

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0629 of 21 August 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Deutsches Institut für Bautechnik

Betongskrue mekanisk galvanisert Op. 1

Concrete screw

HITACHI POWER TOOLS NORWAY AS Kjeller Vest 7 2007 KJELLER NORWEGEN

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Taiwan plant no. 1

10 pages including 3 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330232-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0629 English translation prepared by DIBt

Page 2 of 10 | 21 August 2017

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 10 | 21 August 2017

Specific Part

1 Technical description of the product

The Betongskrue mekanisk galvanisert Op. 1 of sizes SK 8, SK 10 and SK 12 is and anchor made of galvanized steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Wesentliches Merkmal	Leistung
Characteristic resistance under static and quasi-static loading, displacements	See Annex C1 and C2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-17/0629 English translation prepared by DIBt

Page 4 of 10 | 21 August 2017

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 21 August 2017 by Deutsches Institut für Bautechnik

Lars Eckfeldt p.p. Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-17/0629 of 21 August 2017

English translation prepared by DIBt

Marking of head

<u>Head marking</u>: Identifying mark of producer: SK Nominal size: e.g. 12 mm Length L: e.g. 120 mm

Reverse Locking Serrations

Table A1: Dimensions and materials

Anchor size			SK 8	SK 10	SK 12		
Length of anchor	min L	[mm]	70	80	100		
	max L	[mm]	150	150	150		
Thread diameter	D	[mm]	9,95	12,5	14,2		
Shaft diameter	d	[mm]	7,4	9,4	11,3		
Thread pitch	р	[mm]	5,8	7,8	8,1		
Material			Steel 10B21 acc. To SAE-J403				
Coating			zinc coating: electro plated (>5μm)				
			or mechanical plated (>30µm)				

Betongskrue mekanisk galvanisert Op. 1

Product description Installed condition, dimensions and materials

Annex A 1

Z39410.17

Page 6 of European Technical Assessment ETA-17/0629 of 21 August 2017

English translation prepared by DIBt

Specifications of Intended Use

Anchorages subject to:

• Static and quasi-static loads:

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2000,
- Strength classes C20/25 to C50/60 according to EN 206-1:2000,
- Non-cracked or cracked concrete

Use conditions (Environmental conditions)

• Anchorages subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Design of fastenings in accordance to FprEN 1992-4:2016 and EOTA Technical Report TR 055

Installation:

- Hammer drilling only: all sizes and all embedment depths.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor must not be possible.
- The head of the anchor must be supported on the fixture and is not damaged.

Betongskrue mekanisk galvanisert Op. 1

Intended Use Specifications

Annex B 1

Table B1: Installation parameters

Anchor size			SK 8	SK 10	SK 12
Nominal diameter of drill bit	d ₀	[mm]	8	10	12
Nominal embedment depth	h _{nom}	[mm]	65	75	95
Min. hole depth in concrete	h₁≥	[mm]	75	85	105
Effective anchorage depth	h _{ef}	[mm]	50,6	58,1	75,4
Clearance hole	d _f	[mm]	11	13	15
Thickness of fixture	tfix	[mm]	5-85	5-75	5-55
Installation torque	T _{inst}	[Nm]	40	60	80
Wrench size	WS	[mm]	13	17	19
Max. torque moment, machine setting	T _{max} ≤	[Nm]	185	350	350

Table B2: Minimum thickness of member, Minimum spacing and edge distance

Anchor size	SK 8	SK 10	SK 12		
Minimum member thickness	h _{min}	[mm]	110	130	150
Minimum edge distance	C _{min}	[mm]	50	60	70
Minimum spacing	S _{min}	[mm]	50	60	70

Betongskrue mekanisk galvanisert Op. 1

Intended Use Installation parameters Minimum thickness of member, Minimum spacing and edge distance Annex B 2

Anchor size			SK 8	SK 10	SK 12
Steel failure					
Characteristic resistance	N _{Rk,s}	[kN]	35,9	57,0	83,0
Partial safety factor	γ _{Ms} [-]	[kN]	1,4	1,4	1,4
Pull-out failure					
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	4,0	7,5	12,0
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]	9,0	16,0	25,0
Increasing factors for N in	C30/37	[-]	1,23		
cracked or pop cracked concrete	ψ _c C40/50 C50/60		1,41		
				1,58	
Installation safety factor	γinst	[-]	1,4	1,0	1,2
Concrete cone failure					
Effective anchorage depth	h _{ef}	[mm]	50,6	58,1	75,4
Characteristic edge distance	C _{cr,N}	[mm]		1,5h _{ef}	
Characteristic spacing	S _{cr,N}	[mm]		3h _{ef}	
Montagesicherheitsbeiwert	γinst	[-]	1,4	1,0	1,2
Factor for k ₁ cracked concrete	k _{cr,N}	[-]		7,7	
Factor for k ₁ non-cracked concrete	k _{ucr,N}	[-]	11,0		
Splitting failure					
Characteristic edge distance for splitting	C _{cr,sp}	[mm]	1,5h _{ef}	1,5h _{ef}	1,5h _{ef}
Characteristic anchor spacing for splitting	S _{cr,sp}	[mm]	3h _{ef}	3h _{ef}	3h _{ef}

Table C1: Characteristic resistances under tension loads

Table C2: Displacements under tension loads

Anchor		Tension load	Displacement		
size	Concrete			$\delta_{N^{\infty}}$	
[-]	[-]	[kN]	[mm]	[mm]	
SK 8		1,4	0,1	0,8	
SK 10	cracked	3,6	0,1	1,0	
SK 12	020/20	4,8	0,3	1,2	
SK 8	non-	3,1	0,1	0,8	
SK 10	cracked C20/25	7,6	0,1	1,0	
SK 12		9,9	0,2	1,2	

Betongskrue mekanisk galvanisert Op. 1

Performances

Characteristic values under tension loads, Displacements under tension loads

Annex C 1

Table C3: Characteristic resistance under shear loads

Anchor size			SK 8	SK 10	SK 12
Setting depth	h _{nom}	[mm]	65	75	95
Effective embedment depth	h _{ef}	[mm]	50,6	58,1	75,4
Steel failure without lever arm					
Characteristic resistance	V _{Rk,s}	[kN]	13,4	21,3	37,8
Partial safety factor	γ _{Ms}	[-]	1,5		
Steel failure with lever arm					
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	39,0	79,0	139,0
Ductility Factor	k ₇	[-]	0,8		
Partial safety factor	γMs	[-]	1,5		
Concrete pryout failure					
Factor für pry-out	k ₈	[-]	1	,0	2,0
Installation safety factor	γinst	[-]		1,0	
Concrete edge failure					
Effective length of anchor in	0	[mm]	50.6	EQ 1	75 /
shear loading	ℓ _f	fuuul	50,6	56,1	75,4
Effective diameter of anchor	d _{nom}	[mm]	7,25	9,24	11,15
Installation safety factor	γinst	[-]	1,0		

Table C4: Displacement under shear loads

Anchor	Conoroto	Shear load	Displacement		
size	Concrete	V	δ_{V0}	$\delta_{V\infty}$	
[-]	[-]	[kN]	[mm]	[mm]	
SK 8		6,4	1,8	2,7	
SK 10	C20/25	10,1	1,8	2,7	
SK 12		18,0	1,8	2,7	

Betongskrue mekanisk galvanisert Op. 1

Performances Characteristic values under shear loads, Displacements under shear loads Annex C 2