

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0127 of 20 February 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Bonded anchor for use in concrete

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 3

24 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0127 English translation prepared by DIBt

Page 2 of 24 | 20 February 2017

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 24 | 20 February 2017

Specific Part

1 Technical description of the product

The "Würth Injection stem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete" is a bonded anchor consisting of a cartridge with injection mortar WIT-UH 300 / WIT-VH 300 / WIT-VM 300 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static action and seismic performance categories C1, C2	See Annex C 1 to C 7
Displacements	See Annex C 8 to C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-17/0127

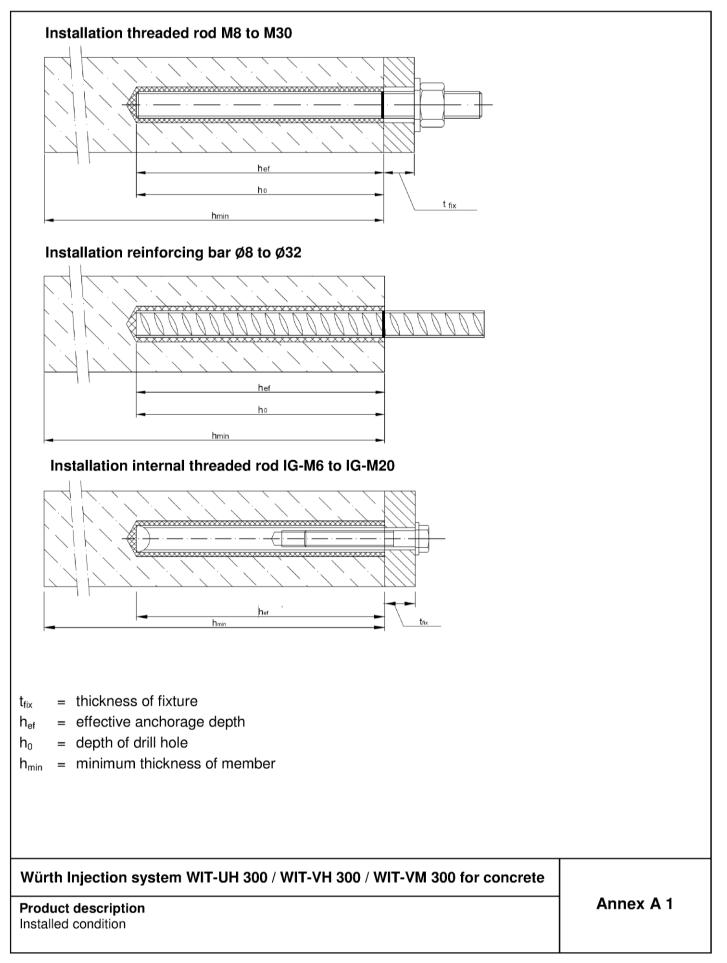
Page 4 of 24 | 20 February 2017

English translation prepared by DIBt

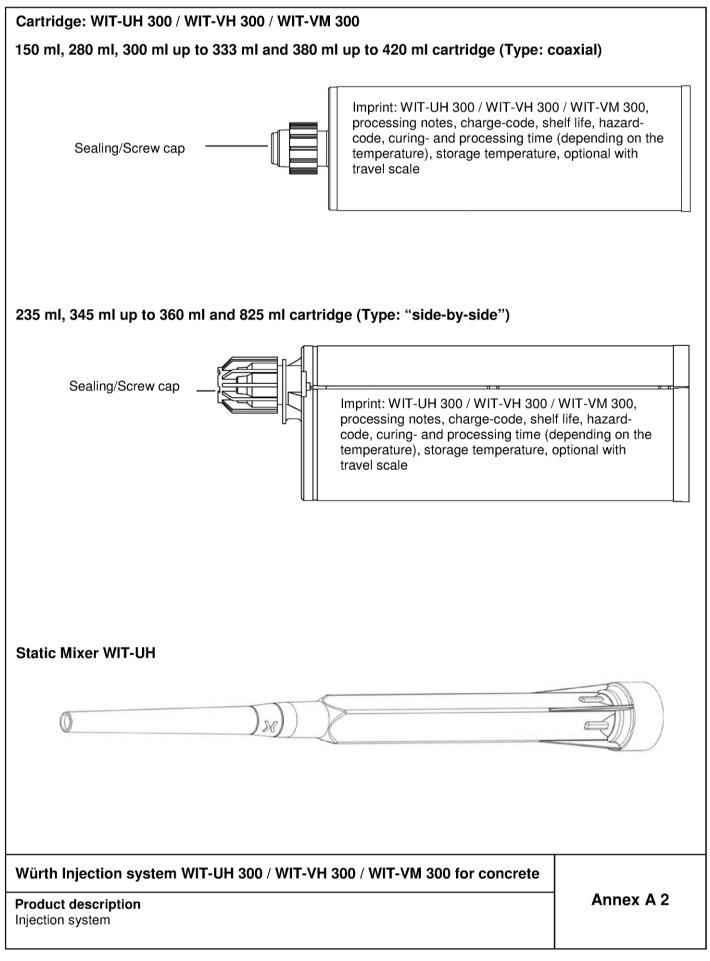
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 20 February 2017 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider

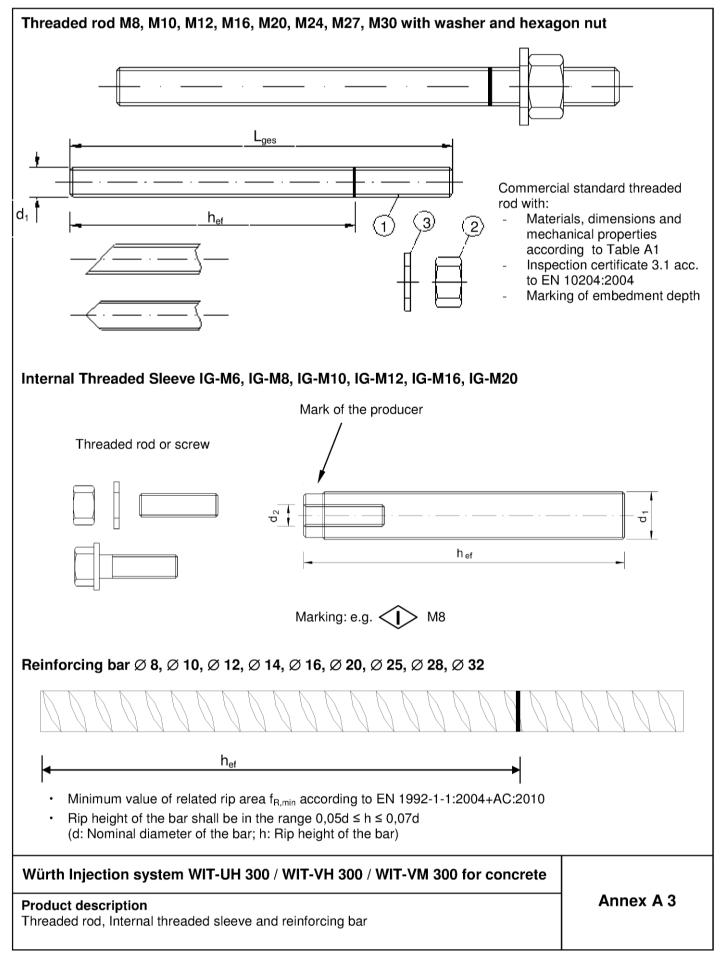


Table A1: Materials Designation Material Steel, zinc plated \geq 5 µm acc. to EN ISO 4042:1999 or Steel, hot-dip galvanised ≥ 40 µm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 4.8, 5.6, 5.8, 8.8, EN 1993-1-Anchor rod 8:2005+AC:2009 $A_5 > 12\%$ fracture elongation Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 and 4.8 rod) EN ISO 898-2:2012, Hexagon nut, EN ISO 4032:2012 Property class 5 (for class 5.6 and 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012 Washer, EN ISO 887:2006, EN ISO 7089:2000, Steel, zinc plated EN ISO 7093:2000 or EN ISO 7094:2000 Property class 5.6, 5.8 and 8.8 EN ISO 898-1:2013 Internal threaded rod Steel, zinc plated Stainless steel Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 Anchor rod ≤ M24: Property class 70 EN ISO 3506-1:2009 $A_5 > 12\%$ fracture elongation Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 Hexagon nut, EN ISO 4032:2012 Section March 2014 Section 2 Washer, EN ISO 887:2006, EN ISO 7089:2000, Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005 EN ISO 7093:2000 or EN ISO 7094:2000 Stainless steel: 1.4401 / 1.4404 / 1.4571, EN 10088-1:2014 Internal threaded rod Property class 70 (for class 70 rod) EN ISO 3506-1:2009 High corrosion resistant steel Material 1.4529 / 1.4565, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 Anchor rod ≤ M24: Property class 70 EN ISO 3506-1:2009 $A_5 > 12\%$ fracture elongation Material 1.4529 / 1.4565 EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 Hexagon nut, EN ISO 4032:2012 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009 Washer, EN ISO 887:2006, EN ISO 7089:2000, Material 1.4529 / 1.4565, EN 10088-1:2005 EN ISO 7093:2000 or EN ISO 7094:2000 Stainless steel: 1.4529 / 1.4565, EN 10088-1:2014 Internal threaded rod Property class 70 (for class 70 rod) EN ISO 3506-1:2009 Reinforcing bars Bars and de-coiled rods class B or C Rebar f_{vk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 EN 1992-1-1:2004+AC:2010, Annex C $f_{iik} = f_{tk} = k \cdot f_{vk}$

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Product description Materials Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist
 - (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the Internal threaded rod.

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Intended Use Specifications

Annex B 1

Table B1: Installatio	n parameters fo	or threa	aded ro	d						
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Diameter of element	$d_1 = d_{nom} [mm] =$	8	10	12	16	20	24	27	30	
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	22	28	30	35	
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120	
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600	
Diameter of clearance hole in the fixture ¹⁾	d _f [mm] =	9	12	14	18	22	26	30	33	
Installation torque	T _{inst} [Nm] ≤	10	20	40 ²⁾	60	100	170	250	300	
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀					
Minimum spacing	s _{min} [mm]	40	50	60	75	95	115	125	140	
Minimum edge distance	c _{min} [mm]	35	40	45	50	60	65	75	80	

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum $d_1 + 1$ mm or alternatively the annular gap between fixture and anchor rod shall be filled force-fit with mortar.

²⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter of element	$d = d_{nom} [mm] =$	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	25	32	35	40
Effective encharage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	70	75	95	120	130	150
Minimum edge distance	c _{min} [mm]	35	40	45	50	50	60	70	75	85

Table B3: Installation parameters for Internal threaded rod

Anchor size		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Internal diameter of sleeve	d ₂ [mm] =	6	8	10	12	16	20	
Outer diameter of sleeve ²⁾	$d_1 = d_{nom} [mm] =$	10	12	16	20	24	30	
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	22	28	35	
Effective enclosed depth	h _{ef,min} [mm] =	60	70	80	90	96	120	
Effective anchorage depth	h _{ef,max} [mm] =	200	240	320	400	480	600	
Diameter of clearance hole in the fixture ¹⁾	d _f [mm] =	7	9	12	14	18	22	
Installation torque	T _{inst} [Nm] ≤	10	10	20	40	60	100	
Thread engagement length Min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40	
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	50	60	75	95	115	125	
Minimum edge distance	c _{min} [mm]	40	45	50	60	65	75	

¹⁾ For larger clearance hole see TR029 section 1.1

²⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Intended Use Installation parameters Annex B 2

Table B4	: Paran	neter clea	ning and s	etting	g tool	S										
2	<u> </u>		8	-	199999999999											
Threaded Rod	Rebar	Internal threaded rod	d₀ Drill bit - Ø		l₀ h - Ø	d _{⊳,min} min. Brush - Ø	Piston plug	Installation direction and of piston plug								
(mm)	(mm)	(mm)	(mm)	WIT-	(mm)	(mm)	WIT-	↓	\rightarrow	1						
M8			10	RB10	11,5	10,5	-	-	-							
M10	8	IG-M6	12	RB12	13,5	12,5	-	-	-	-						
M12	10	IG-M8	14	RB14	15,5	14,5	-	-	-	-						
	12		16	RB16	17,5	16,5	-	-	-	-						
M16	14	IG-M10	18	RB18	20,0	18,5	VS18									
	16		20	RB20	22,0	20,5	VS20									
M20		IG-M12	22	RB22	24,0	22,5	VS22									
	20		25	RB25	27,0	25,5	VS25	h	h							
M24		IG-M16	28	RB28	30,0	28,5	VS28	h _{ef} >	h _{ef} > 250 mm	all						
M27			30	RB30	31,8	30,5	VS30	250 mm	250 mm							
	25		32	RB32	34,0	32,5	VS32									
M30	28	IG-M20	35	RB35	37,0	35,5	VS35									
	32		40	RB40	43,5	40,5	VS40									

MAC - Hand pump (volume 750 ml) Drill bit diameter (d_0): 10 mm to 20 mm Drill hole depth (h_0): < 10 d_s Only in non-cracked concrete

Piston plug for overhead or horizontal

Drill bit diameter (d₀): 18 mm to 40 mm

CAC - Rec. compressed air tool (min 6 bar) Drill bit diameter (d_0) : all diameters

Steel brush WIT-RB Drill bit diameter (d₀): all diameters

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Intended Use Cleaning and setting tools

installation WIT-VS

Annex B 3

Z7680.17

Installation instr	uctions	
Drilling of the bore	hole	
	1. Drill with hammer drill a hole into the base material to the size and required by the selected anchor (Table B1, B2, or B3). In case of drill hole shall be filled with mortar	
	Attention! Standing water in the bore hole must be removed bef	ore cleaning.
MAC: Cleaning for	bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_s$ (uncr	acked concrete only!)
4x	 2a. Starting from the bottom or back of the bore hole, blow the hole c (Annex B 3) a minimum of four times. 	lean by a hand pump
	2b. Check brush diameter (Table B4). Brush the hole with an appropr d _{b,min} (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush ext	
4x	2c. Finally blow the hole clean again with a hand pump (Annex B 3) a	a minimum of four times
CAC: Cleaning for a	all bore hole diameter in uncracked and cracked concrete	
2x	2a. Starting from the bottom or back of the bore hole, blow the hole c compressed air (min. 6 bar) (Annex B 3) a minimum of two times stream is free of noticeable dust. If the bore hole ground is not rea extension must be used.	until return air
	2b. Check brush diameter (Table B4). Brush the hole with an appropr d _{b,min} (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush exte	
2x	2c. Finally blow the hole clean again with compressed air (min. 6 bar minimum of two times until return air stream is free of noticeable of ground is not reached an extension must be used.	
	After cleaning, the bore hole has to be protected against re-ca an appropriate way, until dispensing the mortar in the bore he the cleaning has to be repeated directly before dispensing the In-flowing water must not contaminate the bore hole again.	ole. If necessary,
Würth Injection s	ystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use Installation instructio	ns	Annex B 4

Installation inst	ructions (continuation)	
	3 Attach the supplied static-mixing nozzle to the cartridge and load th correct dispensing tool. For every working interruption longer than the recommended work well as for new cartridges, a new static-mixer shall be used.	-
meneren anten anten anten anten anten anten + her →	Prior to inserting the anchor rod into the filled bore hole, the position depth shall be marked on the anchor rods.	n of the embedment
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a r strokes and discard non-uniformly mixed adhesive components unt consistent grey colour.	
	6. Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static r hole fills to avoid creating air pockets. For embedment larger than 1 nozzle shall be used. Observe the gel-/ working times given in Tabl	nixing nozzle as the 90 mm an extension
	 ✓ Piston Plugs and mixer nozzle extensions shall be used according to following applications: Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 2 Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 	(vertical downwards 50mm
	8 Push the threaded rod or reinforcing bar into the anchor hole while ensure positive distribution of the adhesive until the embedment de The anchor shall be free of dirt, grease, oil or other foreign material	pth is reached.
	9. Be sure that the anchor is fully seated at the bottom of the hole and visible at the top of the hole. If these requirements are not maintain to be renewed. For overhead application the anchor rod shall be fixed applied application the anchor rod shall be fixed applied application the anchor rod shall be fixed applied applie	ned, the application has
+20°C	 Allow the adhesive to cure to the specified time prior to applying ar move or load the anchor until it is fully cured (attend Table B5). 	ny load or torque. Do not
Tinst.	11. After full curing, the add-on part can be installed with up to the max (Table B1 or B3) by using a calibrated torque wrench.	k. torque
Würth Injection s	system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use Installation instruction	ons (continuation)	Annex B 5

Table B5:	Ма	aximum wo	orking time and minim	um curing time	
Concrete	tem	perature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
- 5 °C	to	- 1 °C	50 min	5 h	10 h
0 °C	to	+ 4 °C	25 min	3,5 h	7 h
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min
Cartridge	temp	perature		+5°C to +40°C	

Würth Injection s	system WIT-UH 300	/ WIT-VH 300 /	WIT-VM 300 for	r concrete

Intended Use Curing time Annex B 6

Size				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
	acteristic tension resistance, Steel failure			NI U		W 12	MI IO	WI 20	WZ4	W 27	M 50
	Property class 4.6 and 4.8	N _{Bk.s}	[kN]	15	23	34	63	98	141	184	224
Steel,	Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
	ostender Stahl A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Nichtr	ostender Stahl A4 and HCR, Property class 70	N _{Bk.s}	[kN]	26	41	59	110	171	247	-	-
	acteristic tension resistance, Partial safety factor									<u> </u>	
	Property class 4.6	γ _{Ms,N} 1)	[-]				2	,0			
Steel,	Property class 4.8	γ _{Ms,N} ¹⁾	[-]				1	,5			
Steel,	Property class 5.6	1) γ _{Ms,N}	[-]				2	,0			
Steel,	Property class 5.8	γ _{Ms,N} 1)	[-]				1	,5			
Steel,	Property class 8.8	γ _{Ms,N} ¹⁾	[-]	1,5							
Stainl	ess steel A4 and HCR, Property class 50	γ _{Ms,N} 1)	[-]				2,	86			
Stainl	ess steel A4 and HCR, Property class 70	γ _{Ms,N} ¹⁾	[-]				1,	87			
Chara	cteristic shear resistance, Steel failure										
E	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
er ar	Steel, Property class 5.6 and 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
t lev	Steel, Property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Without lever arm	Stainless steel A4 and HCR, Property class 50	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
M	Stainless steel A4 and HCR, Property class 70	V _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
_	Steel, Property class 4.6 and 4.8	M _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
With lever arm	Steel, Property class 5.6 and 5.8	M _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
ever	Steel, Property class 8.8	M _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Vith	Stainless steel A4 and HCR, Property class 50	M _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
>	Stainless steel A4 and HCR, Property class 70	M _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
Chara	cteristic shear resistance, Partial safety factor										
Steel,	Property class 4.6	γ _{Ms,V} 1)	[-]				1,	67			
Steel,	Property class 4.8	γ _{Ms,V} 1)	[-]				1,	25			
,	Property class 5.6	γ _{Ms,V} ¹⁾	[-]				1;				
-	Property class 5.8	γ _{Ms,V} 1)	[-]				1,				
	Property class 8.8	γ _{Ms,V} ¹⁾	[-]				1,				
Stainle	ess steel A4 and HCR, Property class 50	γ _{Ms,V} 1)	[-]	2,38							
	ess steel A4 and HCR, Property class 70	γ _{Ms,V} 1)	[-]	1,56							

¹⁾ in absence of national regulation

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

Table C2: Characteristic values of tension loads for threaded rods under static, quasi-static action and seismic action (performance category C1+C2)

Anchor size threaded											
	rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 3
Steel failure											
		N _{Rk,s}	[kN]				see Ta	able C1			
Characteristic tension re	esistance	N _{Rk,s,C1}	[kN]				1,0 •	N _{Rk,s}			
		N _{Rk,s,C2}	[kN]	NPD 1,0 · No Performance Determined (NF							IPD)
Partial safety factor		γms,N	[-]				see Ta	able C1			
	d concrete cone failur										
Characteristic bond res	istance in non-cracked	concrete C20/2	25								
Temperature range I: 80°C/50°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	17	17	16	15	14	13	13	13
Temperature range II: 120°C/72°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	15	14	14	13	12	12	11	11
Temperature range III: 160°C/100°C	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	12	12	11	10	9,5	9,0	9,0	9,0
Characteristic bond res	istance in cracked conc	rete C20/25									
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm ²]	6,5	7,0	7,5	8,5	8,5	8,5	8,5	8,9
80°C/50°C	aly and not concrete	$\tau_{\rm Rk,C2}$	[N/mm ²]		PD	3,6			NPD		
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm ²]	5,5	6,0	6,5	7,5	7,5	7,5	7,5	7,
120°C/72°C		$\tau_{\text{Rk,C2}}$	[N/mm ²]		PD	3,1			NPD		
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm ²]	5,0	5,5	6,0	6,5	6,5	6,5	6,5	6,
160°C/100°C	ary and wet concrete	$\tau_{\text{Rk,C2}}$	[N/mm ²]	N	PD	2,5			NPD		
		C25/	30				1,	02			
		C30/	37				1,	04			
ncreasing factors for concrete	C35/	45				1,	07				
	C40/	50					08				
	C45/					,	09				
		C50/					10				
Factor according to	Non-cracked concrete		10,1								
CEN/TS 1992-4-5	Cracked concrete	k ₈	[-]					,2			
Section 6.2.2.3 Concrete cone failure							,	,			
Factor according to											
CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]	10,1							
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]					,2			
Edge distance		C _{cr,N}	[mm]					i h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}			
Splitting failure											
	h/h _{ef} ≥ 2,0						1,0	h _{ef}			
Edge distance	$2,0>h/h_{ef}>1,3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef}\left(2,5 - \frac{h}{h_{ef}}\right)$							
	h/h _e ≤ 1,3						-	h _{ef}			
Axial distance		S _{cr,sp}	[mm]				2 0	cr,sp			
Installation safety factor (dry and wet concrete)	r (CAC)	$\gamma_2 = \gamma_{inst}$	[-]		1,0 ((1,2) ¹⁾			1	,2	
Installation safety factor (MAC) (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]		1	,2				-	

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Performances

Characteristic values of tension loads for threaded rods under static, quasi-static action and seismic action (performance category C1+C2)

Annex C 2

Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30		
Steel failure without lever arm				•								
	V _{Rk,s}	[kN]				see Ta	ble C1					
Characteristic shear resistance	V _{Rk,s,C1}	[kN]	0,70 • V _{Rk,s}									
	$V_{Rk,s,C2}$	[kN]	(NPD) 0,80 · No Performance Determine						mined (NF	PD)		
Partial safety factor	YMs,∨	[-]				see Ta	ble C1					
Steel failure with lever arm												
	M ⁰ _{Rk,s}	[Nm]				see Ta	ble C1					
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]			No Perf	ormance	Determine	d (NPD)				
	M ⁰ _{Rk,s,C2}	[Nm]			No Perf	ormance	Determine	ed (NPD)				
Partial safety factor	γms,v	[-]				see Ta	ble C1					
Concrete pry-out failure												
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]				2	,0					
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0					
Concrete edge failure												
Effective length of anchor	lr	[mm]				l _f = min(h	_{ef} ; 8 d _{nom})					
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0					

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Performances

Characteristic values of shear loads for threaded rods under static, quasi-static action and seismic action (performance category C1+C2)

Annex C 3

Anchor size internally	threaded rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Steel failure ¹⁾											
Characteristic tension re Steel, strength class 5.8		N _{Rk,s}	[kN]	10	17	29	42	76	123		
Partial safety factor	,	ŶMs,N	[-]			1	,5				
Characteristic tension re		N _{Bk.s}	[kN]	16	27	46	67	121	196		
Steel, strength class 8.8 Partial safety factor	3	,.	[-]		27	10					
Characteristic tension re	esistance.	Ϋ́Ms,N			00		, -	110	170		
Stainless Steel A4, Stre	ngth class 70	N _{Rk,s}	[kN]	14	26	41	59	110	172		
Partial safety factor		γMs,N	[-]			1,	87				
•	d concrete cone failure stance in non-cracked co	ncrete C20/25									
Temperature range I:	dry and wet concrete		[N/mm²]	17	16	15	14	13	13		
80°C/50°C Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	14	14	13	12	12	11		
120°C/72°C Temperature range III:	dry and wet concrete					10		9,0			
160°C/100°C	,	τ _{Rk,ucr}	[N/mm ²]	12	11	10	9,5	9,0	9,0		
Characteristic bond resi Temperature range I:	stance in cracked concre	te C20/25									
80°Ċ/50°C	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	7,0	7,5	8,5	8,5	8,5	8,5		
Temperature range II: 120°C/72°C	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5		
Temperature range III: 160°C/100°C	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5		
			25/30			1,					
			80/37 85/45			1, 1,					
Increasing factors for cc Ψ_c	oncrete		0/50			,	08				
T •			5/55			1,					
		C5	60/60	1,10							
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	- k ₈	[-]			10),1				
Section 6.2.2.3	Cracked concrete	18	[]			7,2					
Concrete cone failure											
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]			10),1				
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]			7	,2				
Edge distance		C _{cr,N}	[mm]				h _{ef}				
Axial distance		S _{cr,N}	[mm]			3,0	h _{ef}				
Splitting failure			1								
	h/h _{ef} ≥ 2,0	-				(h _{ef}				
Edge distance	$2,0>h/h_{ef}>1,3$	C _{cr,sp}	[mm]			$2 \cdot h_{ef}$ 2	$\left(5-\frac{h}{h_{ef}}\right)$				
	h/h _{ef} ≤ 1,3					2,4	h _{ef}				
Axial distance		S _{cr,sp}	[mm]			2 c	cr,sp				
Installation safety factor (dry and wet concrete)	(CAC)	γ2 = γinst	[-]		1,0 (1,2) ²⁾			1,2			
Installation safety factor	(MAC)	γ2 = γinst	[-]		1,2			-			
threaded rod and the faste	rews or threaded rods (in I. The characteristic tension ening element. ckets for cracked concrete	cl. nut and wa	sher) must con		e appropriat						
	system WIT-UH 3		VH 300 / W	/IT-VM 3	300 for c	oncrete		Annex (

Table C5: Characteristic values of shear loads for internal threaded rods under static and quasi-static action Anchor size for internally threaded rods IG-M 6 IG-M8 IG-M 10 IG-M 12 IG-M 16 IG-M 20 Steel failure without lever arm¹⁾ Characteristic shear resistance. V_{Rk.s} [kN] 5 15 21 38 61 9 Steel, strength class 5.8 Partial safety factor 1,25 [-] γMs.V Characteristic shear resistance, $V_{Rk,s}$ [kN] 8 14 23 34 60 98 Steel, strength class 8.8 [-] Partial safety factor 1,25 γMs,V Characteristic shear resistance. $V_{\mathsf{Rk},\mathsf{s}}$ [kN] 7 13 20 30 55 86 Stainless Steel A4, Strength class 70 Partial safety factor [-] 1.56 $\gamma_{Ms,V}$ Steel failure with lever arm¹⁾ Characteristic bending moment, $M^0_{Rk,s}$ [Nm] 8 19 37 66 167 325 Steel, strength class 5.8 Partial safety factor [-] 1,25 γMs,V Characteristic bending moment, 60 [Nm] 12 30 105 267 519 M⁰_{Rk.s} Steel, strength class 8.8 Partial safety factor 1,25 γMs,V [-] Characteristic bending moment, 454 M⁰_{Rk,s} [Nm] 11 26 52 92 233 Stainless Steel A4, Strength class 70 Partial safety factor [-] 1,56 γMs.V Concrete pry-out failure Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 k₍₃₎ [-] 2,0 Factor k in equation (5.7) of Technical Report TR 029 Installation safety factor 1,0 [-] $\gamma_2 = \gamma_{inst}$ Concrete edge failure Effective length of anchor lf [mm] $I_f = min(h_{ef}; 8 d_{nom})$ Outside diameter of anchor dnom [mm] 10 12 16 20 24 30 Installation safety factor 1,0 [-] $\gamma_2 = \gamma_{inst}$ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element. Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete Annex C 5 Performances

Characteristic values of shear loads for internal threaded rods under static and quasi-static action

	Characteristic va action and seisr								ic, qι	iasi-s	tatic	
Anchor size reinford	ing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tensior	resistance	N _{Rk,s} = N _{Rk,s,C1}	[kN]					$A_{s} \boldsymbol{\cdot} f_{uk}{}^{2)}$				
Cross section area		As	[mm²]	50	79	113	154	201	214	491	616	804
Partial safety factor		γms,N	[-]					1,4 ³⁾				
Combined pull-out a	and concrete cone failur	e										
Characteristic bond r	esistance in non-cracked	concrete C20/	25									
Temperature range I: 80°C/50°C	dry and wet concrete	$ au_{\text{Rk,ucr}}$	[N/mm²]	14	14	14	14	13	13	13	13	13
Temperature range II 120°C/72°C	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	13	12	12	12	12	11	11	11	11
Temperature range II 160°C/100°C	I: dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	10	10	9,5	9,5	9,5	9,0	9,0	9,0	9,0
Characteristic bond r	esistance in cracked conc	rete C20/25										
Temperature range I: 80°C/50°C	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm²]	5,0	5,5	6,0	6,0	7,5	7,5	7,5	7,5	8,0
Temperature range II 120°C/72°C	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm²]	4,5	5,0	5,0	5,5	6,5	6,5	6,5	6,5	7,0
Temperature range II 160°C/100°C	l: dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm²]	4,0	4,5	4,5	5,0	5,5	6,0	6,0	5,5	6,5
		C25						1,02				
la sus ssia s fosteus fou		C30.						1,04				
Increasing factors for Ψ_c	concrete	C35						1,07				
		C45						1,09				
		C50	/60					1,10				
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k ₈	[-]					10,1				
Section 6.2.2.3	Cracked concrete							7,2				
Concrete cone failu	re											
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]					10,1				
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]					7,2				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure												
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{a}$	$f = \left(2, 5 - \frac{1}{2} \right)$	$\left(\frac{h}{h_{ef}}\right)$			
	h/h _{ef} ≤ 1,3							2,4 h _{ef}				
Axial distance	·	S _{cr,sp}	[mm]					$2 c_{\text{cr,sp}}$				
Installation safety fac (dry and wet concrete	2)	γ2 = γinst	[-]			1,0 (1,2))			1,	,2	
Installation safety fac (dry and wet concrete		γ2 = γinst	[-]			1,2					-	
¹⁾ Value in bra	ackets for cracked conc aken from the specifica of national regulation	crete ations of rein	forcing ba	rs								
Performances	on system WIT-UH								_	Anne	ex C 6	;

8.06.01-17/17

Table C7: Characterist action and s								ic, qu	asi-st	atic	
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V _{RK,S}	[kN]				C),50 ∙ N _{Rk}	, S			
	V _{Rk,s,C1}	[kN]	0,37 • N _{RK,S}								
Partial safety factor	γms,v	[-]	1,5 ²⁾								
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	1.2 · $W_{el} \cdot f_{uk}^{(1)}$								
	M ⁰ _{Rk,s,C1}	[Nm]			No F	Performa	nce Dete	rmined (N	NPD)		
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial safety factor	Yms,v	[-]					1,5 ²⁾				
Concrete pry-out failure											
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]					2,0				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
Concrete edge failure											
Effective length of anchor	lf	[mm]				$I_{f} = n$	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
¹⁾ f _{uk} shall be taken from the spe ²⁾ in absence of national regulat	cifications of rei ion	inforcing	bars								
Würth Injection system WI Performances Characteristic values of shear loads (performance category C1)								•	Ann	ex C i	7

Non-cracked concre Temperature range I:	ed rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
	ete C20/25 un	der static and qua	si-statio	action		1				
	δ_{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,04
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,06
	δ _{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,04
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,06
	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,17
	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,18
Cracked concrete C	20/25 under s	static, quasi-static	and sei	ismic C	1 action	1				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,10
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,13
	δ _{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,11
	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,14
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,41
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,42
Cracked concrete C	20/25 under :	seismic C2 action								
All temperature	$\delta_{\text{N},\text{seis}(\text{DLS})}$	[mm/(N/mm ²)]			0,120		-	_		
	$\delta_{N,seis(ULS)}$	[mm/(N/mm ²)]	- (N	PD)	0,140	No	Paramet	er Deterr	mined (N	PD)
Table C9: Dis	placement	s under shear I	oad ¹⁾ (i	thread	ed rod	-				
	-	s under shear I	oad ¹⁾ (1 M 8	thread M 10	ed rod M 12) M 16	M 20	M24	M 27	М 3
Anchor size threade	ed rod		M 8	M 10	M 12	M 16			M 27	M 3
Anchor size threade Non-cracked and cr	ed rod		M 8	M 10	M 12	M 16			M 27	
Anchor size threade Non-cracked and cr All temperature	ed rod racked concre	ete C20/25 under s	M 8 static, qu	M 10 Jasi-sta	M 12	M 16 seismic	C1 act	ion		0,03
Anchor size threade Non-cracked and cr All temperature ranges	ed rod racked concre δ_{V0} -factor $\delta_{V\infty}$ -factor	ete C20/25 under s [mm/(kN)] [mm/(kN)]	M 8 static, qu	M 10 Jasi-stat	M 12 tic and s	M 16 seismic 0,04	C1 act	i on 0,03	0,03	M 3 (0,03 0,05
Anchor size threade Non-cracked and cr All temperature ranges Cracked concrete C	ed rod racked concre δ_{V0} -factor $\delta_{V\infty}$ -factor C20/25 under s	ete C20/25 under s [mm/(kN)] [mm/(kN)] seismic C2 action	M 8 static, qu 0,06 0,09	M 10 Jasi-stat	M 12 tic and 3 0,05 0,08	M 16 seismic 0,04 0,06	2 C1 act 0,04 0,06	ion 0,03 0,05	0,03	0,03
Anchor size threade Non-cracked and cr All temperature ranges Cracked concrete C All temperature	ed rod racked concre δ_{V0} -factor $\delta_{V\infty}$ -factor C20/25 under s $\delta_{V,seis(DLS)}$	ete C20/25 under s [mm/(kN)] [mm/(kN)] seismic C2 action [mm/(kN)]	M 8 tatic, qu 0,06 0,09 No Par Deter	M 10 Jasi-stat 0,06 0,08 rameter mined	M 12 tic and 2 0,05 0,08	M 16 seismic 0,04 0,06	2 C1 act 0,04 0,06	ion 0,03 0,05	0,03	0,03
Anchor size threade Non-cracked and cr All temperature ranges Cracked concrete C All temperature ranges	ed rod racked concre δ_{V0} -factor $\delta_{V\infty}$ -factor C20/25 under s $\delta_{V,seis(DLS)}$ $\delta_{V,seis(ULS)}$	ete C20/25 under s [mm/(kN)] [mm/(kN)] seismic C2 action	M 8 tatic, qu 0,06 0,09 No Par Deter	M 10 Jasi-stat 0,06 0,08	M 12 tic and 3 0,05 0,08	M 16 seismic 0,04 0,06	2 C1 act 0,04 0,06	ion 0,03 0,05 meter De	0,03	0,03 0,05
Anchor size threade Non-cracked and cr All temperature ranges Cracked concrete C All temperature	ed rod racked concre δ_{V0} -factor $\delta_{V\infty}$ -factor C20/25 under s $\delta_{V,seis(DLS)}$ $\delta_{V,seis(ULS)}$ displacement V; V:	ete C20/25 under s [mm/(kN)] [mm/(kN)] seismic C2 action [mm/(kN)]	M 8 tatic, qu 0,06 0,09 No Par Deter	M 10 Jasi-stat 0,06 0,08 rameter mined	M 12 tic and 2 0,05 0,08	M 16 seismic 0,04 0,06	2 C1 act 0,04 0,06	ion 0,03 0,05 meter De	0,03	0,03

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/2	25 under static	and qua	asi-stati	c actior	า					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,043	0,045	0,048
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,055	0,058	0,06
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,045	0,047	0,05
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,057	0,060	0,06
Cemperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,164	0,172	0,18
160°C/100°Č	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,169	0,177	0,19
Cracked concrete	C20/25 ui	nder static, qua	si-statio	c and se	eismic C	actio	n				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,103	0,10
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,133	0,14
	δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,107	0,11
	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,138	0,14
emperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,399	0,42
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,410	0,44
	τ; τ; isplacen	nent τ: action bond nent under sl		ad ¹⁾ (r	-	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø3
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$	τ; τ; isplacen prcing bar	τ: action bond	hear lo Ø 8	øad ¹⁾ (r∉ Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø3
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$	τ; τ; brcing bar 25 under s	τ: action bond	hear lo Ø 8 atic and	oad ¹⁾ (ro ∅10 seismio	Ø 12 c C1 act	ion					Ø 3
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C11: Di nchor size reinfo or concrete C20 / II temperature inges ¹⁾ Calculation of th	τ; τ; isplacen prcing bar 25 under s δ_{V0} -factor $\delta_{V\infty}$ -factor le displacen	t: action bond nent under sl static, quasi-sta [mm/(kN)] [mm/(kN)] nent	hear lo Ø 8 atic and 0,06 0,09	øad ¹⁾ (r∉ Ø 10	Ø 12		Ø 16 0,04 0,06	Ø 20 0,04 0,05	Ø 25 0,03 0,05	Ø 28 0,03 0,04	0,0
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$	τ; τ; isplacen prcing bar 25 under s δ_{V0} -factor $\delta_{V\infty}$ -factor le displacem V;	t: action bond nent under s static, quasi-sta [mm/(kN)] [mm/(kN)]	hear lo Ø 8 atic and 0,06 0,09	øad ¹⁾ (ro Ø 10 seismic 0,05	Ø 12 c C1 act 0,05	i on 0,04	0,04	0,04	0,03	0,03	Ø 3 0,0 0,0

Z7680.17

8.06.01-17/17

Table C12: Dis	splacements	s under tension	load ¹⁾ (Ir	nternal t	hreaded	rod)		
Anchor size Intern	al threaded roo	ł	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked conc	rete C20/25 un	der static and quas	i-static ac	tion				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C/100°Č	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete	C20/25 under s	tatic and quasi-sta	tic action		•			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,170	0,110	0,116	0,122	0,128	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Calculation of the displacement $\delta_{N0} = \delta_{N0} \text{-factor} \cdot \tau;$

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \quad \tau;$

 τ : action bond stress for tension

Table C13: Displacements under shear load¹⁾ (Internal threaded rod)

Anchor Size in	ternal threaded	rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked a	nd cracked cor	ncrete C20/25 ur	der static a	and quasi-s	tatic actior	ו		I
All temperature	δ_{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06
$\delta_{V_\infty}=\delta_{V_\infty}\text{-}fac$	ctor · V;							