

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0198 of 10 August 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Berner chemical anchor BCA II

Bonded Anchor for use in concrete

Berner Trading Holding GmbH Bernerstraße 6 74653 Künzelsau DEUTSCHLAND

Berner Herstellwerk 6

19 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0198

Page 2 of 19 | 10 August 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0198

Page 3 of 19 | 10 August 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Berner chemical anchor BCA II is a bonded anchor for use in concrete consisting of a capsule Berner BCA II and a steel element according to Annex A1.

The capsule Berner BCA II is placed in the hole and the steel element is driven by machine with simultaneous hammering and turning.

The anchor rod is anchored via the bond between steel element, chemical mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action, Displacements	See Annex C 1 to C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-17/0198

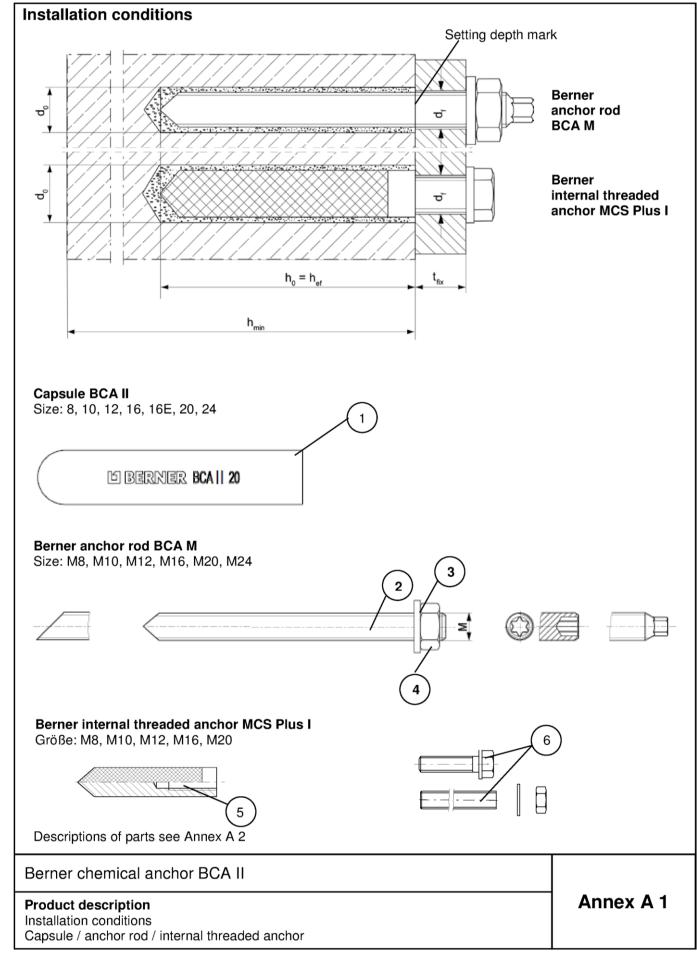
Page 4 of 19 | 10 August 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 10 August 2017 by Deutsches Institut für Bautechnik

Andreas Kummerow Head of Department beglaubigt: Baderschneider

Table	e A1: Materials							
Part	Designation		Material					
1	Capsule BCA II	Mortar, hardener, filler						
	Steel grade	Steel, zinc plated	Steel, zinc plated Stainless steel A4					
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanized ≥ 40 μm EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm²	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le$ 1000 N/mm ²				
			fracture elongation A ₅ > 8 %	>				
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014				
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
5	Berner internal threaded anchor MCS Plus I	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
6	Commercial standard screw or anchor / threaded rod for Berner internal threaded anchor MCS Plus I	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, ISO 4042:1999 A2K fracture elongation $A_5 > 8 \%$	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 fracture elongation A ₅ > 8 %	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %				

Berner chemical anchor BCA II	
Product description Materials	Annex A 2

Specifications of intended use (part 1)

Table B1: Overview use and performance categories

Anchorages subject to		BCA II with					
		Berner anchor rod BCA M Berner internal thread MCS Plus I					
Hammer drilling with standard drill bit	E4440000000000000000000000000000000000	all s	izes	all sizes			
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD" or Berner "Cleandrill")			bit diameter n to 28 mm	all sizes			
Static and quasi static	uncracked concrete	all sizes		all sizes	Tables: C2, C3, C5, C7		
load, in	cracked concrete	M10, M12, M16, M20, M24	Tables:	an 31263			
Llee esterior	dry or wet concrete	all sizes	C1, C3, C4, C6	all sizes			
Use category	flooded hole	M12, M16, M20, M24		M8, M10, M16			
Installation temperature		-15 °C to +40 °C					
In-service	Temperature range	-40 °C bis +40 °		m temperature +2 m temperature +4			
temperature	Temperature range	-40 °C bis +120 °C (max. long term temperature +72 °C and max. short term temperature +120 °C)					

Berner chemical anchor BCA II	
Intended Use Specifications (part 1)	Annnex B 1

English translation prepared by DIBt

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009

Installation:

electronic copy of the eta by dibt: eta-17/0198

- Anchor installation has to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

Berner chemical anchor BCA II	
Intended Use Specifications (part 2)	Annnex B 2

Table B2: Installation parameters for Berner anchor rods BCA M

Size				М8	M10	M12	M16	M20	M24
Width across flats		SW		13	17	19	24	30	36
Nominal drill bit diameter		d ₀		10	12	14	18	25	28
Drill hole depth		h_0				h ₀ =	h _{ef}		
Effective anchorage depth		h_{ef}		80	90	110	125	170	210
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	65	85	105
Diameter of clearance hole in the fixture ¹⁾	pre- positioned anchorage	d _f		9	12	14	18	22	26
Minimum thickness of concrete member		h _{min}			h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀	
Maximum installation torque		$T_{\text{inst},\text{max}}$	[Nm]	10	20	40	60	120	150

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

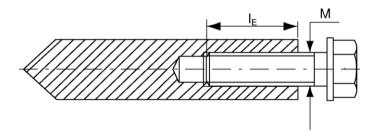
Berner anchor rod BCA M: Width across flats hef Setting depth mark Marking

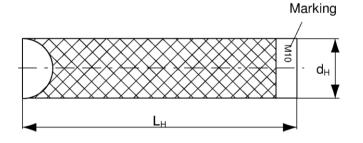
Marking (on random place) Berner anchor rod BCA M:

Property class 8.8, stainless steel, property class 80 or high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel, property class 50: • • Or colour coding according to DIN 976-1

Berner chemical anchor BCA II	
Intended Use Installation parameters Berner anchor rods BCA M	Annex B 3

237744.17 8.06.01-44/17


installation torque



Size	М8	M10	M12	M16	M20		
Diameter of anchor	d _H		12	16	18	22	28
Nominal drill bit diameter	d ₀		14	18	20	24	32
Drill hole depth	h ₀				$h_0 = h_{ef}$		
Effective anchorage depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20
Maximum installation torque	T _{inst,max}	[Nm]	10	20	40	80	120

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Berner internal threaded anchor MCS Plus I

Marking: Anchor size

e.g.: M10

Stainless steel additional A4

e.g.: M10 A4

High corrosion resistant steel

additional C e.g.: M10 C

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 2, Table A1

Berner chemical anchor BCA II	
Intended Use Installation parameters Berner internal threaded anchors MCS Plus I	Annex B 4

Table B4: Dimensions of capsules BCA II

Capsule BCA II		8	10	12	16 16 E		20	24	
Capsule diameter	d _P	[mm]	9,0	10,5	12,5	16	5,5	23,0	
Capsule length	L _P	[mm]	85	90	97	95	123	160	190

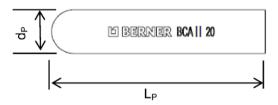


Table B5: Assignment of the capsule BCA II to the Berner anchor rod BCA M

Size BCA M			М8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210
Related capsule BCA II		[-]	8	10	12	16	20	24

Table B6: Assignment of the capsule BCA II to the Berner internal threaded anchor MCS Plus I

Size MCS Plus I			M8	M10	M12	M16	M20
Effective anchorage depth	h _{ef}	[mm]	90	90	125	160	200
Related capsule BCA II		[-]	10	12	16	16E	24

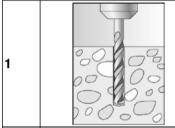
Table B1: Minimum curing time

(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 °C)

Concrete temperature [°C]	Minimum curing time t _{cure} [minutes]
-15 to -10	30 hours
-9 to -5	16 hours
-4 to ±0	10 hours
+1 to +5	45
+6 to +10	30
+11 to +20	20
+21 to +30	5
+31 to +40	3

Berner chemical anchor BCA II

Intended Use


Dimensions of the capsules, Assignment of the capsule to the anchor rod and internal threaded anchor, Minimum curing time

Annex B 5

Installation instructions part 1

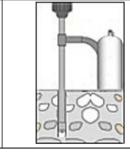
Drilling and cleaning the hole (hammer drilling with standard drill bit)

Specified drill hole depth \mathbf{h}_0 should be adhered to (e.g. mark on the drill bit). Drill the hole.

Drill hole diameter do and drill hole depth ho see Tables B2, B3

When reaching the drill hole depth h_0 pull out the drill bit whilst power drill is switched on. To reduce the drill dust in the drill hole repeat this step minimum **three times**, beginning from the drill hole bottom (discharging the bore hole)

Trickling of the bore dust into the drill hole has to be avoided. (e.g. with exhausting the drill dust) Blowing out or brushing the drill hole is not necessary


Go to step 3

2

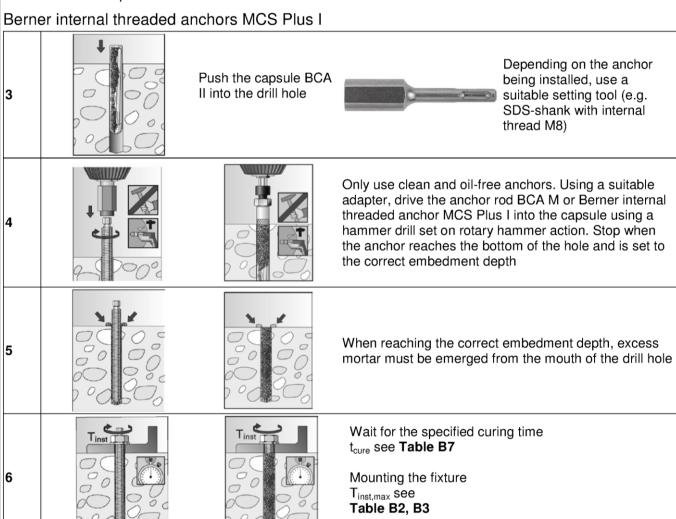
Drilling and cleaning the hole (hammer drilling with hollow drill bit)

Check a suitable hollow drill (see **Table B1**) for correct operation of the dust extraction

Use a suitable dust extraction system, e.g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Diameter of drill hole $\mathbf{d_0}$ and drill hole depth $\mathbf{h_0}$ see **Tables B2**, **B3**

Go to step 3


2

Berner chemical anchor BCA II	
Intended use Installation instructions part 1	Annex B 6

Installation instructions part 2

Installation of capsule BCA II with Berner anchor rods BCA M or

Berner chemical anchor BCA II	
Intended use Installation instructions part 2	Annex B 7

English translation prepared by DIBt

Size					M8	M10	M12	M16	M20	M24		
Beari	ng capacity unde	r tensile loa	ad, ste	el failu	ıre							
ng s	Steel zinc plated		5.8		19	29	43	79	123	177		
Charact.bearing capacity N _{RK.s}	Steel zinc plated Stainless steel A4 and High corrosion resistant steel C	D	8.8		29	47	68	126	196	282		
ct.b	Stainless steel	Property class	50	[kN]	19	29	43	79	123	177		
nara Sapa	High corrosion		70		26	41	59	110	172	247		
	Toolotant otool o		80		30	47	68	126	196	282		
P artia	Il safety factors ¹⁾	T										
>	Steel zinc plated		5.8		1,50							
afet Ms.N		D	8.8		1,50							
artial safet factor ms.n	Stainless steel A4 and	Property class	50	[-]	2,86							
Partial safety factor y _{Ms.N}	1 11911 0011001011		70		1,50 ²⁾ /1,87							
_	resistant steel C		80		1,60							
3eari	ng capacity unde	r shear load	d, stee	l failui	re							
vitho	ut lever arm	1										
act.beari acity V _{Rk}	Steel zinc plated		5.8		9	15	21	39	61	89		
		Proporty	8.8		15	23	34	63	98	141		
	Stainless steel A4 and High corrosion	Property class	50	[kN]	9	15	21	39	61	89		
		o i do o	70		13	20	30	55	86	124		
င် ဝ	resistant steel C	-	80		15	23	34	63	98	141		
	ity factor acc. to CI 4-5:2009 Section 6		k ₂	[-]		•	1	,0				
with I	ever arm											
g s	Steel zinc plated		5.8		19	37	65	166	324	560		
pog.	——————————————————————————————————————		8.8		30	60	105	266	519	896		
t.be nt №	Stainless steel	Property	50	[Nm]	19	37	65	166	324	560		
arac	A4 and High corresion	class	70		26	52	92	232	454	784		
ŠĚ	Steel zinc plated Stainless steel A4 and High corrosion resistant steel C		80		30	60	105	266	519	896		
	I safety factors ¹⁾						l	l	l .			
_	Ota al sina inlata d		5.8				1,	25				
safety YMs.V	Steel zinc plated		8.8				1,	25				
al sa or _Y v	Stainless steel	Property class	50	[-]			2,	38				
Partial s factor	A4 and High corrosion	Class	70				1,25 ²	⁾ /1,56				
₾ _	resistant steel C		80				1,	33				
1) In	absence of other n	ational regu	ılations									
²⁾ Or	nly for Berner BCA	M made of	high co	rrosio	n-resistan	t steel C						
	ner chemical an	-l DOA										

Table C2: Characteristic values f	for the steel bearing c	capacity of Berner	internal threaded
anchors MCS Plus I	under tensile / shear l	oad	

	1013	1000110	5 • and	301 10	7 3110	ar load						
Size					М8	M10	M12	M16	M20			
Bearing capacity	unde	r tensile loa	ad, ste	el fail	ure							
		Property	5.8		19	29	43	79	123			
Characteristic	N.I.	class	8.8	[LANI]	29	47	68	108	179			
bearing capacity with screw	$N_{Rk,s}$	Property	A4	[kN]	26	41	59	110	172			
With Solow		class 70	С]	26	41	59	110	172			
Partial safety fact	ors ¹⁾											
		Property	5.8				1,50					
Partial safety		class	8.8	_ ,			1,50					
factor	Ms,N	Property	A4	[-]		1,87						
		class 70	С				1,87					
Bearing capacity	unde	r shear load	d, stee	l failu	re							
without lever arm												
		Property	5.8	5.8 [kNI]	9,2	14,5	21,1	39,2	62,0			
Characteristic bearing capacity	.,	class	8.8		14,6	23,2	33,7	54,0	90,0			
with screw	V _{Rk,s}	Property	A4	נגואן	12,8	20,3	29,5	54,8	86,0			
		class 70	С		12,8	20,3	29,5	54,8	86,0			
Ductility factor acc. 1992-4-5:2009 Sec			k ₂	[-]			1,0					
with lever arm												
		Property	5.8		20	39	68	173	337			
Characteristic bending moment N	1 0	class	8.8	[Nm]	30	60	105	266	519			
with screw	VI Rk,s	Property	A4	וויייון	26	52	92	232	454			
		class 70	С		26	52	92	232	454			
Partial safety fact	ors ¹⁾											
		Property	5.8				1,25					
Partial safety	,	class	8.8	[-]			1,25					
factor	Ms,V	Property	A4	[-]			1,56					
		class 70	С		1,56							

¹⁾ In absence of other national regulations

Berner chemical anchor BCA II

Performances

Characteristic steel bearing capacity of Berner internal threaded anchor MCS Plus I

Annex C 2

tensile / shear load

English translation prepared by DIBt

ressive strer C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	2009 S k _{ucr} k _{cr}	[-]		/25	10 7,				
ressive stren C25/30 C30/37 C35/45 C40/50 C45/55	k _{ucr} k _{cr}	f concr		/25	7,				
C25/30 C30/37 C35/45 C40/50 C45/55	k _{cr} ngth o	f concr	ete > C20	/25	7,				
C25/30 C30/37 C35/45 C40/50 C45/55	ngth o	f concr	ete > C20	/25		,2			
C25/30 C30/37 C35/45 C40/50 C45/55		-	ete > C20	/25					
C30/37 C35/45 C40/50 C45/55	Ψ _c	[-]							
C35/45 C40/50 C45/55	Ψ_{c}	[-]			1,0	02			
C40/50 C45/55	Ψ_{c}	[-]			1,0	04			
C45/55	T _C	- r			1,0) 7			
		'' [1,0	08			
C50/60					1,0)9			
					1,	10			
h / h _{ef} ≥ 2,0					1,0	h _{ef}			
h / h _{ef} > 1,3	$c_{\text{cr,sp}}$	[mm]			- 1,8 h				
h / h _{ef} ≤ 1,3] [ն h _{ef}				
	$S_{cr,sp}$				cr,sp				
e acc. to CEN	I/TS 1	992-4-5	:2009 Sec	tion 6.2.3.	2				
	$\mathbf{C}_{\text{cr},N}$	[mm]			1,5	h _{ef}			
	S _{cr,N}	[,,,,,,,]	2 c _{cr,N}						
ler shear loa	d								
ctors									
	γ_2	10							
ns		[-]	1,0						
ure	Yinst								
k_3 acc. to	k ₍₃₎	[-]			2,	,0			
e									
		[mm]			h _{ef} =	= ho			
s									
			M8	M10	M12	M16	M20	M24	
CA M	d] [8	10	12	16	20	24	
ors MCS	d_{nom}	[mm]	12	16	18	22	28		
	h / h _{ef} ≤ 1,3 e acc. to CEN der shear loa ctors ans ure b k ₃ acc. to 9 e	$\begin{array}{c} \text{h / h}_{\text{ef}} \leq 1,3 \\ & \text{S}_{\text{cr,sp}} \\ \text{e acc. to CEN/TS 19} \\ \hline & \text{C}_{\text{cr,N}} \\ & \text{S}_{\text{cr,N}} \\ \\ \text{der shear load} \\ \hline \text{ctors} \\ \\ \text{ans} & = \\ & \gamma_{\text{inst}} \\ \\ \text{ure} \\ \\ \text{e} \\ \\ \text{cA M} & \text{d} \\ \end{array}$	$\begin{array}{c c} h \ / \ h_{ef} \leq 1,3 \\ \hline s_{cr,sp} \\ \hline e \ acc. \ to \ CEN/TS \ 1992-4-5 \\ \hline \begin{matrix} C_{cr,N} \\ s_{cr,N} \\ \end{matrix} \begin{bmatrix} mm \end{bmatrix} \\ \hline der \ shear \ load \\ \hline ctors \\ \hline ure \\ g \\ k_3 \ acc. \ to \\ 199 \\ \hline \end{matrix} k_{(3)} \begin{bmatrix} -1 \\ -1 \\ \end{bmatrix} \\ \hline e \\ \hline \begin{matrix} E \\ E$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Flooded hole

English translation prepared by DIBt

1,4

Table C4: Characteristic	 values (of resist	ance for	Berner a	nchor ro	ds BCA	M;		
uncracked or							,		
Size			М8	M10	M12	M16	M20	M24	
Combined pullout and concr	rete cone	failure							
Calculation diameter	d	[mm]	8	10	12	16	20	24	
Uncracked concrete									
Characteristic bond resistan									
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (dry a	and wet co	ncrete)	Г			
Tem- I: 24 °C / 40 °C	- _{τ-} .	 [N/mm²]	12,5	12,5	12,5	12,5	12,5	12,5	
range II: 72 °C / 120 °C	T _{Rk,ucr}		10,5	10,5	10,5	10,5	10,5	10,5	
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (flood	ded hole)					
Tem- I: 24 °C / 40 °C		[N/mm²]			12,5	12,5	12,5	12,5	
perature II: 72 °C / 120 °C	T _{Rk,ucr}				10,5	10,5	10,5	10,5	
Installation safety factors									
Dry and wet concrete	-24 - 24	[-]			1	,2			
Flooded hole	$-\gamma_2 = \gamma_{\text{inst}}$	[-]			1,4				
Cracked concrete									
Characteristic bond resistan									
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (dry a	and wet co	ncrete)				
Tem- I: 24 °C / 40 °C		 [N/mm²]		4,5	4,5	4,5	4,5	4,5	
range II: 72 °C / 120 °C	τ _{Rk,cr}	[[N/]]]		3,5	3,5	3,5	3,5	3,5	
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (flood	ded hole)					
Tem- I: 24 °C / 40 °C		[N]/mm ²]			4,5	4,5	4,5	4,5	
perature II: 72 °C / 120 °C	- τ _{Rk,cr}	[N/mm ²]			3,5	3,5	3,5	3,5	
Installation safety factors									
Dry and wet concrete	$-\gamma_2 = \gamma_{inst}$	[-]				1,2			

[-]

 $\gamma_2 = \gamma_{\text{inst}}$

Berner chemical anchor BCA II	
Performances Characteristic values for static or quasi-static action under tensile load for	Annex C 4
Berner anchor rod BCA M (uncracked or cracked concrete)	

Size			М8	M10	M12	M16	M20
Combined pullout and conc	rete cone	failure					
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond resistar							
Hammer-drilling with standard	drill bit o	<u>r hollow d</u>	<u>rill bit (dry an</u>	d wet concre	<u>te)</u>		
Tem- I: 24 °C / 40 °C	_	 [N/mm²]	11	11	11	11	11
perature II: 72 °C / 120 °C	- τ _{Rk,ucr}		9,5	9,5	9,5	9,5	9,5
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (floode	d hole)			
Tem- I: 24 °C / 40 °C		[N/mm²]	11	11		11	
perature II: 72 °C / 120 °C	- τ _{Rk,ucr}		9,5	9,5		9,5	
Installation safety factors							
Dry and wet concrete		[.]			1,2		
Flooded hole	$-\gamma_2 = \gamma_{\text{inst}}$	[-]	1,4			1,4	
Cracked concrete							
Characteristic bond resistar							
Hammer-drilling with standard	drill bit o	<u>r hollow d</u>	rill bit (dry an	d wet concre	te)		
Tem- I: 24 °C / 40 °C		21	4,5	4,5	4,5	4,5	4,5
perature II: 72 °C / 120 °C	τ _{Rk,cr}	[N/mm²]	3,5	3,5	3,5	3,5	3,5
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (floode	d hole)			
Tem- I: 24 °C / 40 °C		[N/mm²]	4,5	4,5		4,5	
perature II: 72 °C / 120 °C	- τ _{Rk,cr}	ן ווא/ווווו ן	3,5	3,5		3,5	
Installation safety factors							
Dry and wet concrete	- 2/ 2/-	[-]			1,2		
Flooded hole	$-\gamma_2 = \gamma_{\text{inst}}$	l (.)	1	,4		1,4	

Berner chemical anchor BCA II	
Performances	Annex C 5
Characteristic values for static or quasi-static action under tensile load for Berner internal threaded anchors MCS Plus I (uncracked or cracked concrete)	

1,4

1,4

Tabelle C6: Displacements for Berner anchor rods BCA M										
Size		М8	M10	M12	M16	M20	M24			
Displacement-Factors for tensile load ¹⁾										
Uncracked or cracked concrete; Temperature range I, II										
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	0,07	0,08	0,09	0,10	0,11	0,12			
$\delta_{N\infty\text{-Faktor}}$][mm/(N/mm-)] 	0,13	0,14	0,15	0,17	0,17	0,18			
Displacement-Factors for shear load ²⁾										
Uncracked or cracked concrete; Temperature range I, II										
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,18	0,15	0,12	0,09	0,07	0,06			
$\delta_{V\infty\text{-Faktor}}$		0,27	0,22	0,18	0,14	0,11	0,09			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Tabelle C7: Displacements for Berner internal threaded anchors MCS Plus I

Size		M8	M10	M12	M16	M20					
Displace	Displacement-Factors for tensile load ¹⁾										
Uncracked or cracked concrete; Temperature range I, II											
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,19					
$\delta_{N\infty\text{-Faktor}}$		0,13	0,15	0,15	0,17	0,19					
Displacement-Factors for shear load ²⁾											
Uncracked or cracked concrete; Temperature range I, II											
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,12	0,09	0,08	0,07	0,05					
$\delta_{V_{\infty}\text{-Faktor}}$		0,18	0,14	0,12	0,10	0,08					

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$

 $(V_{Ed}$: Design value of the applied shear force)

Berner chemical anchor BCA II

Performances

Displacements for Berner anchor rods BCA M and Berner internal threaded anchors MCS Plus I

Annex C 6