

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0435 of 6 October 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer Injection system T-BOND PRO.1 or Injektionssystem FIS C700 HP PRO.1 for concrete

Injection system for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

24 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0435

Page 2 of 24 | 6 October 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0435

Page 3 of 24 | 6 October 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer injection system T-BOND-PRO.1 or FIS C700 HP PRO.1 is a bonded anchor consisting of a cartridge with injection mortar fischer T-BOND-PRO.1 or FIS C700 HP PRO.1 and a steel element.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for static and quasi-static action, displacements	See Annex C 1 to C 8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Anchorages satisfy requirements for Class A1			
Resistance to fire	No performance assessed			

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-17/0435

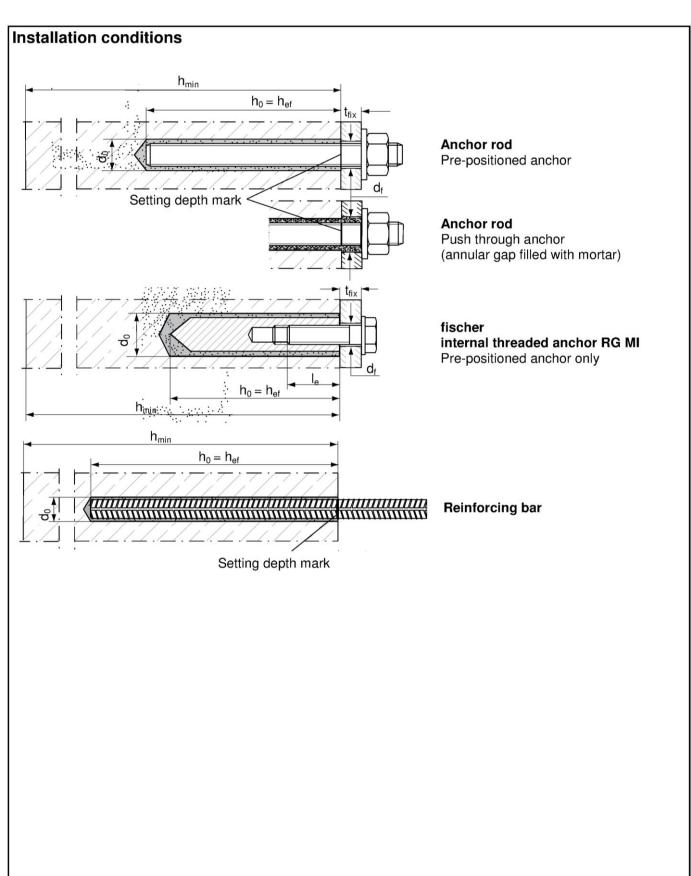
Page 4 of 24 | 6 October 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

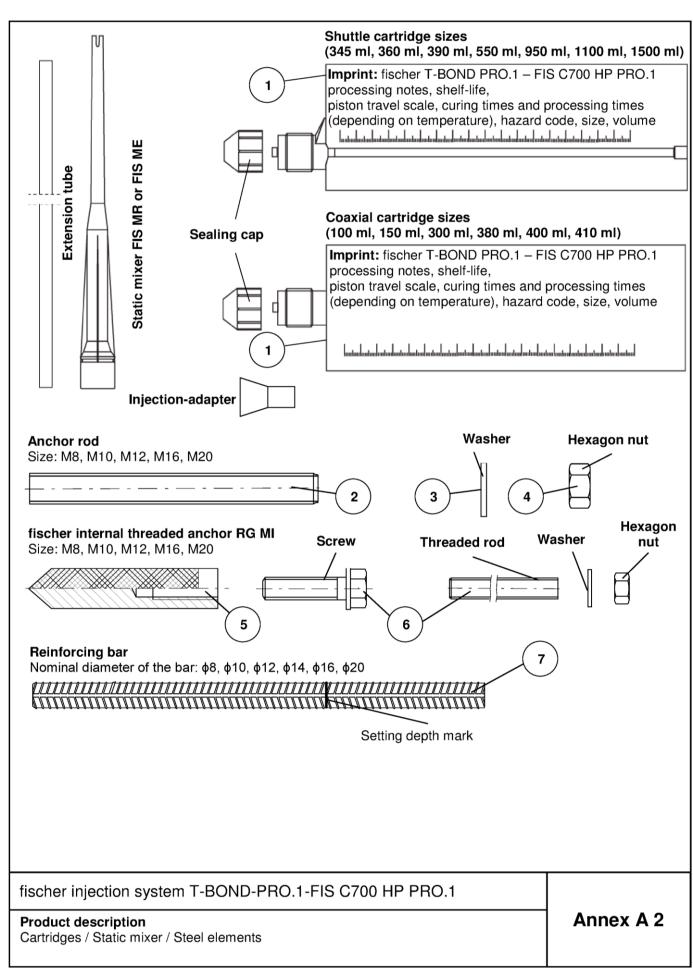

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 6 October 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

Beglaubigt: Baderschneider


Z46448.17

Product description Installation conditions

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

electronic copy of the eta by dibt: eta-17/0435

Annex A 1

Part	Designation		Material								
1	Mortar cartridge	Mortar, hardener, filler									
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C							
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq 1000 \text{ N/mm}^2$ $A_5 > 8 \%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8 \%$ fracture elongation	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 f_{uk} ≤ 1000 N/mm ² A_5 > 8% fracture elongation							
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014							
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014							
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014							
6	Commercial standard screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, ISO 4042:1999 A2K fracture elongation $A_5 > 8 \%$	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 fracture elongation A ₅ > 8 %	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 fracture elongation $A_5 > 8$ %							
7		Bars and de-coiled rods, cla f_{yk} and k according to NDP $f_{uk} = f_{tk} = k \cdot f_{yk}$	ass B or C with or NCL of EN 1992-1-1:200	4+AC:2010							

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1	
Product description Materials	Annex A 3

Specifications of intended use (part 1)

Table B1: Overview use and performance categories

Anchorages subj	ect to	T-BOND PRO.1 – FIS C700 HP PRO.1 with								
		Anche	or rod	internal thre	cher aded anchor i MI	Reinfor	cing bar			
				_)						
Hammer drilling with standard drill bit	2444000000			all sizes						
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")	1	Nominal drill bit diameter (d ₀) 12 mm to 32 mm								
Static and quasi	uncracked concrete	all sizes	Tables: C1, C4, C5,	all sizes	Tables: - C2, C4, C6, C9	all sizes	Tables:			
static load, in	cracked concrete	M10 to M20	C8	not assessed		φ10 bis φ20	C10			
Use category	dry or wet concrete	all sizes								
Installation temperature		-5 °C to +40 °C								
In-service	Temperature range I	-40 °C to +8			perature +50 perature +80					
temperature	Temperature range II	-40 °C to +1			perature +72 perature +120					

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Intended Use Specifications (part 1)

Annex B 1

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Intended Use
Specifications (part 2)

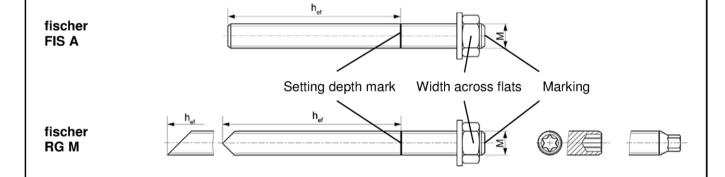

Annex B 2

Table B2: Installation parameters for anchor rods										
Size				М8	M10	M12	M16	M20		
Width across flats		SW		13	17	19	24	30		
Nominal drill bit diameter		d ₀		10	12	14	18	24		
Drill hole depth		h ₀				$h_0 = h_{ef}$				
Effective		$h_{\text{ef,min}}$		60	60	70	80	90		
anchorage depth		h _{ef,max}		160	200	240	320	400		
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	65	85		
Diameter of clearance hole in the fixture ¹⁾	pre- positioned anchorage	d _f		9	12	14	18	22		
	push through anchorage	d _f		11	14	16	20	26		
Minimum thickness of concrete member		h _{min}			h _{ef} + 30 (≥ 100)		h _{ef} +	- 2d ₀		
Maximum installation torque		$T_{\text{inst,max}}$	[Nm]	10	20	40	60	120		

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Anchor rods:

Marking (on random place) fischer anchor rod:

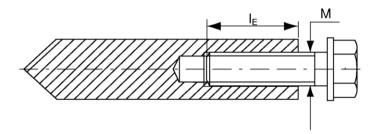
Property class 8.8, stainless steel, property class 80 or high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel, property class 50: • • Or colour coding according to DIN 976-1

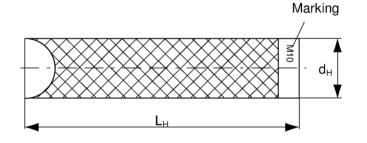
Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- · Setting depth is marked

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Intended Use
Installation parameters anchor rods


Annex B 3



Size			М8	M10	M12	M16	M20
Diameter of anchor	d _H		12	16	18	22	28
Nominal drill bit diameter	d ₀		14	18	20	24	32
Drill hole depth	h_0				$h_0 = h_{ef}$		
Effective anchorage depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	$I_{E,max}$		18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20
Maximum installation torque	T _{inst,max}	[Nm]	10	20	40	80	120

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

fischer internal threaded anchor RG MI

Marking: Anchor size

e. q.: M10

Stainless steel additional A4

e. g.: **M10 A4**

High corrosion resistant steel

additional C e. g.: M10 C

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Intended Use

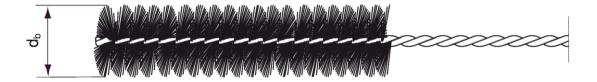
Installation parameters fischer internal threaded anchors RG MI


Annex B 4

Table B4: Installation parameters for reinforcing bars											
Nominal diameter of the bar		ф	8	1)	10) ¹⁾	1:	2 ¹⁾	14	16	20
Nominal drill bit diameter	d ₀		10	12	12	14	14	16	18	20	25
Drill hole depth	h ₀					$h_0 = h_{ef}$					
Effective	$h_{\text{ef,min}}$		6	0	6	0	7	0	75	80	90
anchorage depth	h _{ef,max}	[mm]	[mm] 160 40		20	00	2	40	280	320	400
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[]			4	5	55		60	65	85
Minimum thickness of concrete member	h _{min}		1		n _{ef} + 30 ≥ 100)			h _{ef} + 2d ₀			

¹⁾ Both drill bit diameters can be used

Reinforcing bar



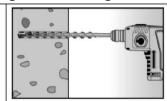
- The minimum value of related rib area $f_{\text{R,min}}$ must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0.05 \cdot \varphi \le h_{rib} \le 0.07 \cdot \varphi$ (φ = Nominal diameter of the bar , h_{rib} = rib height)

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1	
Intended Use Installation parameters reinforcing bars	Annex B 5

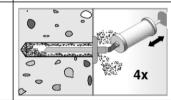
Table B5: Diameters of steel brush BS Ø											
The size of the steel brush refers to the nominal drill bit diameter											
Nominal drill bit diameter	d_0	[mm]	10	12	14	16	18	20	24	25	32
Steel brush diameter	d _b	[mm]	11	14	16	2	0	25	26	27	40

Table B6: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

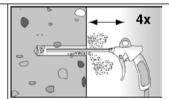
System temperature	Maximum processing time t _{work}	Minimum curing time ¹⁾ t _{cure}
[°C]	T-BOND PRO.1 – FIS C700 HP PRO.1	T-BOND PRO.1 – FIS C700 HP PRO.1
> -5 to ±0		24 h
> ±0 to +5	13 min	3 h
> +5 to +10	9 min	90 min
> +10 to +20	5 min	60 min
> +20 to +30	4 min	45 min
> +30 to +40	2 min	35 min

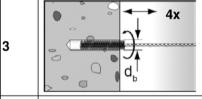

¹⁾ In wet concrete or flooded holes the curing times must be doubled

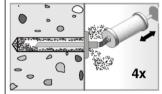
fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1	
Intended Use Cleaning tools Processing times and curing times	Annex B 6

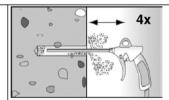


Installation instructions part 1


Drilling and cleaning the hole (hammer drilling with standard drill bit)


Drill the hole. Drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see Tables B2, B3, B4

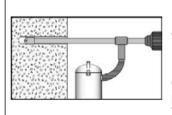

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Brush the drill hole four times. For deep holes use an extension. Corresponding brushes see **Table B5**

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$


Go to step 5

2

Drilling and cleaning the hole (hammer drilling with hollow drill bit)

Check a suitable hollow drill (see **Table B1**) for correct operation of the dust extraction

Use a suitable dust extraction system, e. g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data

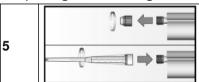
Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Diameter of drill hole \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **Tables B2, B3, B4**

Go to step 5

2

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Intended use


Installation instructions part 1

Annex B 7

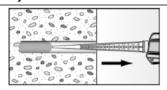
Installation instructions part 2

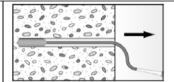
Preparing the cartridge

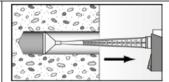
Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

Place the cartridge into the dispenser


Extrude approximately 10 cm of material until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey


Go to step 8


7

8

Mörtelinjektion

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

For drill hole depth ≥ 150 mm use an extension tube

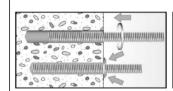
For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 \ge 40$ mm) use an injection-adapter

Go to step 9

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Intended use

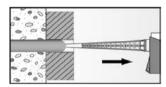
Installation instructions part 2


Annex B 8


Z46448.17

Installation instructions part 3

Installation of anchor rods or fischer internal threaded anchors RG MI



Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Push the anchor rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor element, excess mortar must be emerged around the anchor element.

For overhead installations support the anchor rod with wedges. (e. g. fischer centering wedges)

For push through installation fill the annular gap with mortar

9

Wait for the specified curing time t_{cure} see **Table B6**

11

Mounting the fixture $T_{inst,max}$ see **Tables B2 and B3**

Installation reinforcing bars

Only use clean and oil-free reinforcing bars. Mark the setting depth. Turn while using force to push the reinforcement bar into the filled hole up to the setting depth mark

9

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

10

Wait for the specified curing time t_{cure} see Table B6

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Intended use

Installation instructions part 3

Annex B 9

Z46448.17

Size					M8	M10	M12	M16	M20
3earii	ng capacity unde	r tensile loa	ad, ste	el failu	re				
ور «	Steel zinc plated		5.8		19	29	43	79	123
earir N _{rk.}	Steel zinc plated		8.8		29	47	68	126	196
ct.be	Stainless steel	Property class	_50	[kN]	19	29	43	79	123
Charact.bearing capacity N _{RK,s}	Stainless steel A4 and High corrosion	Ciass	_70		26	41	59	110	172
င် ပ	resistant steel C		80		30	47	68	126	196
Partia	ıl safety factors ¹⁾						•	•	
>	Steel zinc plated		5.8				1,50		
afet _{Ms.N}			8.8	-			1,50		
artial safet factor _{YMs.N}	Stainless steel A4 and	Property class	50	[-]			2,86		
Partial safety factor y _{Ms.N}	i iigii oon oolon		_70				1,50 ²⁾ / 1,87		
	resistant steel C		80				1,60		
	ng capacity unde	r shear loa	d, stee	l failur	e				
earing V _{Rk,s}	ut lever arm		5 0		9	15	21	39	61
	Steel zinc plated		5.8 8.8		9	23	34	63	98
		Property	50	 	9	15	21	39	61
	Stainless steel A4 and High corrosion	class	70	[kN]	13	20	30	55	86
	High corrosion resistant steel C		80	-	15	23	34	63	98
	ity factor acc. to CI	 =N/TS			13	23		03	30
1992-	4-5:2009 Section 6	5.3.2.1	k ₂	[-]			1,0		
with l	ever arm								
	Steel zinc plated		5.8 8.8		19 30	37 60	65 105	166 266	324 519
act. ing	Ctairal and a table	Property	50		19	37	65	166	324
Charact. bending	Stainless steel	class		[Nm]_					
۵ د	g High corrosion		70		26	52	92	232	454
	resistant steel C		80		30	60	105	266	519
Partia	Il safety factors ¹⁾		5 0				1.05		
ر ب ر	Steel zinc plated		5.8 8.8				1,25 1,25		
Partial safety factor ms.v	Stainless steel	Property	50	,			2,38		
artial safet factor ‱,∨	A4 and	class	70	[-]			1,25 ²⁾ / 1,56		
Pa fa	High corrosion resistant steel C		80				1,33		
1) .							1,33		
²⁾ On	absence of other n nly for fischer FIS A	ational regu and RG M	nations made (of high	corrosion-re	esistant steel	С		
	er injection sys							$\overline{}$	

Table C2: Characteristic values for the steel bearing capacity of
fischer internal threaded anchors RG MI under tensile / shear load

listrici	internar tri	Cauc	u an	chors na	Wil didei te		ai ioad	
Size				М8	M10	M12	M16	M20
Bearing capacity un	der tensile lo	ad, ste	el fail	ure				
	Property	5.8		19	29	43	79	123
Characteristic	class	8.8	1,,,,,,	29	47	68	108	179
bearing capacity N _B with screw	Property	A4	[kN]	26	41	59	110	172
With Solow	class 70	С]	26	41	59	110	172
Partial safety factors	S ¹⁾							
	Property	5.8				1,50		
Partial safety	class	8.8] , ,			1,50		
factor YMs,	N Property	A4	[-]			1,87		
	class 70	С				1,87		
Bearing capacity un	der shear loa	d, stee	l failu	ire				
without lever arm								
Ola a va at a viatia	Property	5.8		9,2	14,5	21,1	39,2	62,0
Characteristic bearing capacity V _{Rk}	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
with screw	Property	_A4		12,8	20,3	29,5	54,8	86,0
	class 70	С		12,8	20,3	29,5	54,8	86,0
Ductility factor acc. to 1992-4-5:2009 Section		k ₂	[-]			1,0		
with lever arm								
Ola a wa a ta wi a ti a	Property	5.8		20	39	68	173	337
Characteristic bending moment M ^o _F	class	8.8	[Nm]	30	60	105	266	519
with screw	Property	_A4	ָנייייין -	26	52	92	232	454
	class 70	С		26	52	92	232	454
Partial safety factors	s ¹⁾							
	Property	5.8				1,25		
Partial safety	class	8.8	[-]			1,25		
factor γ_{Ms}	Property	_A4] [-]			1,56		
	class 70	С				1,56		

¹⁾ In absence of other national regulations

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Performances

Characteristic steel bearing capacity of fischer internal threaded anchors RG MI

Annex C 2

Table C3: Characteristic values for the steel bearing capacity of reinforcing bars under tensile / shear load										
Nominal diameter of the bar		ф	8	10	12	14	16	20		
Bearing capacity under tensile load, steel failure										
Characteristic bearing capacity	$N_{Rk,s}$	[kN]	$A_s \cdot f_{uk}^{1)}$							
Bearing capacity under shear load, steel failure										
without lever arm										
Characteristic bearing capacity	$V_{Rk,s}$	[kN]			0,5 · A	$A_{s} \cdot f_{uk}^{1)}$				
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]	0,8							
with lever arm										
Characteristic bending moment	M ⁰ Rks	[Mm]			1.2 · V	Vol. · ful ¹⁾				

 $^{^{1)}}$ f_{uk} or f_{yk} respectively must be taken from the specifications of the reinforcing bar

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Performances

Characteristic steel bearing capacity of reinforcing bars

Annex C 3

tensile / shear load

Pactor	Size					Alls	izes		
Uncracked concrete	Bearing capacity under tensile	load							
Cracked concrete	Factors acc. to CEN/TS 1992-4	l:2009 Se	ction 6	.2.2.3					
Factors for the compressive strength of concrete > C20/25	Uncracked concrete	k_{ucr}	[-]			10),1		
C25/30 C30/37 C35/45 C40/55 C45/55 C50/60 C45/55 C						7	,2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Factors for the compressive s	trength o	of conc	rete > C20/	25				
Increasing factor C35/45 C40/50 C45/55 C50/60 C45/55 C50/60 C45/55 C50/60 C45/55 C50/60 C45/55 C50/60						1,	05		
Tactor C C C C C C C C C	Inoropoing —								
The first C40/50	factor — C35/	— Ψ	[-]						
C45/55 C50/60 1,26	for $\tau_{\rm Bk}$ — C40/	50	' '						
Splitting failure Edge distance	C45/								
		60				1,	26		
	•								
N / N _{ef} ≤ 1,3 Spacing S _{cr.sp} 2 c _{cr.sp} 2 c _{cr.sp}					4,6 h _{ef} - 1,8 h				
Spacing Scr.sp 2 Ccr.sp			[mm]						
Concrete cone failure acc. to CEN/TS 1992-4-5:2009 Section 6.2.3.2 Edge distance C _{cr,N} Spacing 1,5 h _{ef} Spacing 2 c _{cr,N} Bearing capacity under shear load Installation safety factors Installation conditions All installation conditions = [-] Installation safety factors Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k₃ acc. to CEN/TS 1992-4-5:2009 Section 5.2.3.3 Section 6.3.3 Concrete edge failure The value of h _{ef} (= l _i) under shear load [mm] min (h _{ef} ; 8d) Calculation diameters Size M8 M10 M12 M16 M20 Anchor rods d 8 10 12 16 20 fischer internal threaded anchors RG MI d 8 10 12 14 16 20 Nominal diameter of the bar ф 8 10 12 14 16 20		1,3	_[]						
The value of her load The							cr,sp		
The value of hef (= i) under shear load The value of shear load		CEN/TS 1	992-4-5	5:2009 Sec	tion 6.2.3.2		_		
Spacing Spa			[mm]						
Installation safety factors All installation conditions $\frac{\gamma_2}{s} = [-]$ 1,0 Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= l _f) min (h _{ef} ; 8d) Calculation diameters Size M8 M10 M12 M16 M20 Anchor rods d 8 10 12 16 20 fischer internal threaded anchors RG MI Nominal diameter of the bar ϕ 8 10 12 14 16 20						2 (cr,N		
All installation conditions $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	load							
All installation conditions $ = \begin{bmatrix} [-] \\ \gamma_{inst} \end{bmatrix} $ 1,0	Installation safety factors								
Yinst Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k₃ acc. to CEN/TS 1992-4-5:2009 x,0 Section 6.3.3 Concrete edge failure The value of hef (= lf) under shear load [mm] min (hef; 8d) Calculation diameters Size M8 M10 M12 M16 M20 Anchor rods d 8 10 12 16 20 fischer internal threaded anchors RG MI d 8 10 12 14 16 20 Nominal diameter of the bar φ 8 10 12 14 16 20	All installation conditions		,				0		
Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k₃ acc. to CEN/TS 1992-4-5:2009 2,0 Section 6.3.3 Concrete edge failure The value of hef (= lf) under shear load [mm] min (hef; 8d) Calculation diameters Size M8 M10 M12 M16 M20 Anchor rods d 8 10 12 16 20 fischer internal threaded anchors RG MI dnom [mm] 12 16 18 22 28 Nominal diameter of the bar φ 8 10 12 14 16 20	All installation conditions		[-]			'	,0		
Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= l _f) min (h _{ef} ; 8d) Calculation diameters Size M8 M10 M12 M16 M20 Anchor rods d 8 10 12 16 20 fischer internal threaded anchors RG MI Mnom M12 M16 M20 Nominal diameter of the bar φ 8 10 12 14 16 20	Concrete pry-out failure	rinst							
Section 5.2.3.3 resp. k_3 acc. to CEN/TS 1992-4-5:2009 Section 6.3.3									
CEN/TS 1992-4-5:2009 K(3) I*] Z,0 Section 6.3.3 Concrete edge failure The value of h _{ef} (= I _f) under shear load [mm] min (h _{ef} ; 8d) Calculation diameters Size M8 M10 M12 M16 M20 Anchor rods d 8 10 12 16 20 fischer internal threaded anchors RG MI dnom 12 16 18 22 28 Nominal diameter of the bar \$\phi\$ 8 10 12 14 16 20		L				0	0		
Concrete edge failure The value of h _{ef} (= l _f) under shear load [mm] min (h _{ef} ; 8d) Calculation diameters Size M8 M10 M12 M16 M20 Anchor rods d 8 10 12 16 20 fischer internal threaded anchors RG MI d _{nom} mm] 12 16 18 22 28 Nominal diameter of the bar φ 8 10 12 14 16 20	CEN/TS 1992-4-5:2009	K ₍₃₎	[-]			2	,0		
The value of h _{ef} (= l _f)									
Calculation diameters M8 M10 M12 M16 M20 Anchor rods d 8 10 12 16 20 fischer internal threaded anchors RG MI dnom m12 16 18 22 28 Nominal diameter of the bar φ 8 10 12 14 16 20									
Calculation diameters Size M8 M10 M12 M16 M20 Anchor rods d 8 10 12 16 20 fischer internal threaded anchors RG MI dnom 12 16 18 22 28 Nominal diameter of the bar φ 8 10 12 14 16 20			[mm]			min (h	n _{ef} ; 8d)		
Size M8 M10 M12 M16 M20 Anchor rods d 8 10 12 16 20 fischer internal threaded anchors RG MI dnom [mm] 12 16 18 22 28 Nominal diameter of the bar φ 8 10 12 14 16 20			-				,		
Anchor rods d 8 10 12 16 20 fischer internal threaded anchors RG MI d _{nom} mml 12 16 18 22 28 Nominal diameter of the bar φ 8 10 12 14 16 20				MO	M10		12	M16	Mac
fischer internal threaded anchors RG MI									
internal threaded anchors RG MI d _{nom} 12 16 18 22 28 Nominal diameter of the bar		<u>u</u>	[mm]	0	10	<u> </u>	_	10	20
Nominal diameter of the bar ϕ 8 10 12 14 16 20		I d_{nom}	[]	12	16	1	8	22	28
				8	10	12	14	16	20
		d							
	rteimoreing bai	<u> </u>	[[]	0	10	12	17	1 10	
								1	
fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1	fischer injection system T-	BOND-I	PRO 1	-FIS C700	HP PRO	0.1			

Installation safety factors

Dry and wet concrete

1,2

Table C5: Characteristi											
in hammer drilled holes; uncracked or cracked concrete											
Size			М8	M10	M12	M16	M20				
Combined pullout and cor	crete cone	e failure									
Calculation diameter	d	[mm]	8	10	12	16	20				
Uncracked concrete											
Characteristic bond resistance in uncracked concrete C20/25											
Hammer-drilling with standard drill bit or hollow drill bit (dry and wet concrete)											
Tem- I: 50 °C / 80 °C		[N/mm²]	11,0	11,0	11,0	10,0	9,5				
range II: 72 °C / 120 °	T _{Rk,ucr}	ן נוא/ווווו ן	9,5	9,5	9,0	8,5	8,0				
Installation safety factors											
Dry and wet concrete	$\gamma_2 = \gamma_{inst}$	[-]			1,2						
Cracked concrete											
Characteristic bond resist	ance in cra	cked cor	ncrete C20/2	5							
Hammer-drilling with standard drill bit or hollow drill bit (dry and wet concrete)											
Tem- I: 50 °C / 80 °C		[N/mm²]		6,0	6,0	6,0	5,5				
perature II: 72 °C / 120 °	T _{Rk,cr}			5,0	5,0	5,0	5,0				

final article attack	t "	T DOND DDO	4 FIC	C700 LID	
fischer injection s	svstem	I-DUND-PRO	. 1-110	C/UU	Phu.i

Performances

Characteristic values for static or quasi-static action under tensile load for anchor rods (uncracked or cracked concrete)

[-]

 $\gamma_2 = \gamma_{inst}$

Table C6: Characteristic values of resistance for fischer internal threaded anchors
RG MI in hammer drilled holes; uncracked concrete

Size			М8	M10	M12	M16	M20			
Combined pullout and cond	rete con	e failure								
Calculation diameter	d	[mm]	12	16	18	22	28			
Uncracked concrete										
Characteristic bond resista	Characteristic bond resistance in uncracked concrete C20/25									
Hammer-drilling with standard	d drill bit o	r hollow d	Irill bit (dry an	d wet concre	te)					
Tem- perature I: 50 °C / 80 °C		[N/mm ²]	10,5	10,0	9,5	9,0	8,5			
range II: 72 °C / 120 °C	T _{Rk,ucr}	[[14/11111]	9,0	8,0	8,0	7,5	7,0			
Installation safety factors	Installation safety factors									
Dry and wet concrete	Ory and wet concrete $\gamma_2 = \gamma_{inst}$ [-] 1,2									

Table C7: Characteristic values of resistance for reinforcing bars in hammer drilled holes; uncracked or cracked concrete

Nominal diameter of the bar		ф	8	10	12	14	16	20	
Combined pullout and concr	ete con	e failure							
Calculation diameter	d	[mm]	8	10	12	14	16	20	
Uncracked concrete									
Characteristic bond resistan	ce in un	cracked (concrete C	20/25					
Hammer-drilling with standard drill bit or hollow drill bit (dry and wet concrete)									
Tem- I: 50 °C / 80 °C	_	[N/mm²]	11,0	11,0	11,0	10,0	10,0	9,5	
range II: 72 °C / 120 °C	$ au_{Rk,ucr}$	ן וווווו און	9,5	9,5	9,0	8,5	8,5	8,0	
Installation safety factor									
Dry and wet concrete	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1	,2			
Cracked concrete									
Characteristic bond resistan	ce in cra	cked cor	ncrete C20	/25					
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (dry	and wet co	ncrete)				
Tem- I: 50 °C / 80 °C	_	[N/mm²]		3,0	5,0	5,0	5,0	4,5	
range II: 72 °C / 120 °C	$ au_{Rk,cr}$			3,0	4,5	4,5	4,5	4,0	
Installation safety factor									
Dry and wet concrete	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1	,2			

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Performances

Characteristic values for static or quasi-static action under tensile load for fischer internal threaded anchors RG MI and reinforcing bars (uncracked concrete)

Table C	Table C8: Displacements for anchor rods											
Size		M8	M10	M12	M16	M20						
Displace	ment-Factors	for tensile load1)										
Uncracked concrete; Temperature range I, II												
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10						
$\delta_{\text{N}\infty\text{-Faktor}}$	[[[[[[]]]	0,10	0,10	0,12	0,12	0,12						
Cracked concrete; Temperature range I, II												
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]		0,12	0,12	0,13	0,13						
$\delta_{N\infty\text{-Faktor}}$			0,27	0,30	0,30	0,30						
Displacement-Factors for shear load ²⁾												
Uncracked or cracked concrete; Temperature range I, II												
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,11	0,11	0,10	0,10	0,09						
$\delta_{\text{V}\infty\text{-Faktor}}$	[IIIIII/KIN]	0,12	0,12	0,11	0,11	0,10						

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot \text{V}_{\text{Ed}}$

 $(V_{Ed}: Design \ value \ of \ the \ applied \ shear \ force)$

Table C9: Displacements for fischer internal threaded anchors RG MI

Size		М8	M10	M12	M16	M20					
Displace	ment-Factors	for tensile load1)									
Uncracked concrete; Temperature range I, II											
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	0,10	0,11	0,12	0,13	0,14					
$\delta_{N\infty\text{-Faktor}}$	[[[[[[]]]	0,13	0,14	0,15	0,16	0,18					
Displacement-Factors for shear load ²⁾											
Uncracked concrete; Temperature range I, II											
$\delta_{\text{V0-Faktor}}$		0,12	0,12	0,12	0,12	0,12					
$\delta_{\text{V}_{\text{$\infty$-Faktor}}}$		0,14	0,14	0,14	0,14	0,14					

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V_{\text{Ed}}$

 $(V_{Ed}:$ Design value of the applied shear force)

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

²⁾ Calculation of effective displacement:

Table C10: Displacements for reinforcing bars							
Nominal diameter φ		8	10	12	14	16	20
Displacement-Factors for tensile load ¹⁾							
Uncracked concrete; Temperature range I, II							
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10	0,10
$\delta_{N\infty\text{-Faktor}}$		0,10	0,10	0,12	0,12	0,12	0,12
Cracked concrete; Temperature range I, II							
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]		0,12	0,12	0,13	0,13	0,13
$\delta_{N\infty\text{-Faktor}}$			0,27	0,30	0,30	0,30	0,30
Displacement-Factors for shear load ²⁾							
Uncracked or cracked concrete; Temperature range I, II							
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09
$\delta_{\text{V}_{\text{$\infty$-Faktor}}}$		0,12	0,12	0,11	0,11	0,11	0,10

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot \text{V}_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Performances

Displacements for reinforcing bars

²⁾ Calculation of effective displacement: