

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0288 of 22 August 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Upat Sleeve Anchor UHS, UHS-I

Torque-controlled expansion anchor for use in concrete

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

22 pages including 3 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330232-00-0601

European Technical Assessment ETA-17/0288

Page 2 of 22 | 22 August 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0288

Page 3 of 22 | 22 August 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Upat Sleeve Anchor UHS, UHS-I is an anchor made of galvanised steel (sizes with external diameter 10, 12, 15, 18, 24, 28 and 32, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) or stainless steel (sizes with external diameter 10, 12, 15, 18 and 24, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static	See Annex C 1 to C 4
Characteristic resistance for seismic performance categories C1	See Annex C 7
Displacements under tension and shear loads	See Annex C 7 and C 8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 5 and C 6

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

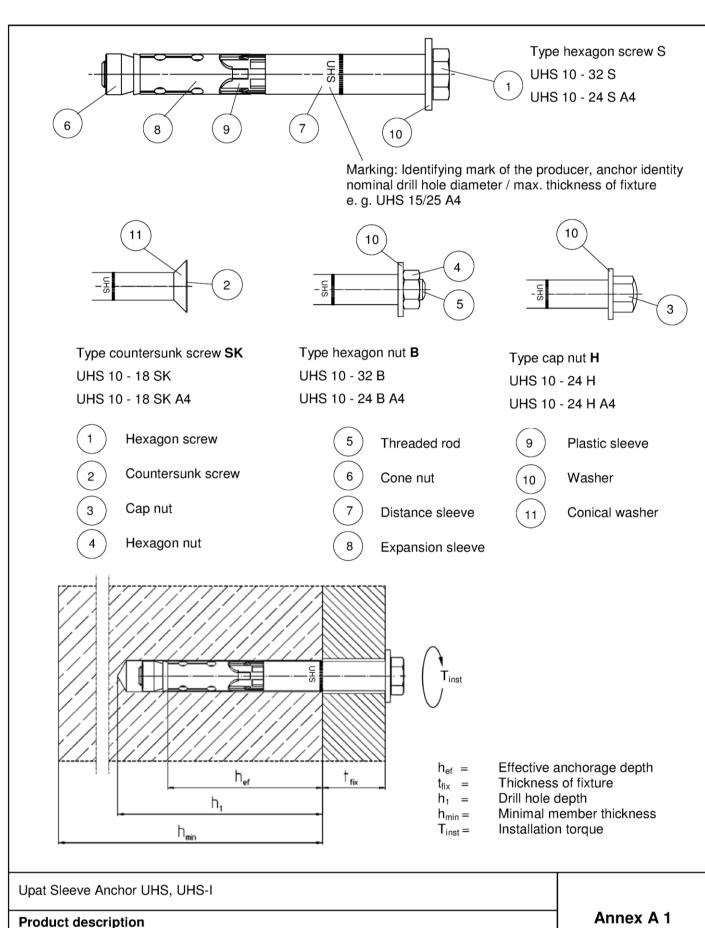
The system to be applied is: 1

European Technical Assessment ETA-17/0288

Page 4 of 22 | 22 August 2017

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 22 August 2017 by Deutsches Institut für Bautechnik

Lars Eckfeldt p.p. Head of Department

*beglaubigt:*Baderschneider

Installed condition and Anchor types UHS, UHS A4

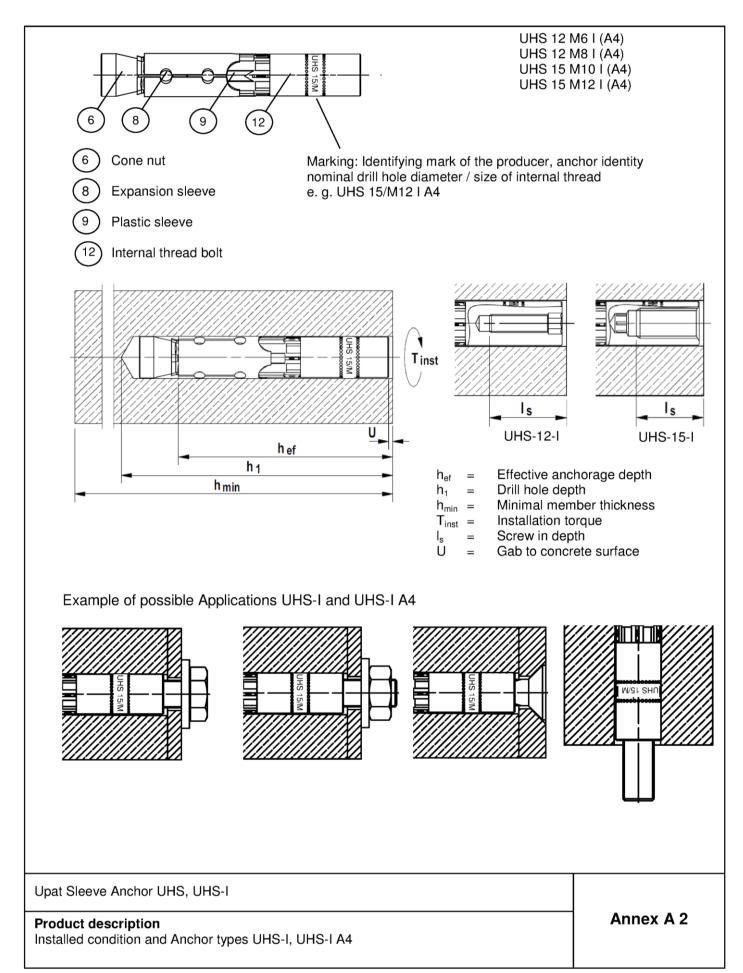


Table A1: Anchor Dimensions [mm] UHS and UHS A4

Anchor type UHS S, SK, B, H and UHS S, SK, B, H A4			UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Thread	М	=	6	8	10	12	16	20	24
Diameter conical nut	d _c	=	10	12	14,8	17,8	23,7	27,5	31,5
	UHS S, B		10	13	17	19	24	30	36
Wrench size SW UHS	UHS SK 1)	1	4	5	6	8	-	-	-
	UHS H] =	13	17	17	19	24	-	-
Wrench size SW UHS A4	UHS S, B, H A4	1	10	13	17	19	24	-	-
Wrench size SW OHS A4	UHS SK A4 1)	1	4	5	6	8	-	-	-
t _{fix} UHS + UHS A4 S, B, H	min	≥	0	0	0	0	0	0	0
t _{fix, red} UHS SK + UHS SK A4 ²⁾	min	≥	5	6	6	8	-	-	-
t _{fix} UHS + UHS A4	max	S	250	250	300	350	400	500	500
Length of screw / bolt	L _{s,} L _{h,} L _b (- t _{fix})	≥	49	74	89	99	124	149	174
Length of countersunk screw	L _{sk} (- t _{fix})	≥	54	79	95	107	-	-	-

¹⁾ Internal hexagon
2) The influence of the thickness of fixture to the characteristic resistance for shear loads, steel failure without lever arm is

Upat Sleeve Anchor UHS, UHS-I	
Product description Anchor types and dimensions UHS, UHS A4	Annex A 3

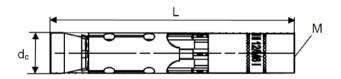


Table A2: Anchor Dimensions [mm] UHS-I and UHS-I A4

Anchor type UHS-I and UHS-I A4			UHS 12/M6 I	UHS 12/M8 I	UHS 15/M10 I	UHS 15/M12 I
Thread	М	Ш	6	8	10	12
Diameter conical nut	d _c	Ш	12	12	14,8	14,8
Wrench size internal hexago	n	Ш	6	8	6	8
Anchor length	L	Ш	77,5	77,5	90	90

Table A3: Material UHS and UHS A4

Nb.	Designation	UHS	UHS A4
1	Hexagon screw	Steel class 8.8; EN ISO 898-1:2013 1)	
2	Countersunk screw	Steel class 8.8; EN ISO 898-1:2013 1)	Strength class ≥ 70
3	Cap nut	Steel class 8 1)	EN ISO 3506:2010
4	Hexagon nut	Steel class 8 1)	
5	Threaded rod	Steel $f_{uk} \ge 800 \text{ N/mm}^2$; $f_{yk} \ge 640 \text{ N/mm}^2$ 1)	
6	Cone nut	Steel EN 10277:2008 1)	
7	Distance sleeve	Steel EN 10305:2016 1)	EN 10088:2014
8	Expansion sleeve	Steel EN 10139:2016/ EN 10277:2008 1)	EN 10088:2014
9	Plastic sleeve	ABS (plastic)	
10	Washer	Steel EN 10139:2016 1)	EN 10088:2014
11	Conical washer	Steel EN 10277:2008 1)	EN 10088:2014

 $[\]overline{\ ^{1)}}$ Galvanised according to EN ISO 4042:2001, $\geq 5~\mu m$

Table A4: Material UHS-I and UHS-I A4

Nb.	Designation	UHS	UHS A4
6	Cone nut	Steel EN 10277:2008 1)	Strength class ≥ 70 EN ISO 3506:2010
8	Expansion sleeve	Steel EN 10139:2016 / EN 10277:2008 1)	EN 10088:2014
9	Plastic sleeve	ABS (plastic)	
12	Internal thread bolt	Steel EN 10277:2008 1) $f_{uk} \ge 750 \text{ N/mm}^2$, $f_{yk} \ge 600 \text{ N/mm}^2$	EN 10088:2014 $f_{uk} \ge 750 \text{ N/mm}^2$, $f_{yk} \ge 600 \text{ N/mm}^2$
Requirements for fixing elements		Steel strength class 5.8, 6.8 or 8.8 EN ISO 898-1:2013 1)	Steel strength class 50, 70 or 80 EN ISO 3506:2010 1.4362, 1.4401, 1.4404, 1.4571, 1.4529

 $^{^{1)}\}mbox{Galvanised}$ according to EN ISO 4042:2001, $\geq 5~\mu\mbox{m}$

Upat Sleeve Anchor UHS, UHS-I	
Product description Anchor types and dimensions UHS-I, UHS I-A4 Materials	Annex A 4

Specifications of intended use

Anchorages subject to:

Upat Sleeve Anchor UHS, UHS A4	10	12	15	18	24	28	32
Upat Sleeve Anchor UHS-I, UHS-I A4	-	12	15		-		
Standard anchorage depth				/			
Static and quasi-static action load				/			
Cracked and uncracked concrete				/			
Fire exposure				/			
Seismic action for Performance Category C1	-	S, B, H, SK	S, B, H, SK	S, B, H, SK	S, B, H	S, B	S, B

Base materials:

- Reinforced and unreinforced normal weight concrete (cracked and uncracked) according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (UHS, UHS A4, UHS-I, UHS-I A4)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (UHS A4, UHS-I A4)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design of fastenings according to FprEN 1992-4: 2016 and EOTA Technical Report TR 055

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hammer or hollow drilling according to Annex B5 and B6
- Drill hole create perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement

Upat Sleeve Anchor UHS, UHS-I

Intended use
Specifications

Annex B 1

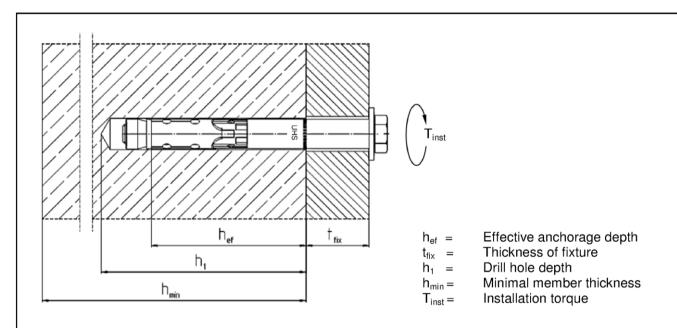


Table B1: Installation parameters UHS and UHS A4

Anchor type UHS S, SK, B, H and UHS S, SK, B, H A4	l	UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Nominal drill hole Diameter	d ₀ =	10	12	15	18	24	28	32
Maximum diameter of drill bit	d _{cut} ≤ [mm]	10,45	12,50	15,50	18,50	24,55	28,55	32,70
Depth of drill hole	$h_1 \ge [mm]$	55	80	90	105	125	155	180
Diameter of clearance hole	$d_f \leq$	12	14	17	20	26	31	35
Diameter of counter sunk	UHS SK	18	22	25	32	1	-	-
Depth of counter sunk, 90°	UHS SK A4	5,0	5,8	5,8	8,0	-	-	-
UHS S		10	22,5	40	80	160	180	200
Required UHS B		10	17,5	38	80	120	180	200
installation UHS H	- - T [Nlm]	10	22,5	40	80	90	-	-
UHS SK	$T_{inst} = [Nm]$	10	22,5	40	80	-	-	-
UHS S, B, H A4	-	15	25	40	100	160	-	-
UHS SK A4	-	10	25	40	100	-	-	-

Upat Sleeve Anchor UHS, UHS-I	
Intended Use Installation instructions UHS, UHS A4	Annex B 2

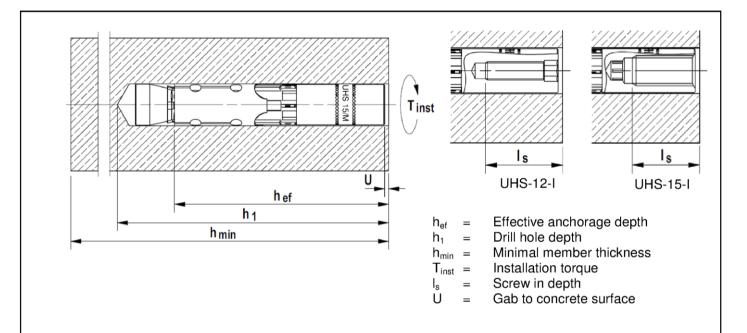


Table B2: Installation parameters UHS-I and UHS-I A4

Anchor type UHS-I and UHS-I A4			UHS 12/M6 I	UHS 12/M8 I	UHS 15/M10 I	UHS 15/M12 I		
Nominal drill hole diameter	d_0	=	[mm]	•	12	15		
Maximum diameter of drill bit	d_{cut}	≤	[mm]	12	2,50	15,50		
Depth of drill hole	h ₁	\geq	[mm]	w	35	95		
Diameter of clearance hole	d _f	≤	[mm]	7	9	12	14	
Required gap after torquing1)	U	=	[mm]	3-5 mm				
Required installation torque ¹⁾	T_{inst}	=	[Nm]	•	15	25		
Minimum screw in length	Is	2	[mm]	11+U	13+U	10+U	12+U	
Maximum screw in length	l _s	≤	[mm]		20+	·U		
Maximum torque on fixture in combination with screws and threaded rods strength class ≥ 5.8 and ≥ 50	T _{max}	≤	[Nm]	3	8	15	20	

¹⁾ Only one of both requirements has to be fulfilled

electronic copy of the eta by dibt: eta-17/0288

Upat Sleeve Anchor UHS, UHS-I	
Intended Use Installation instructions UHS-I, UHS-I A4	Annex B 3

Table B3: Minimum thickness of concrete member, minimum spacing and minimum edge distances UHS, UHS A4

Anchor type UHS S, SK, B, H and UHS S, SK, B, H A4	1	UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Min. member thickness	h _{min} [mm]	80	120	140	160	200	250	300
Minimum spacing,	s _{min} [mm]	50	60	70	80	100	125	150
cracked concrete	for $c \ge [mm]$	50	80	120	140	180	200	260
Minimum edge distance,	c _{min} [mm]	50	60	70	80	100	150	150
cracked concrete	for $s \ge [mm]$	50	80	120	160	200	220	280
Minimum spacing,	s _{min} [mm]	50	70	80	90	125	150	175
uncracked concrete	for c ≥ [mm]	70	100	100	160	200	220	360
Minimum edge distance,	c _{min} [mm]	50	70	80	90	125	150	200
uncracked concrete	for $s \ge [mm]$	70	100	140	200	220	240	380

Intermediate values may be calculated by linear interpolation.

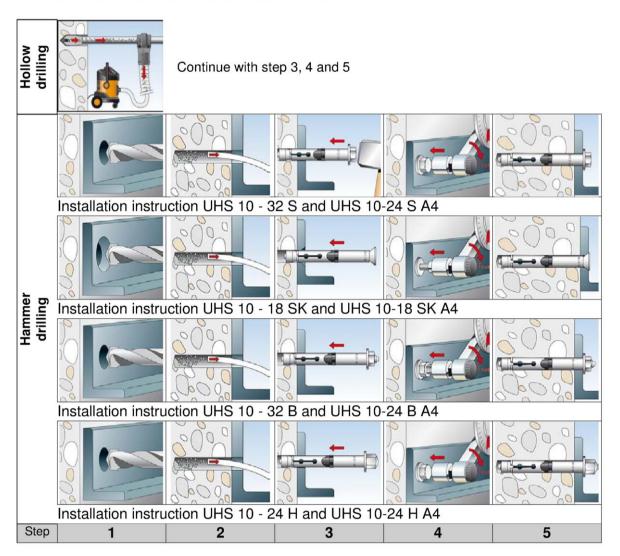
Table B4: Minimum thickness of concrete member, min. spacing and min. edge distances UHS-I, UHS-I A4

Anchor type UHS-I and UHS	S-I A4	UHS 12/M6 I UHS 12/M8 I	UHS 15/M10 I UHS 15/M12 I
Min. member thickness	h _{min} [mm]	125	150
Minimum spacing,	s _{min} [mm]	60	70
cracked concrete	for $c \ge [mm]$	80	120
Minimum edge distance,	c _{min} [mm]	60	70
cracked concrete	for $s \ge [mm]$	80	120
Minimum spacing,	s _{min} [mm]	70	80
uncracked concrete	for $c \ge [mm]$	100	100
Minimum edge distance,	c _{min} [mm]	70	80
uncracked concrete	for $s \ge [mm]$	100	140

Intermediate values may be calculated by linear interpolation.

Table B5: Minimum spacing and minimum edge distances of anchors under fire exposure

Anchor type	UHS 10	UHS 12 UHS 12-I	UHS 15 UHS 15-I	UHS 18	UHS 24	UHS 28	UHS 32	
Spacing S _{cr,N} [mm]		4x h _{ef}						
Spacing $\frac{S_{cr,N}}{S_{min}}$ [mm]	50	60	70	80	100	125	150	
Edge C _{cr,n}		2 x h _{ef}						
[mm]	$c_{min} = 2 \times h_{ef}$,							
distance c _{min}		for fire exposure from more than one side $c_{min} \ge 300 \text{ mm}$						


Upat Sleeve Anchor UHS, UHS-I

Intended Use
Minimum thickness of member, minimum spacings and edge distances
Minimum spacing and minimum edge distances of anchors under fire exposure

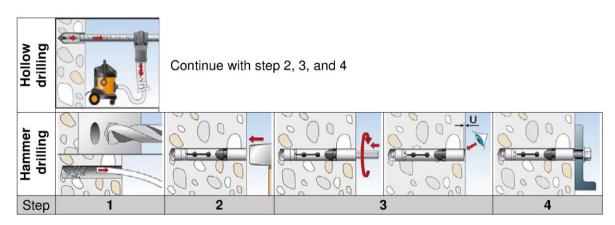
Annex B 4

Installation instruction for the Upat Sleeve Anchor UHS 10 - UHS 32 and UHS 10 A4 - UHS 24 A4

Step	Description					
1	Create drill hole with hammer drill	Create drill hole with hollow drill				
		and vacuum cleaner				
2	Clean bore hole -					
3	Set anchor					
4	Expand anchor with prescribed installation torque T _{inst}					
5	Finished installation					

	Types of drills	
Hammer drill	E4440000000:	
Hollow drill	Ī	

Upat Sleeve Anchor UHS, UHS-I


Intended Use

Installation instructions UHS, UHS A4

Annex B 5

Installation instruction for the Upat Sleeve Anchor internal thread **UHS-I and UHS-I A4**

Step		Description						
1	Create drill hole with hammer drill Clean drill hole	Create drill hole with hollow drill						
	and vacuum cleaner							
2	Hammering in the anch	Hammering in the anchor flushed with the surface of the concrete						
3	Tightening the anchor. Tightening with the included hexagon in the package is preferred.							
	Other tightening methods are allowed.							
	Tighten the anchor into the concrete u	Intil the gap U is 3-5 mm or the installation torque is						
	eached. Only one requirement has to be fulfilled.							
4	Connecting the fixing and the anchor with a fitting fastener. The length of the fastener should							
	be determined depending on the thickness of fixture t _{fix} , admissible tolerances, and available							
	thread length Is, max and Is, min including t	he gab U.						
	Tightening the screw with the torque							

	Types of drills	
Hammer drill	C-000000000	
Hollow drill	Ī	

Upat Sleeve Anchor UHS, UHS-I

Intended Use
Installation instructions UHS-I, UHS I A4

Annex B 6

Table C1: Characteristic values of tension resistance under static and quasi-static action for UHS and UHS A4

Anchor type UHS S, SK, B, H			UHS	UHS	UHS	UHS	UHS	UHS	UHS
and UHS S, SK, B, H A4			10	12	15	18	24	28	32
Steel failure									
UHS	$N_{Rk,s}$	[kN]	16,1	29,3	46,4	67,4	125,3	195,8	282,0
UHS A4	$N_{Rk,s}$	[KIN]	14,1	25,6	40,6	59,0	109,7	-	-
Partial sensitivity factor	γ _{Ms}	[-]				1,5			
Pullout failure									
cracked concrete UHS and UHS A4	$N_{Rk,p}$ [kN]	C20/25	6	11	16	25		2)	
uncracked concrete UHS	$N_{Rk,p}$ [kN]	C20/25				2)			
uncracked concrete UHS A4	$N_{Rk,p}$ [kN]	C20/25	2)	18		2)		-	-
		C25/30	1,12						
language to a factoria for Ni for		C30/37				1,23			
Increasing factors for N _{Rk,p} for cracked and uncracked	N/ .	C35/45	1,32						
concrete	Ψc .	C40/50				1,41			
		C45/55				1,50			
		C50/60				1,58			
Installation factor	γinst	[-]				1,0			
Concrete cone failure and sp	olitting failu	re							
Effective anchorage depth	h _{ef}	[mm]	40	60	70	80	100	125	150
Factor k₁ for uncracked concre	,	[-]				11,0			
Factor k ₁ for cracked concrete	k k _{cr,N}	[-]				7,7			
Spacing	S _{cr,N}		120	180	210	240	300	375	450
Edge distance	C _{cr,N}	[mm]	60	90	105	120	150	187,5	225
Spacing (splitting)	S _{cr,sp}	[]	190	300	320	340	380	480	570
Edge distance (splitting)	C _{cr,sp}		95	150	160	170	190	240	285
Installation factor	γ inst	[-]				1,0			

¹⁾ In absence of other national regulations 2) Pullout failure not relevant

Upat Sleeve Anchor UHS, UHS-I	
Performances Characteristic values of resistance under tension loads for UHS and UHS A4	Annex C 1

8.06.01-82/17 Z37928.17

Table C2: Characteristic values of **tension** resistance under static and quasi-static action **for UHS-I and UHS-I A4**

Anchor type UHS-I and UHS-I A4			UHS 12/M6 I	UHS 12/M8 I	UHS 15/M10 I	UHS 15/M12 I	
Steel failure							
Anchor in combination with scr	ew / tł	readed	rod of galvanis	sed steel com	plying with DI	N EN ISO 898	
Strength class 5.8	$N_{Rk,s}$		10	19	29	43	
Strength class 6.8	$N_{Rk,s}$	[kN]	12	23	35	44	
Strength class 8.8	$N_{Rk,s}$		16	27	44	44	
Partial sensitivity factor	γ _{Ms} 1)	[-]		1	,5		
Anchor in combination with scr			rod of stainles	s steel compl	ying with DIN	EN ISO 3506	
Screw/thread strength class 50	N _{Rk,s}	[kN]	10	19	29	43	
Partial sensitivity factor	γ _{Ms} 1)	[-]		2,	86		
Screw/thread strength class 70	N _{Rk,s}	[kN]	14	26	41	54	
Partial sensitivity factor	γ _{Ms} 1)	[-]		1,	87		
Screw/thread strength class 80	N _{Rk,s}	[kN]	16	29	46	46	
Partial sensitivity factor	γ _{Ms} 1)	[-]		1,	60		
Pullout failure							
cracked concrete N _{Rk,p}	[kN]	C20/25	g)		12	
uncracked concrete N _{Rk,p}	[kN]	C20/25	18	3	2)		
		C25/30		1,	12		
		C30/37		1,2	23		
Increasing factors for N _{Rk,p} for		C35/45		1,3	32		
cracked and uncracked concrete	Ψ_{c}	C40/50		1,4	41		
		C45/55		1,	50		
		C50/60		1,	58		
Installation factor	γinst	[-]		1,	,0		
Concrete cone failure and splitt	ing fai	lure					
Effective anchorage depth	h _{ef}	[mm]	60			70	
Factor k₁ for uncracked concrete	$k_{\text{ucr},N}$	- [-]			,0		
Factor k₁ for cracked concrete	$k_{cr,N}$			7,			
Spacing	S _{cr,N}	_	18			10	
Edge distance	C _{cr,N}	— [mm]	90			05	
Spacing (splitting)	S _{cr,sp}		30			20	
Edge distance (splitting)	C _{cr,sp}		15			60	
Installation factor	γ_{inst}	[-]		1,	,0		

¹⁾ In absence of other national regulations 2) Pullout failure is not decisive

Upat Sleeve Anchor UHS, UHS-I	
Performances Characteristic values of resistance under tension loads for UHS-I and UHS-I A4	Annex C 2

8.06.01-82/17 Z37928.17

Table C3: Characteristic values of **shear** resistance for **UHS and UHS A4** under static and quasi-static action

-									
Anchor type UHS S, SK, B, F	1		UHS	UHS	UHS	UHS	UHS	UHS	UHS
and UHS S, SK, B, H A4			10	12	15	18	24	28	32
Steel failure without lever a	ırm								
UHS S	$V_{Rk,s}$		18	33	59	76	146	174	217
UHS B + UHS H	$V_{Rk,s}$		16	27	41	62	119	146	169
UHS S A4, UHS B A4, UHS H A4	$V_{Rk,s}$	[kN]	18	28	43	66	119	-	
UHS SK for t _{fix} standard	$V_{Rk,s}$		18	33	59	76	-	-	-
UHS SK A4 for t _{fix} standard	$V_{Rk,s}$		18	28	43	66	-	-	-
t _{fix} standard for UHS SK	$t_{fi\times}$	[mm]	≥10	≥10	≥15	≥15	-		-
UHS SK for t _{fix} reduced	V _{Rk,s}	. וואאו	8	14	23	34	-	-	-
UHS SK A4 for t _{fix} reduced	$V_{Rk,s}$	· [KIN]	7	13	20	30	-	-	-
t _{fix} reduced for UHS SK	t_{fix}	[mm]	<10	<10	<15	<15	-	-	-
Partial sensitivity factor	γ _{Ms} 1)	_ []				1,25			
Factor for ductility	k_7	_ [- <u>]</u>				1,0			
Steel failure with lever arm									
Bending UHS	${\rm M^0_{Rk,s}}$	· [Nm]	12	30	60	105	266	518	896
Bending UHS A4	$M^{\scriptscriptstyleO}_{Rk,s}$	נואווון	11	26	52	92	232	-	-
Partial sensitivity factor	γ _{Ms} 1)	[-]				1,25			
Concrete pryout failure									
Factor for pry-out	k ₈	[-]	1,0			2	,0		
Concrete edge failure									
Effective length of anchor	l _f	– [mm]	40	60	70	80	100	125	150
Effective diameter of anchor	d_{nom}	_ [111111]	10	12	15	18	24	28	32
Installation factor	γinst	[-]				1,0			

¹⁾ In absence of other national regulations

Upat Sleeve Anchor UHS, UHS-I	
Performances Characteristic values of resistance under shear loads for UHS and UHS A4	Annex C 3

Table C4: Characteristic values of **shear** resistance for **UHS-I and UHS-I A4** under static and quasi-static action

quasi-static action						
Anchor type UHS-I and UHS-I A4			UHS 12/M6 I	UHS 12/M8 I	UHS 15/M10 I	UHS 15/M12 I
Steel failure without lever arm						
Anchor in combination with scre		ded rod				
Strength class 5.8	$V_{Rk,s}$		5	9	15	21
Strength class 6.8	$V_{Rk,s}$	[kN]	6	11	18	24
Strength class 8.8	$V_{Rk,s}$		8	14	23	24
Partial sensitivity factor	$\gamma_{Ms}^{}1)}$	– [-]			1,25	
Factor for ductility	k_7				1,0	
Anchor in combination with scre				teel complying		O 3506
Strength class 50	$V_{Rk,s}$	[kN]	5	9	15	21
Partial sensitivity factor	γ _{Ms} 1)	[-]		2	2,38	
Strength class 70	$V_{Rk,s}$	[kN]	7	13	20	30
Partial sensitivity factor	γ _{Ms} 1)	[-]			,56	
Strength class 80	$V_{Rk,s}$	[kN]	8	15	23	32
Partial sensitivity factor	γ _{Ms} 1)	r 1			1,33	
Factor for ductility	k_7	[-]			1,0	
Steel failure with lever arm						
Anchor in combination with scre	w / threa	ded roc	l of galvanised	steel complyi	ing with DIN EN	ISO 898
Strength class 5.8	$M^0_{Rk,s}$		8	19	37	65
Strength class 6.8	$M^0_{Rk,s}$	[Nm]	9	23	44	78
Strength class 8.8	$M^0_{Rk,s}$		12	30	60	105
Partial sensitivity factor	$\gamma_{Ms}^{-1)}$	r 1		1	1,25	
Factor for ductility	k ₇	– [-]			1,0	
Anchor in combination with scre	w / threa	ded roc	d of stainless	steel complyin	g with DIN EN IS	SO 3506
Strength class 50	${\sf M^0}_{\sf Rk,s}$	[Nm]	8	19	37	65
Partial sensitivity factor	γ _{Ms} 1)	[-]		2	2,38	
Strength class 70	${\sf M^0}_{\sf Rk,s}$	[Nm]	11	26	52	92
Partial sensitivity factor				1	1,56	
Strength class 80	M ⁰ _{Rk,s}	[Nm]	12	30	60	105
Partial sensitivity factor	γ _{Ms} 1)	_ [-]		1	1,33	
Factor for ductility	k ₇	— [- <u>]</u>			1,0	
Concrete pryout failure						
Factor for pry-out	k ₈	[-]			2,0	
Concrete edge failure						
Effective length of anchor under	l _f	[mm]		60		70
Effective diameter of anchor	d_{nom}	[mm]		12		15
Installation factor	γinst	[-]			1,0	

¹⁾ In absence of other national regulations

Upat Sleeve Anchor UHS, UHS-I	
Performances Characteristic values of resistance under shear loads for UHS-I and UHS-I A4	Annex C 4

Table C5: Characteristic values of tension resistance under fire exposure

	E:	R30		R60 Fire resistance 60 minutes				
Anchor type		sistance 30) minutes					
1	N _{Rk,s,fi,30}	$N_{Rk,p,fi,30}$	N ⁰ _{Rk,c,fi,30}	N _{Rk,s,fi,60}	$N_{Rk,p,fi,60}$	N ⁰ _{Rk,c,fi,60}		
1,110,10,10,10	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]		
UHS 10 (A4)	0,2	1,8	1,8	0,2	1,8	1,8		
UHS 12 (A4)	2,0	3,0	5,0	1,3	3,0	5,0		
UHS 15 (A4)	3,2	4,0	7,4	2,3	4,0	7,4		
UHS 18 (A4)	4,8	6,3	10,3	3,9	6,3	10,3		
UHS 24 (A4)	8,9	9,0	18,0	7,3	9,0	18,0		
UHS 28	13,9	12,6	31,4	11,3	12,6	31,4		
UHS 32	20,0	16,5	49,6	16,3	16,5	49,6		
UHS 12/M6 I (A4) 5.8/50 ¹⁾	0,1			0,1				
8.8, 70, 80 ^{f) 2)}	0,2	2,3	5,0	0,2	2,3	5,0		
UHS 12/M8 I (A4) 5.8/50 ¹⁾	1,3	۷,5	5,0	0,8	2,3	5,0		
8.8, 70, 80 ^{f) 2)}	2,0			1,3				
UHS 15/M10 I (A4)5.8/50 ¹⁾	2,0			1,4				
8.8, 70, 80 ^{1) 2)}	3,2	2.0	7,4	2,3	2.0	7.4		
UHS 15/M12 I (A4) 5.8/50 ¹⁾	3,0	3,0	7,4	2,4	3,0	7,4		
8.8, 70, 80 ^{1) 2)}	4,8			3,9				
	,	R90			R120			
, ,	Fire res	R90 sistance 90			R120 sistance 120) minutes		
, ,	$N_{Rk,s,fi,90}$	sistance 90 N _{Rk,p,fi,90}	N ⁰ _{Rk,c,fi,90}	Fire res	sistance 120 N _{Rk,p,fi,120}	N ⁰ _{Rk,c,fi,120}		
	N _{Rk,s,fi,90} [kN]	sistance 90 N _{Rk,p,fi,90} [kN]	N ⁰ _{Rk,c,fi,90} [kN]	Fire res N _{Rk,s,fi,120} [kN]	istance 120 N _{Rk,p,fi,120} [kN]	N ⁰ _{Rk,c,fi,120} [kN]		
UHS 10 (A4)	N _{Rk,s,fi,90} [kN] 0,1	sistance 90 N _{Rk,p,fi,90} [kN] 1,8	N ⁰ _{Rk,c,fi,90} [kN] 1,8	Fire res N _{Rk,s,fi,120} [kN] 0,1	istance 120 N _{Rk,p,fi,120} [kN] 1,5	N ⁰ _{Rk,c,fi,120} [kN] 1,5		
UHS 10 (A4) UHS 12 (A4)	N _{Rk,s,fi,90} [kN] 0,1 0,6	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2	istance 120 N _{Rk,p,fi,120} [kN] 1,5 2,4	N ⁰ _{Rk,c,fi,120} [kN] 1,5 4,0		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4)	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0	istance 120 N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2	N ⁰ _{Rk,c,fi,120} [kN] 1,5 4,0 5,9		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4) UHS 18 (A4)	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4 3,0	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0 6,3	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4 10,3	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0 2,6	istance 120 N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2 5,0	N ⁰ _{Rk,c,fi,120} [kN] 1,5 4,0 5,9 8,2		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4) UHS 18 (A4) UHS 24 (A4)	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4 3,0 5,6	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0 6,3 9,0	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4 10,3 18,0	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0 2,6 4,8	istance 120 N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2 5,0 7,2	N ⁰ Rk,c,fi,120 [kN] 1,5 4,0 5,9 8,2 14,4		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4) UHS 18 (A4) UHS 24 (A4) UHS 28	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4 3,0 5,6 8,8	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0 6,3 9,0 12,6	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4 10,3 18,0 31,4	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0 2,6 4,8 7,5	N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2 5,0 7,2 10,1	N ⁰ Rk,c,fi,120 [kN] 1,5 4,0 5,9 8,2 14,4 25,2		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4) UHS 18 (A4) UHS 24 (A4) UHS 28 UHS 32	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4 3,0 5,6	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0 6,3 9,0	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4 10,3 18,0	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0 2,6 4,8	istance 120 N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2 5,0 7,2	N ⁰ Rk,c,fi,120 [kN] 1,5 4,0 5,9 8,2 14,4		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4) UHS 18 (A4) UHS 24 (A4) UHS 28 UHS 32 UHS 12/M6 I (A4) 5.8/50 ¹⁾	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4 3,0 5,6 8,8	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0 6,3 9,0 12,6	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4 10,3 18,0 31,4	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0 2,6 4,8 7,5	N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2 5,0 7,2 10,1	N ⁰ Rk,c,fi,120 [kN] 1,5 4,0 5,9 8,2 14,4 25,2		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4) UHS 18 (A4) UHS 24 (A4) UHS 28 UHS 32 UHS 12/M6 I (A4) 5.8/50 ¹⁾ 8.8, 70, 80 ^{1) 2)}	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4 3,0 5,6 8,8 12,6	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0 6,3 9,0 12,6 16,5	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4 10,3 18,0 31,4 49,6	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0 2,6 4,8 7,5 10,8	Sistance 120 N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2 5,0 7,2 10,1 13,2	N ⁰ Rk,c,fi,120 [kN] 1,5 4,0 5,9 8,2 14,4 25,2 39,7		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4) UHS 18 (A4) UHS 24 (A4) UHS 28 UHS 32 UHS 12/M6 I (A4) 5.8/50 ¹⁾ 8.8, 70, 80 ^{1) 2)} UHS 12/M8 I (A4) 5.8/50 ¹⁾	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4 3,0 5,6 8,8 12,6 0,1	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0 6,3 9,0 12,6	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4 10,3 18,0 31,4	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0 2,6 4,8 7,5 10,8 0,1	N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2 5,0 7,2 10,1	N ⁰ Rk,c,fi,120 [kN] 1,5 4,0 5,9 8,2 14,4 25,2		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4) UHS 18 (A4) UHS 18 (A4) UHS 24 (A4) UHS 28 UHS 32 UHS 12/M6 I (A4) 5.8/50 ¹⁾ 8.8, 70, 80 ^{1) 2)} UHS 12/M8 I (A4) 5.8/50 ¹⁾ 8.8, 70, 80 ^{1) 2)}	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4 3,0 5,6 8,8 12,6 0,1 0,1	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0 6,3 9,0 12,6 16,5	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4 10,3 18,0 31,4 49,6	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0 2,6 4,8 7,5 10,8 0,1 0,1	Sistance 120 N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2 5,0 7,2 10,1 13,2	N ⁰ Rk,c,fi,120 [kN] 1,5 4,0 5,9 8,2 14,4 25,2 39,7		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4) UHS 18 (A4) UHS 18 (A4) UHS 24 (A4) UHS 28 UHS 32 UHS 12/M6 I (A4) 5.8/50 ¹⁾ 8.8, 70, 80 ^{1) 2)} UHS 12/M8 I (A4) 5.8/50 ¹⁾ 8.8, 70, 80 ^{1) 2)} UHS 15/M10 I (A4) 5.8/50 ¹⁾	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4 3,0 5,6 8,8 12,6 0,1 0,1 0,4	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0 6,3 9,0 12,6 16,5	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4 10,3 18,0 31,4 49,6	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0 2,6 4,8 7,5 10,8 0,1 0,1	Sistance 120 N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2 5,0 7,2 10,1 13,2	N ⁰ Rk,c,fi,120 [kN] 1,5 4,0 5,9 8,2 14,4 25,2 39,7		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4) UHS 18 (A4) UHS 18 (A4) UHS 24 (A4) UHS 28 UHS 32 UHS 12/M6 I (A4) 5.8/50 ¹⁾ 8.8, 70, 80 ^{1) 2)} UHS 12/M8 I (A4) 5.8/50 ¹⁾ 8.8, 70, 80 ^{1) 2)}	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4 3,0 5,6 8,8 12,6 0,1 0,1 0,4 0,6	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0 6,3 9,0 12,6 16,5	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4 10,3 18,0 31,4 49,6	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0 2,6 4,8 7,5 10,8 0,1 0,1 0,1	Sistance 120 N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2 5,0 7,2 10,1 13,2	N ⁰ _{Rk,c,fi,120} [kN] 1,5 4,0 5,9 8,2 14,4 25,2 39,7		
UHS 10 (A4) UHS 12 (A4) UHS 15 (A4) UHS 18 (A4) UHS 18 (A4) UHS 24 (A4) UHS 28 UHS 32 UHS 12/M6 I (A4) 5.8/50 ¹⁾ 8.8, 70, 80 ^{1) 2)} UHS 12/M8 I (A4) 5.8/50 ¹⁾ 8.8, 70, 80 ^{1) 2)} UHS 15/M10 I (A4) 5.8/50 ¹⁾	N _{Rk,s,fi,90} [kN] 0,1 0,6 1,4 3,0 5,6 8,8 12,6 0,1 0,1 0,4 0,6 0,9	sistance 90 N _{Rk,p,fi,90} [kN] 1,8 3,0 4,0 6,3 9,0 12,6 16,5	N ⁰ _{Rk,c,fi,90} [kN] 1,8 5,0 7,4 10,3 18,0 31,4 49,6	Fire res N _{Rk,s,fi,120} [kN] 0,1 0,2 1,0 2,6 4,8 7,5 10,8 0,1 0,1 0,1 0,2 0,6	Sistance 120 N _{Rk,p,fi,120} [kN] 1,5 2,4 3,2 5,0 7,2 10,1 13,2	N ⁰ Rk,c,fi,120 [kN] 1,5 4,0 5,9 8,2 14,4 25,2 39,7		

¹⁾ Intermediate values by linear interpolation

In absence of other national regulations the partial sensitivity factor for resistance under fire exposure $\gamma_{M,fi} = 1,0$ is recommended.

Upat Sleeve Anchor UHS, UHS-I

Performances
Characteristic values of tension resistance under fire exposure in cracked and uncracked concrete

Annex C 5

In combination with screw / threaded rod strength class 8.8, 70, 80

Table C6: Characteristic values of shear resistance under fire exposure

		R30		R60
Anchor type		stance 30 minutes		tance 60 minutes
7 inches type	$V_{Rk,s,fi,30}$	$M^0_{Rk,s,fi,30}$	$V_{\rm Rk,s,fi,60}$	M ⁰ _{Rk,s,fi,60}
	[kN]	[Nm]	[kN]	[Nm]
UHS 10 (A4)	0,3	0	0,3	0
UHS 12 (A4)	2,0	2	1,3	1
UHS 15 (A4)	3,2	4	2,3	3
UHS 18 (A4)	4,8	7	3,9	6
UHS 24 (A4)	8,9	19	7,3	15
UHS 28	13,9	37	11,3	30
UHS 32	20,0	64	16,3	52
UHS 12/M6 I (A4) 5.8/50	0,2	0	0,2	0
8.8, 70, 80 1)	0,3	0	0,3	0
UHS 12/M8 I (A4) 5.8/50	1,3	1	0,8	1
8.8, 70, 80 1)	2,0	2	1,3	1
UHS 15/M10 I (A4) 5.8/50	2,0	3	1,4	2
8.8, 70, 80 ^{f)}	3,2	4	2,3	3
UHS 15/M12 I (A4) 5.8/50	3,0	4	2,4	4
8.8, 70, 80 ¹⁾	4,8	7	3,9	6
		R90		R120
	Fire res	stance 90 minutes	Fire resist	ance 120 minutes
	$V_{Rk,s,fi,90}$	$M^0_{Rk,s,fi,90}$	$V_{Rk,s,fi,120}$	M ⁰ _{Rk,s,fi,120}
	[kN]	[Nm]	[kN]	[NM]
UHS 10 (A4)	0,2	0	0,1	0
UHS 12 (A4)	0,6	1	0,2	0
UHS 15 (A4)	1,4	2	1,0	1
UHS 18 (A4)	3,0	5	2,6	4
UHS 24 (A4)	5,6	12	4,8	10
UHS 28	8,8	23	7,5	20
UHS 32	12,6	40	10,8	34
UHS 12/M6 I (A4) 5.8/50	0,1	0	0,1	0
8.8, 70, 80 ¹⁾	0,2	0	0,1	0
UHS 12/M8 I (A4) 5.8/50	0,4	1	0,1	0
8.8, 70, 80 ¹⁾	0,6	1	0,2	0
UHS 15/M10 I (A4) 5.8/50	0,9	2	0,6	1
8.8, 70, 80 ^{f)}	1,4	3	1,0	1
				_
UHS 15/M12 I (A4) 5.8/50 8.8, 70, 80 1)	1,9	4	1,6	3

 $^{^{1)}}$ In combination with screw / threaded rod ${f s}$ trength class 8.8, 70, 80

In absence of other national regulations the partial sensitivity factor for resistance under fire exposure $\gamma_{M,fi} = 1,0$ is recommended.

Upat Sleeve Anchor UHS, UHS-I

Performances
Characteristic values of shear resistance under fire exposure

Annex C 6

Table C7: Characteristic values for seismic action valid for performance category C1 for UHS

		UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Steel failure							
Anchor type UHS S, SK, B, H	N ⁰ _{Rk,s,eq} [kN]	29,3	46,4	67,4	125,3	195,8	282,0
Anchor type UHS S, SK, B, H	γ _{Ms} 1) [-]			1	,5		
Pullout failure							
Anchor type UHS S, SK, B, H	$N^0_{Rk,p,eq}[kN]$	12,0	16,0	25,0	36,0	50,3	66,1
Anchor type UHS S, SK, B, H	γ _{Mp} ¹⁾ [-]			1	,5		
Steel failure without lever arm							
Anchor type UHS S, SK	$V_{Rk,s,eq}^{0}[kN]$	25	41	60	123	141	200
Anchor type UHS B, H	$V^0_{Rk,s,eq}[kN]$	17	30	46	103	117	169
Anchor type UHS S, SK, B, H	γ _{Ms} ¹⁾ [-]			1,	25		

¹⁾ In absence of other national regulations

Table C8: Displacements due to tension loads for UHS and UHS A4

Anchor type UHS S, SK, B, H and UHS S, SK, B, H A4			UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Tension load cracked concrete	Ν	[kN]	3,6	5,7	7,6	11,9	17,1	24,0	31,5
Corresponding displacements	δ_{N0}	[mm]	1,0	1,0	1,0	1,0	1,0	0,7	0,7
Corresponding displacements	$\delta_{N^{\infty}}$	[mm]	1,7	1,6	1,6	1,6	1,8	1,3	1,1
Tension load uncracked concrete	N	[kN]	6,0	11,2	14,1	17,2	24,0	33,6	44,2
Corresponding displacements		[mm]	0,6	1,0	1,0	1,0	1,0	0,3	0,3
Corresponding displacements	$\delta_{N^{\infty}}$	[mm]	1,7	1,6	1,6	1,6	1,8	1,3	1,1

Table C9: Displacements due to tension loads for UHS-I and UHS-I A4

Anchor type UHS-I and UHS-I A4		UHS 12/M6 I UHS 12/M8 I	UHS 15/M10 I UHS 15/M12 I
Tension load cracked concrete	N [kN]	4,3	5,7
Tension load uncracked concrete		9,5	14,1
Corresponding displacements	δ_{N0} [mm]	1,7	1,9
Corresponding displacements	$\delta_{N\infty}$ [mm]	2,2	2,9

Upat Sleeve Anchor UHS, UHS-I	
Performances Characteristic values for seismic action valid for performance category C1 Displacements under tension loads	Annex C 7

Table C10: Displacements due to shear loads for UHS S and SK 1)

Anchor type UHS S and UHS SK			UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Shear load in cracked and uncracked concrete	٧	[kN]	10,3	18,9	33,7	43,4	83,4	99,4	124,0
Corresponding	δ_{V0}	[mm]	2,4	2,7	4,4	5,0	7,0	6,0	8,0
displacements	$\delta_{V^{\infty}}$	[mm]	3,6	4,1	6,6	7,5	10,5	9,0	12,0

¹⁾ Tolerance of clearance hole not included in the displacements

Table C11: Displacements due to shear loads for UHS B and H 1)

Anchor type: UHS B and UHS H			UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Shear load in cracked and uncracked concrete	٧	[kN]	8,9	15,4	23,4	35,4	68,0	83,4	96,6
Corresponding	δ_{V0}	[mm]	2,2	2,3	3,0	5,0	7,0	5,0	5,0
displacements	$\delta_{\text{V}\infty}$	[mm]	3,3	3,5	4,5	7,5	10,5	7,5	7,5

¹⁾ Tolerance of clearance hole not included in the displacements

Table C12: Displacements due to shear loads for UHS S A4, UHS SK A4, UHS B A4 and UHS H A4 $^{1)}$

Anchor type: UHS S A4, UHS SK A4, UHS B A4, UHS H A4			UHS 10	UHS 12	UHS 15	UHS 18	UHS 24
Shear load in cracked and uncracked concrete	٧	[kN]	10,3	16,0	24,6	37,7	68,0
Corresponding	δ_{V0}	- [mm]	3,5	3,5	3,7	5,7	9,0
displacements	$\delta_{V^{\infty}}$		5,3	5,3	5,6	8,6	13,5

¹⁾ Tolerance of clearance hole not included in the displacements

Table C13: Displacements due to shear loads for UHS-I and UHS-I A4¹⁾

Anchor type UHS-I and UHS-I A4			UHS 12/M6 I	UHS 12/M8 I	UHS 15/M10 I	UHS 15/M12 I
Shear load in cracked and uncracked concrete	٧	[kN]	4,6	8,3	13,3	13,7
Corresponding	δ_{V0}	[mm]	2,6	2,6	2,2	2,2
displacements	$\delta_{V^{\infty}}$	- [mm]	3,9	3,9	3,3	3,3

¹⁾ Tolerance of clearance hole not included in the displacements

T	Upat Sleeve Anchor UHS, UHS-I	
	Performances Displacements under shear loads	Annex C 8