм                                           | [-]  |       | 1,5   | 5      |        |  |
| Spacing                                                                | S <sub>cr</sub>                              | [mm] | 75    | 75    | 75     | 75     |  |
| Edge distance c <sub>cr</sub>                                          |                                              | [mm] | 38    | 38    | 38     | 38     |  |
| Shear load with lever arm                                              |                                              |      |       |       |        |        |  |
| Characteristic resistance<br>(Steel 4.6)                               | M <sup>0</sup> <sub>Rk,s</sub> <sup>1)</sup> | [Nm] | 6,1   | 15    | 30     | 52     |  |
| Partial safety factor                                                  | $\gamma_{Ms}$                                | [-]  | 1,67  |       |        |        |  |
| Characteristic resistance M <sup>0</sup> <sub>Bk</sub>                 |                                              | [Nm] | 6,1   | 15    | 30     | 52     |  |
| Partial safety factor                                                  | $\gamma_{Ms}$                                | [-]  | 1,25  |       |        |        |  |
| Characteristic resistance M <sup>0</sup>                               |                                              | [Nm] | 7,6   | 19    | 37     | 65     |  |
| Partial safety factor                                                  | $\gamma_{Ms}$                                | [-]  | 1,67  |       |        |        |  |
| Characteristic resistance M <sup>0</sup> <sub>Rk,s</sub> <sup>1)</sup> |                                              | [Nm] | 7,6   | 19    | 37     | 65     |  |
| Partial safety factor                                                  | $\gamma_{Ms}$                                | [-]  | 1,25  |       |        |        |  |
| Characteristic resistance $M^0_{Rk,s}^{(1)}$ [Nn (Steel 8.8)           |                                              | [Nm] | 12    | 30    | 60     | 105    |  |
| Partial safety factor                                                  | $\gamma_{Ms}$                                | [-]  | 1,25  |       |        |        |  |

<sup>1)</sup> Characteristic bending moment M<sup>0</sup><sub>Rk,s</sub> for equation (5.5) in ETAG 001, Annex C or for equation (14) in CEN/TS 1992-4-4

## Drop-in Anchor ESSVE EKD / EKD-K

## Performance

Characteristic resistance for  $h_{ef}$  = 25 mm in solid concrete



| Anchor size                                                                                | M6x25                                        | M8x25 | M10x25                     | M12x25 |     |     |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------------------|-------|----------------------------|--------|-----|-----|--|--|
| Load in any direction                                                                      |                                              |       |                            |        |     |     |  |  |
| Flange thickness                                                                           | d <sub>b</sub>                               | [mm]  | l] ≥ 35 (30) <sup>1)</sup> |        |     |     |  |  |
| Characteristic resistance in precast<br>pre-stressed hollow core slabs<br>C30/37 to C50/60 | F <sub>Rk</sub>                              | [kN]  | 3,5 4,0                    |        | 4,5 | 4,5 |  |  |
| Partial safety factor                                                                      | γм                                           | [-]   |                            | 1,5    |     |     |  |  |
| Spacing                                                                                    | [mm]                                         | 200   |                            |        |     |     |  |  |
| Edge distance c <sub>cr</sub>                                                              |                                              |       | 150                        |        |     |     |  |  |
| Shear load with lever arm                                                                  |                                              |       |                            |        |     |     |  |  |
| Characteristic resistance<br>(Steel 4.6)                                                   | M <sup>0</sup> <sub>Rk,s</sub> <sup>2)</sup> | [Nm]  | 6,1 15                     |        | 30  | 52  |  |  |
| Partial safety factor                                                                      | γ <sub>Ms</sub>                              | [-]   | 1,67                       |        |     |     |  |  |
| Characteristic resistance (Steel 4.8)                                                      | M <sup>0</sup> <sub>Rk,s</sub> <sup>2)</sup> | [Nm]  | 6,1                        | 15     | 30  | 52  |  |  |
| Partial safety factor                                                                      | γ <sub>Ms</sub>                              | [-]   |                            | 1,5    | 25  |     |  |  |
| Characteristic resistance (Steel 5.6)                                                      | $M^0_{\rm Rk,s}{}^{2)}$                      | [Nm]  | 7,6                        | 19     | 37  | 65  |  |  |
| Partial safety factor                                                                      | [-]                                          | 1,67  |                            |        |     |     |  |  |
| Characteristic resistance (Steel 5.8)                                                      | M <sup>0</sup> <sub>Rk,s</sub> <sup>2)</sup> | [Nm]  | 7,6                        | 19     | 37  | 65  |  |  |
| Partial safety factor                                                                      | $\gamma_{Ms}$                                | [-]   | 1,25                       |        |     |     |  |  |
| Characteristic resistance<br>(Steel 8.8)                                                   | M <sup>0</sup> <sub>Rk,s</sub> <sup>2)</sup> | [Nm]  | 12                         | 30     | 60  | 105 |  |  |
| Partial safety factor                                                                      | γ <sub>Ms</sub>                              | [-]   |                            | 25     |     |     |  |  |

<sup>1)</sup> The anchor may be set in a flange thickness of 30 mm with identical characteristic loads, if the borehole cuts no hollow core.

<sup>2)</sup> Characteristic bending moment M<sup>0</sup><sub>Rk,s</sub> for equation (5.5) in ETAG 001, Annex C or for equation (14) in CEN/TS 1992-4-4

## Drop-in Anchor ESSVE EKD / EKD-K

## Performance

Characteristic resistance for  $h_{ef}$  = 25 mm in precast pre-stressed hollow core slabs



| Ancho                      | r size    |                                              |                                   |                                                          | M6x30      | M8x30     | M8x40    | M10x30   | M10x40   | M12x50 | M16x6 |  |
|----------------------------|-----------|----------------------------------------------|-----------------------------------|----------------------------------------------------------|------------|-----------|----------|----------|----------|--------|-------|--|
| Fire resis-<br>tance class |           |                                              |                                   |                                                          |            |           | -        |          |          |        |       |  |
|                            | R 30      | R 60<br>Characteristic<br>R 90<br>resistance |                                   | [kN]                                                     | 0,4        | 0,6       | 0,6      | 0,9      | 0,9      | 1,5    | 3,1   |  |
| Steel                      | R 60      |                                              | F⁰ <sub>Rk,fi</sub>               | [kN]                                                     | 0,35       | 0,6       | 0,6      | 0,8      | 0,8      | 1,3    | 2,4   |  |
| 4.6                        | R 90      |                                              | Г Rk,fi                           | [kN]                                                     | 0,30       | 0,6       | 0,6      | 0,6      | 0,6      | 1,1    | 2,0   |  |
|                            | R 120     |                                              |                                   | [kN]                                                     | 0,25       | 0,5       | 0,5      | 0,5      | 0,5      | 0,8    | 1,6   |  |
|                            | R 30      |                                              |                                   | [kN]                                                     | 0,4        | 0,9       | 1,1      | 0,9      | 1,5      | 1,5    | 4,0   |  |
| Steel                      | R 60      | Characteristic                               | <b>-</b> 0                        | [kN]                                                     | 0,35       | 0,9       | 0,9      | 0,9      | 1,5      | 1,5    | 4,0   |  |
| 4.8                        | R 90      | resistance                                   | C F <sup>0</sup> <sub>Rk,fi</sub> | [kN]                                                     | 0,3        | 0,6       | 0,6      | 0,9      | 1,1      | 1,5    | 3,0   |  |
|                            | R 120     |                                              |                                   | [kN]                                                     | 0,3        | 0,5       | 0,5      | 0,7      | 0,9      | 1,2    | 2,4   |  |
| Steel<br>≥ 5.6             | R 30      | Characteristic<br>resistance                 |                                   | [kN]                                                     | 0,8        | 0,9       | 1,5      | 0,9      | 1,5      | 1,5    | 4,0   |  |
|                            | R 60      |                                              | $F^0_{\ Rk,fi}$                   | [kN]                                                     | 0,8        | 0,9       | 1,5      | 0,9      | 1,5      | 1,5    | 4,0   |  |
|                            | R 90      |                                              |                                   | [kN]                                                     | 0,4        | 0,9       | 0,9      | 0,9      | 1,5      | 1,5    | 3,7   |  |
|                            | R 120     |                                              |                                   | [kN]                                                     | 0,3        | 0,5       | 0,5      | 0,7      | 1,0      | 1,2    | 2,4   |  |
|                            | R 30      | Characteristic<br>resistance                 | F <sup>0</sup> <sub>Rk,fi</sub>   | [kN]                                                     | 0,8        | 0,9       | 1,5      | -        | 1,5      | 1,5    | 4,0   |  |
| A4 /                       | R 60      |                                              |                                   | [kN]                                                     | 0,8        | 0,9       | 1,5      | -        | 1,5      | 1,5    | 4,0   |  |
| HCR                        | R 90      |                                              |                                   | [kN]                                                     | 0,4        | 0,9       | 0,9      | -        | 1,5      | 1,5    | 3,7   |  |
|                            | R 120     |                                              |                                   | [kN]                                                     | 0,3        | 0,5       | 0,5      | -        | 1,0      | 1,2    | 2,4   |  |
|                            |           | Partial safety factor                        | γ <sub>M,fi</sub>                 | [-]                                                      | 1,0        |           |          |          |          |        |       |  |
| Steel z                    | inc plate | ed                                           |                                   |                                                          |            |           |          |          |          |        |       |  |
|                            |           | Spacing                                      | S <sub>cr,fi</sub>                | [mm]                                                     | 130        | 180       | 210      | 170      | 170      | 200    | 400   |  |
| R 30 -                     | - R 120   | Edge distance                                | C <sub>cr,fi</sub>                | [mm]                                                     | 65         | 90        | 105      | 85       | 85       | 100    | 200   |  |
|                            |           | If the fire attack is f                      | rom more                          | than one side, the edge distance shall be $\geq$ 300 mm. |            |           |          |          |          |        |       |  |
| Stainle                    | ss steel  | A4, HCR                                      |                                   |                                                          |            |           |          |          |          |        |       |  |
|                            |           | Spacing                                      | S <sub>cr,fi</sub>                | [mm]                                                     | 130        | 180       | 210      | -        | 170      | 200    | 400   |  |
| R 30 – R 120               |           | Edge distance                                | C <sub>cr,fi</sub>                | [mm]                                                     | 65         | 90        | 105      | -        | 85       | 100    | 200   |  |
|                            |           | If the fire attack is f                      | rom more                          | than on                                                  | e side, th | ne edge o | distance | shall be | ≥ 300 mr | n.     |       |  |

#### 1: 4 . . fi. . . \_ ~ . . . . \_

## Drop-in Anchor ESSVE EKD / EKD-K

Performance

Characteristic values under fire exposure for  $h_{\text{ef}} \geq 30 \text{ mm}$ 



# Table C5:Characteristic values under fire exposure in solid concrete slabsC20/25 toC50/60 for $h_{ef}$ = 25 mm

| Ancho            | Anchor size                |                           |                                 |         |               | M8x25           | M10x25               | M12x25 |
|------------------|----------------------------|---------------------------|---------------------------------|---------|---------------|-----------------|----------------------|--------|
| Fire restance of |                            | Load in any direction     | on                              |         |               |                 |                      |        |
|                  | R 30                       |                           |                                 | [kN]    | 0,4           | 0,6             | 0,6                  | 0,6    |
| Steel            | R 60                       | Characteristic            | F <sup>0</sup> <sub>Rk,fi</sub> | [kN]    | 0,35          | 0,6             | 0,6                  | 0,6    |
| ≥ 4.6            | $\geq$ 4.6 R 90 resistance | F Rk,fi                   | [kN]                            | 0,30    | 0,6           | 0,6             | 0,6                  |        |
|                  | R 120                      |                           |                                 | [kN]    | 0,25          | 0,5             | 0,5                  | 0,5    |
|                  |                            | Partial safety factor     | ŶM,fi                           | [-]     | 1,0           |                 |                      |        |
|                  |                            | Spacing                   | S <sub>cr,fi</sub>              | [mm]    | 100           | 100             | 100                  | 100    |
| R 30 – R 120     |                            | Edge distance             | C <sub>cr,fi</sub>              | [mm]    | 50            | 50              | 50                   | 50     |
|                  |                            | If the fire attack is fro | om more t                       | han one | side, the edg | ge distance sha | all be $\geq$ 300 mr | n.     |

## Drop-in Anchor ESSVE EKD / EKD-K

## Performance

Characteristic values under fire exposure for  $h_{ef}$  = 25 mm