

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0926 of 12 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

"va-Q-vip F"

Vacuum insulation panels (VIP) with factory applied protection layers

va-Q-tec AG Alfred-Nobel-Straße 33 97080 Würzburg DEUTSCHLAND

va-Q-tec AG Karl-Ferdinand-Braun-Straße 7 97080 Würzburg DEUTSCHLAND

6 pages

EAD 040011-00-1201

Page 2 of 6 | 12 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0926 English translation prepared by DIBt

Page 3 of 6 | 12 December 2017

Specific part

1 Technical description of the product

This European Technical Assessment applies to the insulation boards of vacuum insulation panels with the designation "va-Q-vip F", hereafter referred to as thermal insulation boards.

The thermal insulation boards consist of a core of fumed silica powder and an opacifier, covered with a non-woven polyester fabric as dust cover, sealed under vacuum in a multi-layer metallized high-barrier foil made of triple metallized foil laminate.

The powder board is covered with the multi-layer metallized high-barrier foil with a longitudinal seam over the surface and two side seams. The sealing seams are positioned level to the vacuum insulation panel. The longitudinal seam in the middle of the surface is fixed with an adhesive tape on the thermal insulation board.

Alternatively a circumferential sealing seam can also be formed at the edges, which is folded down, and fixated using an adhesive tape fitting closely.

To control the internal pressure, a sensor disk consisting of a fabric and a metal disk is integrated into each thermal insulation panel.

The European Technical Assessment has been issued for the product on the basis of agreed data/ information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed. The European Technical Assessment applies only to products corresponding to this agreed data/information.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The thermal insulation boards are used for the thermal insulation of walls, floors and roofs in buildings.

The installation of the thermal insulation boards is carried out only by specialized companies that have adequate experience with the installation of the product and have been trained by the manufacturer.

The performance according to section 3 only applies if the undamaged thermal insulation board is installed according to the manufacture's installation instructions (without drill and cut) and if it is protected from precipitation, wetting or weathering in built-in state and during transport, storage and installation.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the thermal insulation boards of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

For sampling, conditioning and testing the provisions of the EAD No 040011-00-1201 "Vacuum insulation panels (VIP) with factory applied protection layers" apply.

3.1 Mechanical resistance and stability (BWR 1)

Not applicable.

Page 4 of 6 | 12 December 2017

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class E
test acc. to EN ISO 11925-2:2011	acc. to EN 13501-1:2007 + A1:2009

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety and accessibility (BWR 4)

Not applicable.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance
Thermal conductivity	Declared value of thermal
test acc. to EN 12667:2001	conductivity a)
acc. to a.m. EAD	
Nominal thickness: 10 mm to 19 mm	$\lambda_D = 0.0085 \text{ W/(m \cdot K)}$
Nominal thickness: 20 mm to 50 mm	$\lambda_D = 0.0076 \text{ W/(m \cdot K)}$
	with
	$\lambda_D = (\lambda_{90/90} + \Delta \lambda_a) \times F_{tb}$
Aging supplement	$\Delta \lambda_a = 0.0015 \text{ W/(m \cdot K)}$
Correction factor for the thermal bridge effect	$F_{tb} = 1.10$
Thermal conductivity before aging and without	
consideration of the thermal bridge effect	
of edge area	
Nominal thickness: 10 mm to 19 mm	$\lambda_{90/90} = 0.0062 \text{ W/(m \cdot K)}$
Nominal thickness: 20 mm to 50 mm	$\lambda_{90/90} = 0.0054 \text{ W/(m \cdot K)}$
Water vapour resistance	No performance assessed.
Nominal thickness	10 mm to 50 mm
test acc. to EN 823:2013	
dimensional deviation	< 20 mm: - 1 mm / + 3 mm
	20 to 50 mm: - 3 mm/ + 5 mm
	or ^{b)} + 5%
Nominal length	≥ 400 mm ^{c)}
test acc. to EN 822:2013	
dimensional deviation	± 2 %
Nominal width	≥ 300 mm ^{c)}
test acc. to EN 822:2013	
dimensional deviation	± 1.5 %

Page 5 of 6 | 12 December 2017

English translation prepared by DIBt

Essential characteristic	Performance
Squareness	
test acc. to EN 824:2013	
dimensional deviation	$S_b \le 5 \text{ mm/m}$
Flatness	
test acc. to EN 825:2013	
dimensional deviation	≤ 6 mm
Density	
test acc. to EN 1602:2013	
Nominal thickness: 10 mm to 19 mm	180 kg/m³ to 250 kg/m³
Nominal thickness: 20 mm to 50 mm	180 kg/m³ to 210 kg/m³
Mass per unit area of the multilayer high barrier foil of the VIP	No performance assessed.
Oxygen permeability of the multilayer high barrier foil of the VIP	No performance assessed.
Compressive stress at 10 % deformation test acc. to EN 826:2013	σ _{10 %} ≥ 150 kPa
Dimensional stability under specified temperature	
and humidity	
test acc. to EN 1604:2013	
(after 48 h storage at (70 ± 2)°C and (90 ± 5) %	
relative humidity)	
maximum relative changes in length, width and thickness direction	≤ 1.0 %
Deformation under specified load and temperature	
test acc. to EN 1605:2013	
with test condition 2 (40 kPa / 70 °C / 168 h)	
maximum relative change in thickness direction	≤ 3.0 %
Tensile strength of the multilayer high barrier foil of the VIP	No performance assessed.
Internal pressure of the VIP	No performance assessed.
Tensile strength perpendicular to the faces of the	≥ 30 kPa
thermal insulation board	
test acc. to EN 1607:2013	
Behaviour under point load	No performance assessed.
Shear strength of the thermal insulation board	No performance assessed.
a) Declared value of thermal conductivity, representative for at leas	t 90 % of the production with a confidence level

- a) Declared value of thermal conductivity, representative for at least 90 % of the production with a confidence level of 90 %, including aging and thermal bridge effect of edge area. Influences of fixing elements and supporting structures are not taken into account.
- b) Whichever gives the smallest numerical tolerance.
- c) Special formats are possible for the use in edge areas and corner areas.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was investigated for this product.

Page 6 of 6 | 12 December 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document No 040011-00-1201 "Vacuum insulation panels (VIP) with factory applied protection layers" the legal basis is:

Commission Decision 1999/91/EC

The system to be applied is: system 3

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 12 December 2017 by Deutsches Institut für Bautechnik

Prof. Gunter Hoppe Head of Department beglaubigt: Getzlaff