

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0429 of 27 October 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer Injection system T-BOND PRO.1 or Injection system FIS C700 HP PRO.1 for masonry

Injection system for use in masonry

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

28 pages including 3 annexes which form an integral part of this assessment

ETAG 029, April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0429

Page 2 of 28 | 27 October 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0429 English translation prepared by DIBt

Page 3 of 28 | 27 October 2017

Specific Part

1 Technical description of the product

The fischer injection system T-BOND PRO.1 or FIS C700 HP PRO.1 for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with fischer injection mortar T-BOND PRO.1 or FIS C700 HP PRO.1, a perforated sieve sleeve and an anchor rod with hexagon nut and washer or an internal threaded rod in the range of M6 to M16. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1 – C 6
Characteristic bending moments	See Annex C 7
Displacements under shear and tension loads	See Annex C 7
Reduction Factor for job site tests (β-Factor)	See Annex C 8
Edge distances and spacing	See Annex C 9 – C 10

3.2 Safety in case of fire (BWR 2)

Es	sential characteristic	Performance
Re	eaction to fire	Anchorages satisfy requirements for Class A1
Re	esistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

European Technical Assessment ETA-17/0429

Page 4 of 28 | 27 October 2017

English translation prepared by DIBt

3.4 Safety and accessibility in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

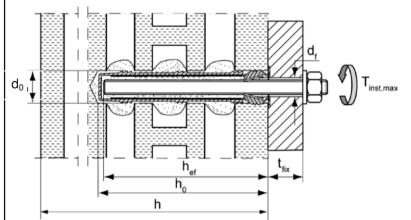
In accordance with guideline for European technical approval ETAG 029, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

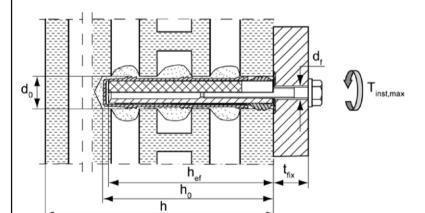
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 27 October 2017 by Deutsches Institut für Bautechnik


Dr.-Ing. Lars Eckfeldt p.p. Head of Department

*beglaubigt:*Baderschneider

Installation conditions part 1


Threaded rods with perforated sleeve FIS H K; Installation in perforated and solid brick masonry

Pre-positioned installation

FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 16x130 K FIS H 20x85 K FIS H 20x130 K FIS H 20x200 K

Internal threaded anchors FIS E with perforated sleeve FIS H K; Installation in perforated and solid brick masonry

Pre-positioned installation

FIS H 16x85 K - FIS E 11x85 M6 and M8 FIS H 20x85 K - FIS E 15x85 M10 and M12

effective anchorage depth

 $h_0 = depth of drill hole$ thickness of fixture

thickness of masonry

nominal drill bit diameter

diameter of clearance hole in the fixture

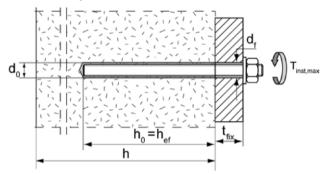
 $T_{inst,max} =$ maximum torque moment

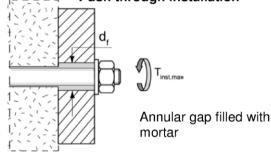
fischer Injectionsystem T-BOND PRO.1 – FIS C700 HP PRO.1

Product description

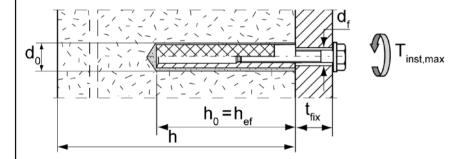
Installation condition, part 1: in perforated and solid brick masonry

Annex A 1


Z50845.17


Installation conditions part 2

Threaded rods without perforated sleeve FIS H K; Installation in solid brick masonry and autoclaved aerated concrete


Pre-positioned installation

Internal threaded anchors FIS E without perforated sleeve FIS H K; Installation in solid brick masonry and autoclaved aerated concrete

Pre-positioned installation

FIS E 11x85 M6 FIS E 11x85 M8 FIS E 15x85 M10 FIS E 15x85 M12

h_{ef} = effective anchorage depth

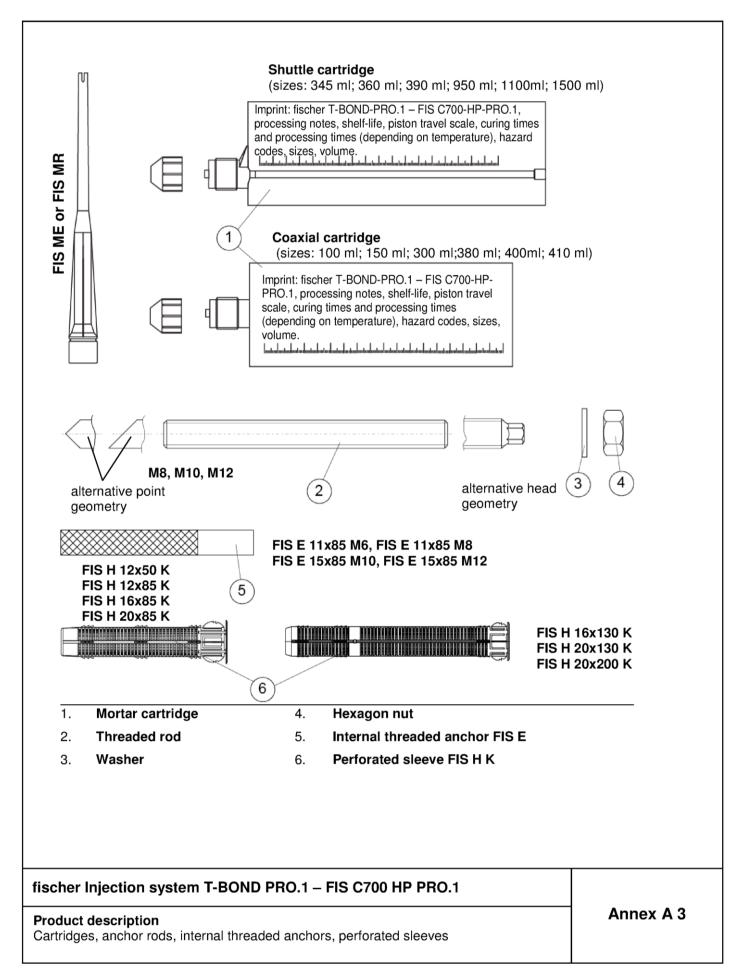
 $h_0 =$ depth of drill hole $t_{fix} =$ thickness of fixture

h = thickness of masonry

d₀= nominal drill bit diameter

d_f= diameter of clearance hole in the fixture

 $T_{inst,max} = maximum torque moment$


fischer Injection system T-BOND PRO.1 - FIS C700 HP PRO.1

Product description

Installation condition, part 2: in solid brick masonry and autoclaved aerated concrete

Annex A 2

Table A1: Materials

Part	Designation	Material								
1	Mortar cartridge	mortar, hardener; filler								
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C						
	Threaded rod	Property class 5.8 or 8.8; ISO 898-1:2013	Property class 50, 70 or 80	Property class 50 or 80 EN ISO 3506-1:2009						
		zinc plated ≥ 5µm,	EN ISO 3506-1:2009	or property class 70						
		EN ISO 4042:1999	1.4401; 1.4404; 1.4578; 1.4571;	with f _{yk} = 560 N/mm ² 1.4565; 1.4529						
2		A2K or hot-dip galvanised EN ISO 10684:2004	1.4439; 1.4362;	EN 10088-1:2014						
		$f_{uk} \le 1000 \text{ N/mm}^2$	1.4062	$f_{uk} \le 1000 \text{ N/mm}^2$						
		$A_5 > 8\%$	EN 10088-1:2014	$A_5 > 8\%$						
		7.5 2 6 76	$f_{uk} \le 1000 \text{ N/mm}^2$	7.5 - 0.0						
			$A_5 > 8\%$							
	Washer	zinc plated ≥ 5µm,	1.4401; 1.4404;	1.4565;1.4529						
3	ISO 7089:2000	EN ISO 4042:1999 A2K	1.4578;1.4571;	EN 10088-1:2014						
3		or hot-dip galvanised	1.4439; 1.4362							
		ISO 10684:2004	EN 10088-1:2014							
	Hexagon nut	Property class 5 or 8;	Property class 50, 70	Property class 50, 70 or						
		EN ISO 898-2:2012	or 80	80						
4		zinc plated ≥ 5μm, ISO 4042:1999 A2K	EN ISO 3506-1:2009	EN ISO 3506-1:2009						
4		or hot-dip galvanised	1.4401; 1.4404; 1.4578; 1.4571;	1.4565; 1.4529 EN 10088-1:2014						
		ISO 10684:2004	1.4439; 1.4362	EN 10088-1.2014						
		100 10004.2004	EN 10088-1:2014							
	Internal threaded anchor	Property class 5.8;	Property class 70	Property class 70						
	FIS E	EN 10277-1:2008-06	EN ISO 3506-1:2009	EN ISO 3506-1:2009						
5		zinc plated ≥ 5µm,	1.4401; 1.4404;	1.4565; 1.4529						
5		EN ISO 4042:1999 A2K	1.4578; 1.4571;	EN 10088-1:2014						
			1.4439; 1.4362							
			EN 10088-1:2014							
	Screw or threaded rod for	Property class 5.8 or 8.8;	Property class 70	Property class 70						
	internal threaded anchor	EN ISO 898-1:2013	EN ISO 3506-1:2009	EN ISO 3506-1:2009						
	FIS E	zinc plated ≥ 5μm, ISO 4042:1999 A2K	1.4401; 1.4404;	1.4565; 1.4529 EN 10088-1:2014						
		130 4042.1999 AZK	1.4578; 1.4571; 1.4439; 1.4362	EN 10068-1:2014						
			EN 10088-1:2014							
6	Perforated sleeve FIS H K		PP / PE	1						

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Product description Materials	Annex A 4

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Solid brick masonry (Use category b) and autoclaved aerated concrete (Use category d), acc. to Annex B8.
 Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength of the masonry unit.
- Hollow brick masonry (use category c), according to Annex B8
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010
- For other bricks in solid masonry, hollow or perforated masonry and autoclaved aerated concrete, the characteristic resistance of the anchor may be determined by job site tests according to ETAG 029, Annex B under consideration of the β-factor according to Annex C6, Table C4

Temperature Range:

From - 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar)
- Structures subject to dry internal conditions exist
 (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Intended Use Specifications	Annex B 1

Specifications of intended use

Design:

- The anchorages have to be designed in accordance with the ETAG 029, Annex C, Design method A under the responsibility of an engineer experienced in anchorages and masonry work
 - Applies to all bricks, if no other values are specified:

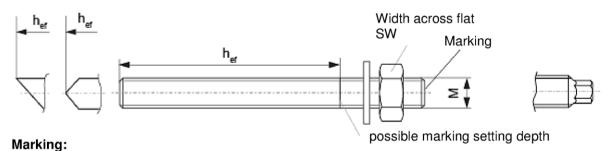
$$N_{Rk} = N_{Rk,s} = N_{Rk,p} = N_{Rk,b} = N_{Rk,pb}$$

$$V_{\mathsf{Rk}} = V_{\mathsf{Rk},s} = V_{\mathsf{Rk},b} \, = \, V_{\mathsf{Rk},c} \, = \, V_{\mathsf{Rk},pb}$$

Verifiable calculation notes and drawings have to be prepared taking account the relevant masonry in the
region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The
position of the anchor is indicated on the design drawings

Installation:

- Category d/d: -Installation and use in dry structures
- · Category w/w: -Installation and use in dry and wet structures
- Hole drilling by hammer drill mode
- · In case of aborted hole: The hole shall be filled with mortar
- Bridging of unbearing layer (e.g. plaster) see Annex B 4 (Table B1.3)
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or threaded rods (including nut and washer) must comply with the appropriate material and property class of the fischer internal threaded anchor FIS E
- minimum curing time see Annex B5. Table B3
- Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:


Material dimensions and mechanical properties of the metal parts according to the specifications are given in Annex A4, Table A1

Conformation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored

Marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod or by a person on job site

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Intended Use Specifications	Annex B 2

electronic copy of the eta by dibt: eta-17/0429

Property class (p.c.) 8.8, Stainless steel A4, p.c. 80 or high corrosion-resistant steel C, p.c. 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel C, property class 50: ••

Table B1.1: Installation parameters for threaded rod without perforated sleeve

on parameters for timeda			000		
	·		М8	M10	M12
ter	$d_{nom}=d_0$	[mm]	10	12	14
	SW	[mm]	13	17	19
oth ¹⁾	$h_{\rm ef,min}$	[mm]		50	
ef	h _{ef,max}	[mm]	h-30	and ≤ 20	0 mm
ath AAC	$h_{\rm ef,min}$	mm]	100		
DITAAC	h _{ef,max}	[mm]		120	
nt	$T_{inst,max}$	[Nm]		10	
autoclaved aerated concrete	T _{inst,max}	[Nm]	1	2	2
Pre-position anchorage	d _f ≤	[mm]	9	12	14
Push through anchorage	d _f ≤	[mm]	11	14	16
	oth oth 1) oth AAC outh autoclaved aerated concrete Pre-position anchorage	$\begin{array}{c} \text{tter} & d_{\text{nom}} = d_0 \\ \text{SW} \\ \text{oth}^{1)} & h_{\text{ef,min}} \\ \text{hef} & h_{\text{ef,max}} \\ \text{oth AAC} & \frac{h_{\text{ef,min}}}{h_{\text{ef,max}}} \\ \text{nt} & T_{\text{inst,max}} \\ \text{autoclaved aerated concrete} & T_{\text{inst,max}} \\ \text{Pre-position anchorage} & d_{\text{f}} \leq \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible.

fischer internal threaded anchor FIS E

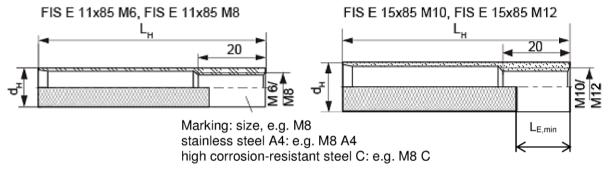


Table B1.2: Installation parameters for internal threaded anchor FIS E without perforated sleeve

Size FIS E			11x85 M6	11x85 M8	15x85 M10	15x85 M12
diameter of internal threaded anchor	d_H	[mm]	1	1	1	5
Nominal drill hole diameter	$d_{nom}=d_0$	[mm]	1	4	1	8
Depth of drill hole	h_0	[mm]			85	
Effective anchorage depth	$L_{H}=h_{ef}$	[mm]	1] 85			
Maximum torque moment	T _{inst, max}	[Nm]	4		10	
Max. torque moment for	T _{inst, max} [Nm]			1		2
autoclaved aerated concrete	T _{inst, max}	[14111]		1	<u> </u>	
Diameter of clearance hole in the	d₁≤	[mm]	7	9	12	14
fixture	u _f =	[mm]	_ ′	9	12	14
Screw-in depth	$L_{E,min}$	[mm]	6	8	10	12

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Intended Use Installation parameters, part 1	Annex B 3

Perforated sleeves FIS H 12x50; 12x85; 16x85; 16x130; 20x85; 20x130; 20x200K

Marking:size D_{Sleeve} x L_{Sleeve} e.g. 16x85

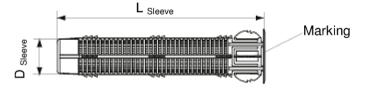


Table B1.3: Installation parameters (threaded rod and internal threaded anchor with perforated sleeve; only pre-positioned anchorage)

Size FIS HK			12x50	12x85	16x85	16x130 ²⁾	20x85	20x130 ²⁾	20x200 ²⁾
Nominal drill hole diameter ($d_0 = D_{Sleeve}$)	d _{nom} =d ₀	[mm]	1	2	1	16		20	
Depth of drill hole	h_0	[mm]	55	90	90	135	90	135	205
Effective anchorage	h _{ef,min}	[mm]	50	85	85	110	85	110	180
depth ¹⁾	$h_{\text{ef},\text{max}}$	[mm]	50	85	85	130	85	130	200
Size of threaded rod		[-]	M	18	M8,	M10		M12	
Size of internal threaded anchor		[-]			11x85		15x85		
Maximum torque moment threaded rod and internal threaded anchor	$T_{inst,max}$	[mm]				2			

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1 Annex B 4 Intended Use Installation parameters, part 2

 $^{^{1)}}$ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible. $^{2)}$ Bridging of unbearing layer (e.g. plaster) possible

Cleaning brush BS (Steel brush)

Only for solid bricks and autoclaved aerated concrete

Table B2: Parameters of steel brush

Drill hole diameter	do	[mm]	10	12	14	16	18	20
Brush diameter	d _{b,nom}	[mm]	11	14	16	20	20	25

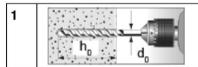
Table B3: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the masonry temperature may not fall below the listed minimum

temperature).

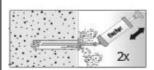
			Minimum curing time 1) t _{cure}
Temperature at anchoring base [°C]			T-BOND PRO.1FIS C700 HP PRO.1 ²⁾
>-5	to	±0	24 h
>±0	to	+5	3 h
>+5	to	+10	90 min
>+10	to	+20	60 min
>+20	to	+30	45 min
>+30	to	+40	35 min

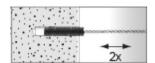
Maximum processing time twork
T-BOND PRO.1FIS C700 HP PRO.1 ²⁾
13 min
9 min
5 min
4 min
2 min

electronic copy of the eta by dibt: eta-17/0429


fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Intended Use	Annex B 5
Steel brush	
Processing times and curing times	

¹⁾ For wet bricks the curing time must be doubled ²⁾ Minimum cartridge temperature +5°C


Installation instructions Part 1

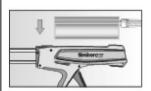

Installation and Preparing the cartridge in solid brick and autoclaved aerated concrete (without perforated sleeve)

Drill the hole. Depth of drill hole h_0 and drill hole diameter d_0 see Table **B1.1** or **B1.2**

2

Blow out the drill hole two times. Brush the drill hole two times (see Table B2) and blow out two times again

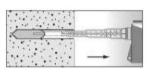
3



Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

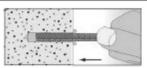
4



Place the cartridge into a suitable dispenser.

Press out approximately 10 cm of material until the mortar is permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed off.

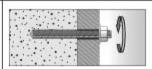
5



Fill approximately 2/3 of the drill hole with mortar Always begin from the bottom of the hole to eliminate voids¹⁾.

For push through installation (not FIS E) fill the annular gap also with mortar.

6



Only use clean and oil-free anchor elements. Mark the threaded rod for setting depth. Press the threaded rod or internal threaded anchor FIS E down to the bottom of the hole, turning it slightly by hand while doing. After inserting the anchor element, excess mortar must emerge around the anchor element.

7

Do not touch. Minimum curing time t_{cure} see Table **B3**

Mounting the fixture T_{inst,max} see Table **B1.1** or **B1.2**

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Intended Use

Installation instructions part 1 in solid brick and autoclaved aerated concrete

Annex B 6

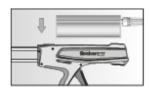
¹⁾ For the exact quantity of mortar see manufacturer's specification.

Installation instructions Part 2

Installation in perforated or solid brick with perforated sleeve (pre-positioned anchorage)

1

Drill the hole (hammer drill). Depth of drill hole h₀ and drill hole diameter d₀ see Table **B1.3** When install perforated sleeves in solid bricks or solid areas of hollow bricks, also clean the hole by blowing out and brushing



Remove the sealing cap

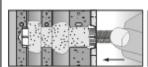
Screw on the static mixer (the spiral in the static mixer must be clearly visible)

Place the cartridge into a suitable dispenser

Press out approximately
10 cm of material until the
mortar is permanently grey
in colour. Mortar which is
not grey in colour will not

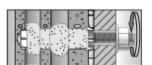
cure and must be disposed

off



Insert the perforated sleeve flush with the surface of the masonry or plaster

Fill the perforated sleeve completely with mortar beginning from the bottom of the hole¹⁾.



Only use clean and oil-free anchor elements. Mark the threaded rod for setting depth. Insert the threaded rod or the internal threaded anchor FIS E by hand using light turning motions until reaching the setting depth marking (threaded rod) or flush with the surface (internal threaded anchor).

Do not touch. Minimum curing time t_{cure} see Table **B3**

Mounting the fixture. $T_{inst,max}$ see Table **B1.3**

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Intended Use

Installation instructions part 2 in hollow brick masonry

Annex B 7

¹⁾ For the exact quantity of mortar see manufacturer's specification.

Table B 4: Sur	mmary of brick	s and block	(S		
Brick No. 1 Solid brick Mz according to EN 771-1 $\rho \ge 1.8$ [kg/dm ³] fb ≥ 10 or 20 [N/mm ²]	110		Brick No. 8 Perforated brick HLz filled with mineral wool according to EN 771-1 $\rho \ge 0.6 \text{ [kg/dm}^3\text{]}$ fb $\ge 8 \text{ [N/mm}^2\text{]}$	375	54
Brick No. 2 Solid sand-lime brick according to EN 771-2 $\rho \ge 1,8 \text{ [kg/dm}^3\text{]}$ fb $\ge 10 \text{ or } 20 \text{ [N/mm}^2\text{]}$	200		Brick-No. 9 Light-weight concrete hollow block HbI according to EN 771-1 $\rho \ge 1,0 \text{ [kg/dm}^3\text{]}$ fb $\ge 4 \text{ [N/mm}^2\text{]}$	30	S
Brick No. 3 Solid sand-lime brick according to EN 771-2 $\rho \ge 1.8 \text{ [kg/dm}^3\text{]}$ fb $\ge 10 \text{ or } 20 \text{ [N/mm}^2\text{]}$	\$ 500		Brick No. 10 Autoclaved aerated concrete block $\rho \ge 0.35, 0.5 \text{ or}$ $0.65 \text{ [kg/dm}^3\text{]}$ fb $\ge 2, 4 \text{ or 6}$ $\text{[N/mm}^2\text{]}$	R	
Brick No. 4 Sand-lime hollow brick according to EN 771-2 $\rho \ge 1,4$ [kg/dm ³] fb ≥ 12 or 20 [N/mm ²]	716		Brick-No. 11 Solid brick Mz according to EN 771-1 $\rho \ge 1,8 \text{ [kg/dm}^3\text{]}$ fb $\ge 10 \text{ or } 20 \text{ [N/mm}^2\text{]}$	200	
Brick No. 5 Perforated brick HLz according to EN 771-1 $\rho \ge 0.9 \text{ [kg/dm}^3\text{]}$ fb $\ge 10 \text{ [N/mm}^2\text{]}$	SH. The state of t		Brick No. 12 Perforated brick HLz according to EN771-1 $\rho \ge 1,0 \text{ [kg/dm}^3\text{]}$ fb $\ge 4 \text{ or } 10 \text{ [N/mm}^2\text{]}$	150	S S 12 22 255
Brick No. 6 Perforated brick HLz according to EN 771-1 $\rho \ge 1,4 \text{ [kg/dm}^3\text{]}$ fb $\ge 20 \text{ [N/mm}^2\text{]}$		14 - 8 - 8 - 28	Brick No. 13 Perforated brick LLz according to EN771-1 $\rho \ge 0.7$ [kg/dm³] fb ≥ 2.4 or 6 [N/mm²]	2,08	8 40 248
Brick No. 7 Perforated brick HLz according to EN 771-1 $\rho \ge 1,0 \text{ [kg/dm}^3\text{]}$ fb $\ge 10 \text{ [N/mm}^2\text{]}$	Te draid) <u></u>		
Imaging of the brid		PRO.1 – FIS C	700 HP PRO.1		Annex B 8

Table B5.1: Allocation of anchor rods¹⁾, perforated sleeves¹⁾²⁾ and perforated or solid bricks

Kind of masonry	Brick	Valid anchor rods, internal threaded rods and perforated sleeves					
Brick No. 1 Solid brick Mz according to EN 771-1 $\rho \ge 1.8 \text{ [kg/dm}^3\text{]}$ fb $\ge 10 \text{ or } 20$ [N/mm²]	The state of the s		M8; M10; M12 FIS E 11x85 M6 FIS E 11x85 M8				
Brick No. 2 Solid sand-lime brick according to EN 771-2 $\rho \ge 1,8 \text{ [kg/dm}^3\text{]}$ fb $\ge 10 \text{ or } 20 \text{ [N/mm}^2\text{]}$	The state of the s		M8; M10; M12 FIS E 11x85 M6 FIS E 11x85 M8				
Brick No. 3 Solid sand-lime brick according to EN 771-2 $\rho \ge 1.8 \text{ [kg/dm}^3\text{]}$ fb $\ge 10 \text{ or } 20$ [N/mm ²]	26		FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K				
Brick No. 4 Sand-lime hollow brick according to EN 771-2 $\rho \ge 1,4 \text{ [kg/dm}^3\text{]}$ fb $\ge 12 \text{ or } 20$ [N/mm ²]	215 - 176 -		FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K				
Brick No. 5 Perforated brick HLz according to EN 771-1 ρ ≥ 0,9 [kg/dm³] fb ≥ 10 [N/mm²]	113		FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K				
Brick No. 6 Perforated brick HLz according to EN 771-1 ρ≥ 1,4 [kg/dm³] fb≥ 20 [N/mm²]			FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K				

 $^{^{1)}}$ Other combinations can be used after job site tests acc. to ETAG 029, Annex B. $^{2)}$ Sleeve/anchor rod combination see table B1.3

The β - factor for this job site tests are given in Table C4 Imaging of the bricks are not scaled

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Intended Use Allocation of anchor rods, perforated sleeves and bricks, part 1	Annex B 9

Table B5.2: Allocation of anchor rods¹⁾, perforated sleeves¹⁾²⁾ and perforated or solid bricks

Kind of masonry	Brick	Valid anchor rods internal threaded rods and perforated sleeves					
Perforated brick HLz according to EN 771-1 $\rho \ge 1,0 \text{ [kg/dm}^3\text{]}$ fb $\ge 10 \text{ [N/mm}^2\text{]}$	Se Constitution of the Con		FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 20x130 K				
Prick No. 8 Perforated brick HLz filled with mineral wool acc. to EN 771-1 $\rho \ge 0.6 \text{ [kg/dm}^3\text{]}$ fb $\ge 8 \text{ [N/mm}^2\text{]}$			FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K FIS H 20x200 K				
Brick-No. 9 Light-weight concrete hollow block Hbl according to EN 771-1 $\rho \ge 1,0 \text{ [kg/dm}^3\text{]}$ fb $\ge 4 \text{ [N/mm}^2\text{]}$	98		FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K				
Brick No. 10 Autoclaved aerat-ed concrete block $\rho \ge 0.35$, 0,5 or 0,65 [kg/dm ³] fb \ge 2, 4 or 6 [N/mm ²]	R		M8; M10; M12 FIS E 11x85 M6 FIS E 11x85 M8 FIS E 15x85 M10 FIS E 15x85 M12				
Brick-No. 11 Solid brick Mz according to EN 771-1 $\rho \ge 1.8 \text{ [kg/dm}^3\text{]}$ fb $\ge 10 \text{ or } 20 \text{ [N/mm}^2\text{]}$	30.5		M8; M10; M12 FIS E 11x85 M6 FIS E 11x85 M8 FIS E 15x85 M10 FIS E 15x85 M12				
Brick No. 12 Perforated brick HLz according to EN771-1 $\rho \ge 1,0 \text{ [kg/dm}^3\text{]}$ fb $\ge 4 \text{ or } 10 \text{ [N/mm}^2\text{]}$	9.1		FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS E 11x85				
Brick No. 13 Perforated brick LLz according to EN771- 1 $\rho \ge 0.7 \text{ [kg/dm}^3\text{]}$ fb $\ge 2, 4 \text{ or } 6 \text{ [N/mm}^2\text{]}$	248		FIS H 12x50 K				

¹⁾ Other combinations can be used after job site tests acc. to ETAG 029, Annex B.

The β - factor for this job site tests are given in Table C4 Imaging of the bricks are not scaled

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Intended Use Allocation of anchor rods, perforated sleeves and bricks, part 2	Annex B 10

²⁾ Sleeve/anchor rod combination see table B1.3

Table C1.1: Characteristic values of resistance under tension loads and under shear loads

	Density ρ			Effec ancho	rage	Characteristic resistance [kN]		
Brick	[kg/dm ³]	Perforated			depth		Rk	V_{Rk}
	Compressive strength f _b	sleeve FIS HK	threaded anchor	h _{ef,min} h _{ef,max}		Temp. 50/80°C		All
	[N/mm²]			[mm]	[mm]	d/d	w/w	categories
			M8	50	200	4,0	2,5	2,5
			M10	50	79	3,5	2,0	4,0
			M10	80	199	5,0	3,0	4,0
	ρ≥ 1,8		M10	200	200	8,5	7,5	8,5
	f _b ≥ 10		M12	50	79	3,0	2,0	4,0
115			M12	80	199	5,5	3,5	4,0
K.			M12	200	200	8,0	5,0	8,5
E,			FIS E11x85 M6/ M8,	85	85	5,5	3,5	2,5
340		without	M8	50	200	5,5	3,5	4,0
No.1	ρ≥ 1,8 f _b ≥ 20		M10	50	79	5,0	3,0	
Solid brick Mz			M10	80	199	7,0	4,5	6,0
			M10	200	200	8,5	8,5	8,5
			M12	50	79	4,5	3,0	5,5
			M12	80	199	8,0	5,0	
			M12	200	200	8,5	7,0	8,5
			FIS E11x85 M6/ M8,	85	85	8,0	5,0	4,0
			M8	50	200			
			M10	50	79	2,5	1,5	4,0
			M10	80	199			4,0
	ρ≥ 1,8		M10	200	200	8,5	6,0	
*	f _b ≥ 10		M12	50	79	2,5	1,5	5,0
115			M12	80	199			
E			M12	200	200	8,5	6,5	
		without	FIS E11x85 M6/ M8,	85	85	2,5	1,5	3,0
240			M8	50	200			
No.2 Solid sand-lime			M10	50	79	3,5	2,0	5,5
brick	0 > 1 0		M10	80	199			3,0
	ρ ≥ 1,8 f _b ≥ 20		M10	200	200	8,5	8,5	
	.,, 20		M12	50	79	3,5	2,0	
			M12	80	199			7,0
			M12	200	200	8,5	8,5	
			FIS E11x85 M6/ M8,	85	85	3,5	2,0	4,0

Imaging of the bricks are not scaled

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Performances Characteristic values of resistance under tension loads and under shear loads, part 1	Annex C 1

Table C1.2: Characteristic values of resistance under tension loads and under shear loads

	Density ρ		Anchor size or	anch	Effective anchorage		Characteristic resistance [kN]			
Brick	[kg/dm ³]	Perforated sleeve	screw size in	depth		N _{Rk}		V_{Rk}		
	Compressive strength f _b	FIS HK	internal threaded anchor	h _{ef.min}	h _{ef,max}	Temp. 50/80°C		All		
	[N/mm ²]			[mm]	[mm]	d/d	w/w	categories		
		12x85	M8	85	85	6,0	3,5	3,0		
		16x85	FIS E 11x85 M6	85	85	3,5	2,0	3,0		
115.2	ρ ≥ 1,8 f _b ≥ 10	16x85	M8/M10, FIS E 11x85 M8	85	85	3,5	2,0			
113		20x85	M12, FIS E 15x85	85	85	8,5	6,5	3,5		
.20.		16x130	M8/M10	110	130	3,5	2,0			
340		20x130	M12	110	130	7,0	4,5			
	ρ ≥ 1,8	12x85	M8	85	85	8,5	5,0	4,5		
No.3 Solid sand-lime	f _b ≥ 20	16x85	FIS E 11x85 M6	85	85	5,5	3,0	4,5		
brick		16x85	M8/M10, FIS E 11x85 M8	85	85	5,5	3,0			
		20x85	M12, FIS E 15x85	85	85	8,5	8,5	5,5		
		16x130	M8/M10	110	130	5,0	3,0			
		20x130	M12	110	130	8,5	6,0			
	ρ ≥ 1,4 f _b ≥ 12	12x85	M8	85	85	2,5	2,5	2,5		
		16x85	FIS E 11x85 M6	85	85	3,0	2,5	2,0		
		16x85	M8/M10, FIS E 11x85 M8	85	85	3,0	2,5	4,5		
118		20x85	M12, FIS E 15x85	85	85					
288		16x130	M8/M10	110	130	3,5	3,0	4,5		
1		20x130	M12	110	130					
340		12x85	M8	85	85	4,5	4,0	4,5		
No.4 Sand-lime hollow		16x85	FIS E 11x85 M6	85	85	5,0	4,0	4,0		
brick	ρ ≥ 1,4 f _b ≥ 20	16x85	M8/M10, FIS E 11x85 M8	85	85	5,0	4,5	7,5		
		20x85	M12, FIS E 15x85	85	85					
		16x130	M8/M10	110	130	6,0	5,5	7,5		
		20x130	M12	110	130					

Imaging of the bricks are not scaled

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Performances Characteristic values of resistance under tension loads and under shear loads, part 2	Annex C 2

Table C1.3: Characteristic values of resistance under tension loads and under shear loads

	snear ioad	5						
	Density p		Anchor size or	Effect anchorage				stic resistance [kN]
	[kg/dm ³]	Perforated	screw size in			N	Rk	V_{Rk}
Brick	Compressive strength f _b	sleeve FIS HK				Temp. 50/80°C		All
	[N/mm ²]			h _{ef,min} [mm]	h _{ef,max} [mm]	d/d	w/w	categories
176		12x85	M8	85	85	4,0	3,5	4,0
2		16x85	FIS E 11x85 M6	85	85	3,5	3,5	4,0
	ρ≥ 0,9	16x85	M8/M10, FIS E 11x85 M8	85	85	3,5	3,5	5,5
***	f _b ≥ 10	20x85	M12, FIS E 15x85	85	85	5,0	4,5	6,0
No.5 Perforated brick		16x130	M8/M10	110	130	5,0	4,5	5,5
		20x130	M12	110	130	5,0	4,5	6,0
5		12x85	M8	85	85	4,0	3,5	7,5 (5,5) ¹⁾
2000		16x85	FIS E 11x85 M6	85	85	2	,5	4,0
	ρ≥ 1,4 f _b ≥ 20	16x85	M8/M10, FIS E 11x85 M8	85	85	2,5		4,5
No.6 Perforated brick		20x85	M12, FIS E 15x85	85	85	3,0		8,5 (5,5) ¹⁾
120 CWO		12x85	M8	85	85	2,5		
340	ρ≥ 1,0 f _b ≥ 10	16x85	M8/M10, FIS E 11x85	85	85			1,2
		20x85	M12, FIS E 15x85	85	85			
373 (1820)		16x130	M8/M10	110	130			1,5
No.7 Perforated brick		20x130	M12	110	130	3,5	3,0	1,5
50		12x85	M8	85	85	2,0	2,0	2,5
S Mar To		16x85	FIS E 11x85 M6	85	85	2,0	1,5	2,5
25	ρ≥ 0,6	16x85	M8/M10, FIS E 11x85 M8	85	85	2,0	1,5	3,0
***************************************	f _b ≥ 8	20x85	M12, FIS E 15x85	85	85	2,0	2,0	1,5
		16x130	M8/M10	110	130	3,0	2,5	3,0
No.8 Perforated brick		20x130	M12	110	130	2,0	2,0	1,5
		20x200	M12	180	200	3,0	3,0	1,5
249		12x85	M8	85	85			
3		16x85	M8/M10, FIS E 11x85	85	85			
	ρ≥1,0	20x85	M12, FIS E 15x85	85	85	3	,0	2,0
*	f _b ≥ 4	16x130	M8/M10	110	130			,
No.9 Light-weight concrete hollow block		20x130	M12	110	130			

 $^{^{1)}}$ Characteristic value of pushing out of one brick $V_{\text{Rk},\text{pb}}\!=5.5~\text{kN}$ Imaging of the bricks are not scaled

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Performances Characteristic values of resistance under tension loads and under shear loads, part 3	Annex C 3

Table C1.4:	Characte shear loa		ues of resistan	ce und	der ter	sion	loads	s and unde	
				anch	Effective anchorage depth		Characteristic resistance [kN]		
Brick	Density_p	Perforated	Anchor size or screw size in			N	Rk	V_{Rk}	
BHOK	[kg/dm³] -	sleeve FIS HK	internal threaded anchor			Temp. 50/80°C		All	
	Compressive strength f _b [N/mm ²]			h _{ef,min} [mm]	h _{ef,max} [mm]	d/d w/w		categories	
ase			M8	100	120	1,5		1,2	
	ρ≥ 0,35 f _b ≥ 2	without	M10	100	120			1,2	
230			M12	100	120			1,5	
***************************************			FIS E 11x85 FIS E 15x85	8	5			1,2	
			M8	100	120	2	,0	2,5	
No.10 Autoclaved	0 > 0 5		M10	100	120	2	,5	2,0	
Aerated concrete block	ρ ≥ 0,5 f _b ≥ 4	without	M12	100	120]		2,5	
	.0 = .		FIS E 11x85 FIS E 15x85	8	5	2	,0	2,0	
			M8	100	120	3,5	3,0	3,0	
	I .								

M10

M12

FIS E 11x85

FIS E 15x85

100

100

85

120

120

3,0

3,5

2,5

4,5

3,5

5,0

Imaging of the bricks are not scaled

 $\rho \ge 0.65$ $f_b \ge 6$

without

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Performances Characteristic values of resistance under tension loads and under shear loads, part 4	Annex C 4

electronic copy of the eta by dibt: eta-17/0429

Table C1.5: Characteristic values of resistance under tension loads and under shear loads

	Density p [kg/dm³]	Perforated	Anchor size or	Effective anchorage depth		Characteristic resistance [kN]			
Brick	[kg/dili] -	sleeve	screw size in internal threaded			N	Rk	V_{Rk}	
	Compressive strength f _b	FIS HK	anchor	L	_	Temp.	50/80°C	All	
	[N/mm ²]			h _{ef,min} [mm]	h _{ef,max} [mm]	d/d	w/w	categories	
			M8	50	100	1,5	0,9	3,0	
A .			FIS E 11x85 M6	85	85	1,2	0,6	2,0	
\$118	ρ≥ 1,8	without	FIS E 11x85 M8	85	85	1,2	0,75	3,0	
4	f _b ≥ 10	Without	FIS E 15x85 M10/M12	85	85	1,2	0,75	4,0	
>54			M10	50	100	1,2	0,75	4,0	
2245			M12	50	100	1,2	0,75	4,5	
Z	ρ ≥ 1,8 f _b ≥ 20	without	M8	50	100	2,5	1,5	4,0	
~			FIS E 11x85 M6	85	85	1,5	0,9	2,5	
			FIS E 11x85 M8	85	85	2,0	1,2	4,0	
Nr.11: Solid brick Mz			FIS E 15x85 M10/M12	85	85	2,0	1,2	5,5	
			M10	50	100	2,0	1,2	5,5	
			M12	50	100	2,0	1,2	5,5	
_		12x85	M8	85	85	1,2	0,9	1,5	
120		16x85	M8/M10	85	85	1,2	0,9	2,0	
	ρ≥ 1,0	16x85	FIS E 11x85 M6/M8	85	85	1,2	0,9	2,0	
£	f _b ≥ 4	20x85	M12	85	85	0,5	0,5	2,0	
Nr.12: Perforated brick HLz		20x85	FIS E 15x85 M10/M12	85	85	0,5	0,5	2,0	
		12x85	M8	85	85	2,5	2,5	3,5	
		16x85	M8/M10	85	85	2,5	2,5	4,5	
	ρ≥ 1,0	16x85	FIS E 11x85 M6/M8	85	85	2,5	2,5	4,5	
	f _b ≥ 10	20x85	M12	85	85	1,2	1,2	4,5	
		20x85	FIS E 15x85 M10/M12	85	85	1,2	1,2	4,5	

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Performances Characteristic values of resistance under tension loads and under shear loads, part 5	Annex C 5

Table C1.6: Characteristic values of resistance under tension loads and under shear loads

Driel	Density p [kg/dm³]	Perforated	Anchor size or screw size in	doptii		Charac	teristic re	sistance [kN]
Brick		sleeve FIS HK	internal threaded				I_{Rk}	V_{Rk}
	Compressive strength f _b		anchor		h _{ef,max}	Temp.	50/80°C	All
	[N/mm²]			h _{ef,min} [mm]	[mm]	d/d	w/w	categories
HEREN !	$\rho \ge 0.7$ $f_b \ge 2$	12x50	M8	50	50	0,6	0,5	0,5
2,48	$ \rho \ge 0.7 \\ f_b \ge 4 $	12x50	M8	50	50	1,2	0,9	0,9
Nr.13: Perforated brick LLz	ρ≥ 0,7 f _b ≥ 6	12x50	M8	50	50	1,5	1,5	1,5

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Performances Characteristic values of resistance under tension loads and under shear loads, part 6	Annex C 6

electronic copy of the eta by dibt: eta-17/0429

Table C2: Characteristic bending moments for threaded rods

Size					M8	M10	M12
	Zinc-plated steel		Proporty class	5.8 [Nm]	19	37	65
g			Property class	8.8 [Nm]	30	60	105
bending		Stainless stool A4	Proporty alaca	50 [Nm]	19	37	65
		Property class	70 [Nm]	26	52	92	
Characteristic moment	Σ			80 [Nm]	30	60	105
teri			50 [Nm]	19	37	65	
Characte moment	High corrosion-resistant steel C	Property class	70 ¹⁾ [Nm]	26	52	92	
S E				80 [Nm]	30	60	105

 $^{^{1)}} f_{uk} = 700 \text{ N/mm}^2; f_{vk} = 560 \text{ N/mm}^2$

Table C2.1: Characteristic bending moments for internal threaded anchors FIS E

Size FIS E				11x85 M6	11x85 M8	15x85 M10	15x85 M12
_	zinc	Property	5.8 [Nm]	8	19	37	65
S bending M _{Rk,s}	plated steel,	class of screw	8.8 [Nm]	12	30	60	105
Characteristic bending moments M _{Rk.s}	stainless steel A4 Property class of screw 70		70 [Nm]	11	26	52	92
	high corrosion resistant steel C	Property class of screw	70 [Nm]	11	26	52	92

Tabelle C3: Displacements under tension loads and shear loads

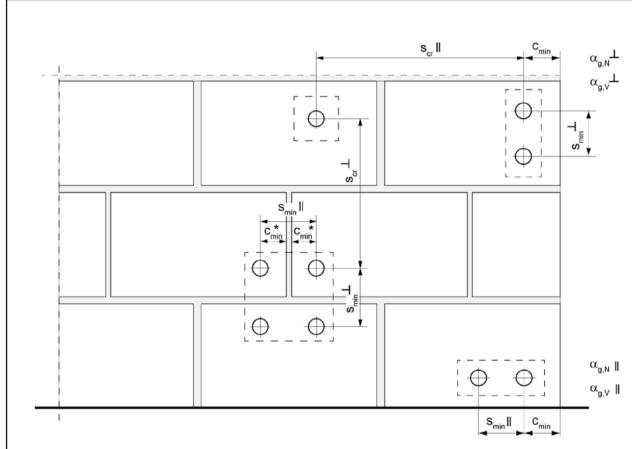
Material	N [kN]	δN ₀ [mm]	δN∞ [mm]	V [kN]	δV ₀ [mm]	δV∞ [mm]
solid units and autoclaved aerated concrete	N _{Rk}	0,03	0,06	V _{Rk}	0,59	0,88
hollow units	N _{Rk} 1,4 * γ _M	0,03	0,06	V _{Rk}	1,71	2,56

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Performances Characteristic bending moments; displacements	Annex C 7

Table C4: β- factor for job site tests according to ETAG 029, Annex B

Using categories		w/w	d/d
Temperature range	[°C]	50/80	50/80
Brick	Size ¹⁾		
Solid brick	M8	0,57	
	M10	0,59	0,96
	M12 FIS E 11x85 FIS E 15x85	0,60	
Hollow brick	All sizes	0,86	0,96
Autoclaved aerated concrete	All size	0,73	0,81

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1			
Performances β- factors for job site tests	Annex C 8		


Table C5: Edge distance and spacing

Direction to bed joint			Т				Group factor				Min. thickness	
Brick No.	h _{ef} [mm]	C _{cr} =C _{min}	S _{min} S _{cr}		S _{min}	S _{cr}	Т				of the masonry members	
		[mm]	[mm]	[mm]	[mm]	[mm]	$\alpha_{\text{g,N}}$	$\alpha_{\text{g,V}}$	$\alpha_{\text{g,N}}$	$\alpha_{\text{g,V}}$	[mm]	
1	50	100	7	5	60 ¹⁾	150	2	2	1,5	1,4		
	80	100	75		60 ¹⁾	240	2	2	1,5	1,4		
	200	150	75		2	2						
2	50	100	75		240		2					
	80	100	75		240		2					
	200	150	75		240		2					
3	85	100	115		240		2					
	130 100		115		240		2					
4	all sizes	100	115		100	240	2 2 1,5 1,5					
5	all sizes	100	115		240		2					
6	all sizes	100	115		2	40	2					
7	all sizes	100	100	240	100	375 (500) ²⁾	1	1	1	1	h _{ef} + 30 (≥ 80)	
8	all sizes	120	245		250		2				(= 50)	
9	all sizes	80	240		365		2					
10	all sizes	100	250		2	50	2					
11	50											
	100	60	6	0	245		2					
	85											
12	50 60	120		255		2						
	85	60	120		255							
13	50	100	25	50	75	250	2,0	2,0	1,6	3 1,1		

fischer Injection system T-BOND PRO.1 - FIS C700 HP PRO.1 Annex C 9 **Performances** Edge distance and spacing

 $^{^{1)}}$ only valid for tension loads, for shear loads $s_{min} \big\| = s_{cr} \big\|$ spacing depending on brick dimension, brick dimension see table B4, brick 7

* Only, if joints are visible and vertical joints are not filled with mortar

 $s_{min} II = Minimum spacing parallel to bed joint$

 s_{min}^{\perp} = Minimum spacing vertical to bed joint

 $s_{cr} II = Characteristic spacing parallel to bed joint$

 s_{cr}^{\perp} = Characteristic spacing vertical to bed joint

 $c_{cr} = c_{min}$ = Edge distance

 $\alpha_{q,N} II$ = Group factor for tension load parallel to bed joint

 $\alpha_{o,V}$ II = Group factor for shear load parallel to bed joint

 $\alpha_{a,N}$ = Group factor for tension load vertical to bed joint

 $\alpha_{a,v} \perp$ = Group factor for shear load vertical to bed joint

For
$$s > s_{cr}$$
 $\alpha_g = 2$

For
$$s_{min} \le s \le s_{cr}$$
 α_{cr} according to table C5

For
$$s_{\text{min}} \le s \le s_{\text{cr}}$$
 α_g according to table C5 $N^g_{Rk} = \alpha_{g,N} \bullet N_{Rk}$; $V^g_{Rk} = \alpha_{g,V} \bullet V_{Rk}$ (Group of 2 anchors) $N^g_{Rk} = \alpha_{g,N} \coprod \bullet \alpha_{g,N} \coprod \bullet N_{Rk}$; $V^g_{Rk} = \alpha_{g,V} \coprod \bullet \alpha_{g,V} \coprod \bullet V_{Rk}$ (Group of 4 anchors)

$$\mathsf{N}^{\mathsf{g}}_{\mathsf{Rk}} = \alpha_{\mathsf{g},\mathsf{N}} \mathsf{II} \bullet \alpha_{\mathsf{g},\mathsf{N}} \mathsf{I}^{\bullet} \bullet \mathsf{N}_{\mathsf{Rk}}; \quad \mathsf{V}^{\mathsf{g}}_{\mathsf{Rk}} = \alpha_{\mathsf{g},\mathsf{V}} \mathsf{II} \bullet \alpha_{\mathsf{g},\mathsf{V}} \mathsf{I}^{\bullet} \bullet \mathsf{V}_{\mathsf{Rk}} \quad (\mathsf{Group} \ \mathsf{of} \ \mathsf{4} \ \mathsf{anchors})$$

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Performances

Definition of minimum edge distance, minimum spacing and group factors

Annex C 10

Z50845.17