

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0437 of 12 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Deutsches Institut für Bautechnik

Injection system Power Anchor 287

Injection system for use in concrete

Dana Lim A/S Københavnsvej 220 4600 Køge DÄNEMARK

DANA LIM

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of 21 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0437

Page 2 of 21 | 12 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 12 December 2017

Specific Part

1 Technical description of the product

The injection system Power Anchor 287 is a bonded anchor consisting of a cartridge with injection mortar Power Anchor 287, Power Anchor 287 High Speed or Power Anchor 287 Low Speed and a steel element.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for static and quasi-static action, displacements	See Annex C 1 to C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

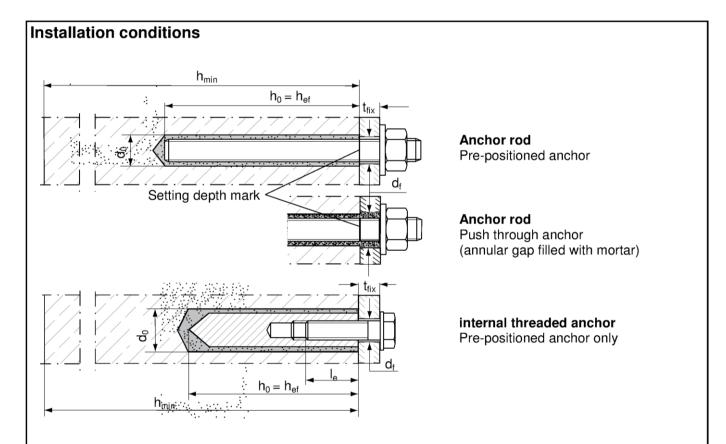
European Technical Assessment ETA-17/0437

Page 4 of 21 | 12 December 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

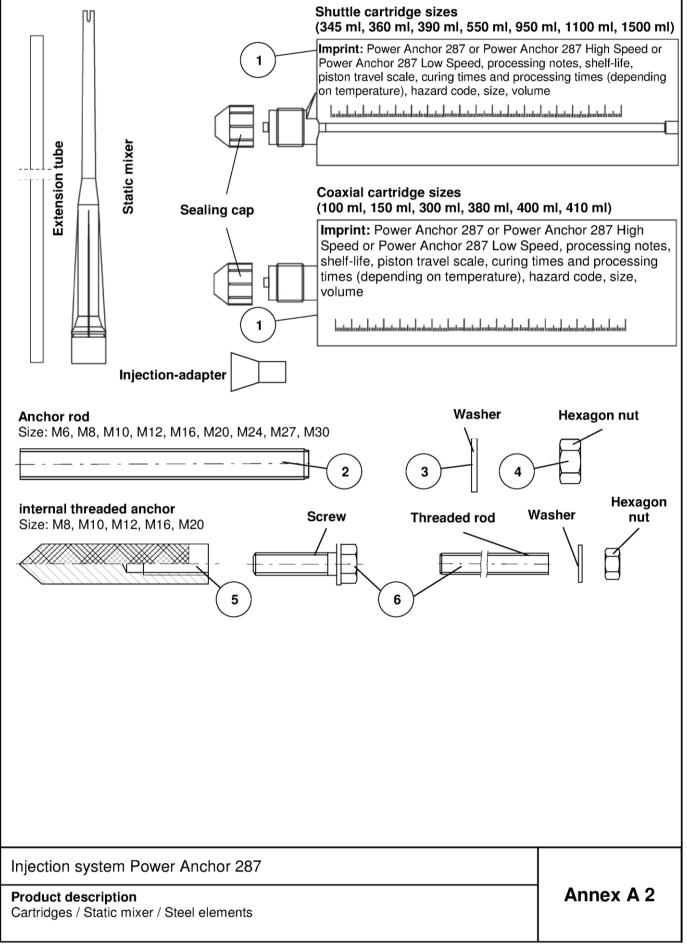
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 12 December 2017 by Deutsches Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt p.p. Head of Department *beglaubigt:* Baderschneider



Injection system Power Anchor 287

Product description Installation conditions Annex A 1

Page 6 of European Technical Assessment ETA-17/0437 of 12 December 2017

Tab	e A1: Materials			
Part	Designation		Material	
1	Mortar cartridge		Mortar, hardener, filler	
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8 \%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8 \%$ fracture elongation	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8 \%$ fracture elongation
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	internal threaded anchor	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Commercial standard screw or anchor / threaded rod for internal threaded anchor	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:1999 A2K fracture elongation $A_5 > 8 \%$	$\begin{array}{c} \mbox{Property class} \\ 70 \\ \mbox{EN ISO 3506-1:2009} \\ 1.4401; 1.4404; 1.4578; \\ 1.4571; 1.4439; 1.4362 \\ \mbox{EN 10088-1:2014} \\ \mbox{fracture elongation} \\ \mbox{A}_5 > 8 \% \end{array}$	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %

Injection system Power Anchor 287

Product description

Materials

Annex A 3

Specification	s of intende	d use (part 1)					
Table B1: Ov	erview use a	nd performance c	0				
Anchorages subj	ect to	Power And		hor 287 High Sp / Speed with	beed or Power Anchor		
		Anch	or rod	internal t	hreaded anchor		
			· _ · _ · _ ·] [-3			
Hammer drilling with standard drill bit	8488888888888888888888888888888888888		all s	izes			
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")	Ī	Nc	ominal drill bit diamete	er (d_0) 12 mm to 3	35 mm		
Static and quasi	uncracked concrete	M6 to M30	Tables:	M8 to M20	Tables: C2, C3, C5, C7		
static load, in	cracked concrete	M10 to M20	C1, C3, C4, C6	not	assessed		
Use category	dry or wet concrete	M6 to	o M30	М	18 to M20		
Use calegory	flooded hole ¹⁾	M12 t	o M30	Μ	18 to M20		
Installation temperature			-10 °C to	o +40 °C			
In-service	Temperature range I	-40 °C to +80 °C	(max. long term temp max. short term temp		and		
temperature	Temperature range II	-40 °C to +120 °C	(max. long term temp max. short term temp				
¹⁾ Only with coa	axial cartridges:	380 ml, 400 ml, 410	ml				
Injection syst	em Power Ar	nchor 287					
Intended Use Specifications (part 1)				Annex B 1		

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

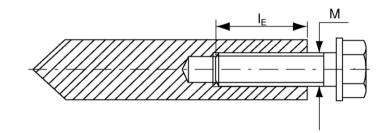
- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4: 2009

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

Injection system Power Anchor 287

Intended Use Specifications (part 2) Annex B 2


Size				M6	M8	M10	M12	M16	M20	M24	M27	M30	
Width across flats		SW		10	13	17	19	24	30	36	41	46	
Nominal drill bit diameter		d ₀		8	10	12	14	18	24	28	30	35	
Drill hole depth		h_0		$h_0 = h_{ef}$									
Effective		$h_{\text{ef},\text{min}}$		50	60	60	70	80	90	96	108	120	
anchorage depth		h _{ef,max}		72	160	200	240	320	400	480	540	600	
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	40	45	55	65	85	105	125	140	
Diameter of clearance hole in -	pre- positioned anchorage	d _f		7	9	12	14	18	22	26	30	33	
the fixture ¹⁾	push through anchorage	d _f		9	11	14	16	20	26	30	32	40	
Minimum thickness of concrete member		h _{min}				⊦ 30 00)				h _{ef} + 2d	0		
Maximum Installation torque		T _{inst,max}	[Nm]	5	10	20	40	60	120	150	200	300	
Anchor rods: Anchor rod without roof cutting	-		h	ef				W					
Anchor rod without roof	h _{et}	-	Settir	ng depth	n mark	Width		s flats	Marki	ng			
Anchor rod without roof cutting Anchor rod with roof	lom place) a stainless stristant steel C property class according to I dard thread e fulfilled: rensions and tificate 3.1 ac	eel A4 p properi ss 50 ar DIN 976 ed rods mechar	Settin od: property ty class nd high -1 s, wash	class & 80: • corrosic	30 and on resis d hexage accord	tant ste jon nut ing Ann	el C pro	operty c also be Table /	lass 50 used i	: •• f the fo	llowing		
Anchor rod without roof cutting Anchor rod with roof cutting Marking (on rand Property class 8.8 high corrosion resi Stainless steel A4 Or colour coding a Commercial stan requirements are • Materials, dim • Inspection cer	lom place) a s, stainless sta istant steel C property clas according to D dard thread fulfilled: ensions and tificate 3.1 ac is marked	eel A4 p propert ss 50 ar DIN 976 ed rods mechar ccording	Settin od: property ty class nd high -1 s, wash nical pro to EN	class & 80: • corrosic	30 and on resis d hexage accord	tant ste jon nut ing Ann	el C pro	operty c also be Table /	lass 50 used i	: •• f the fo	llowing		

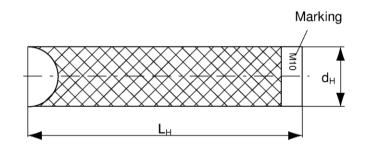


Table B3: Installation para	ameters	for inte	ernal thread	ded anchor	S		
Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H		12	16	18	22	28
Nominal drill bit diameter	d _o		14	18	20	24	32
Drill hole depth	h ₀				$h_0 = h_{ef} = L_{\rm H}$		-
Effective anchorage depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	I _{E,min}		8	10	12	16	20
Maximum installation torque	T _{inst,max}	[Nm]	10	20	40	80	120

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1: 2009, 5.2.3.1

internal threaded anchor

Marking: Anchor size e. g.: M10 Stainless steel additional A4

e. g.: M10 A4

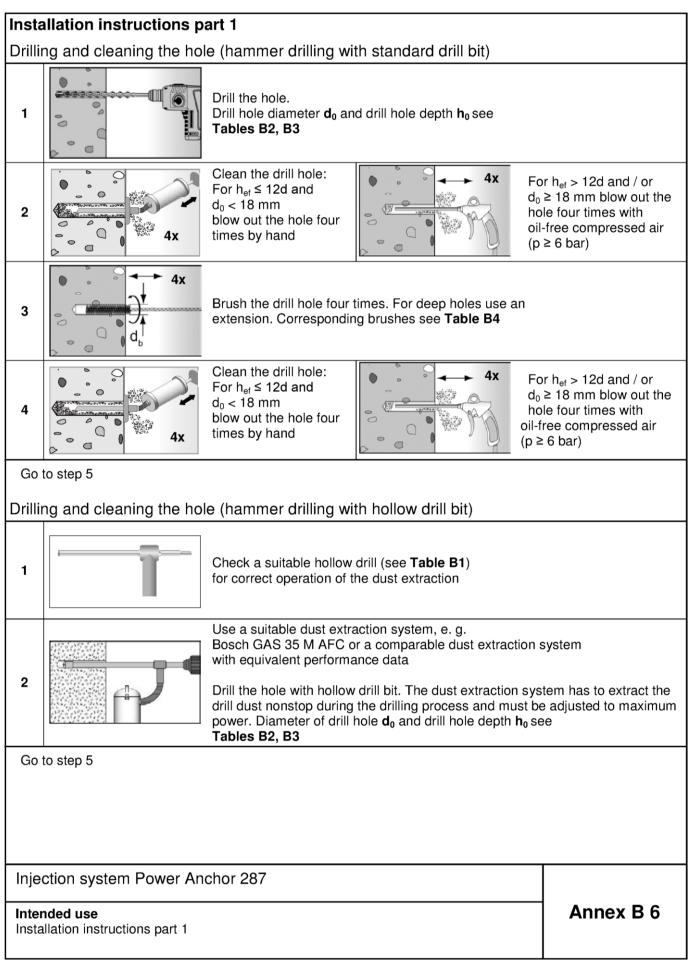
High corrosion resistant steel additional **C** e. g.: **M10 C**

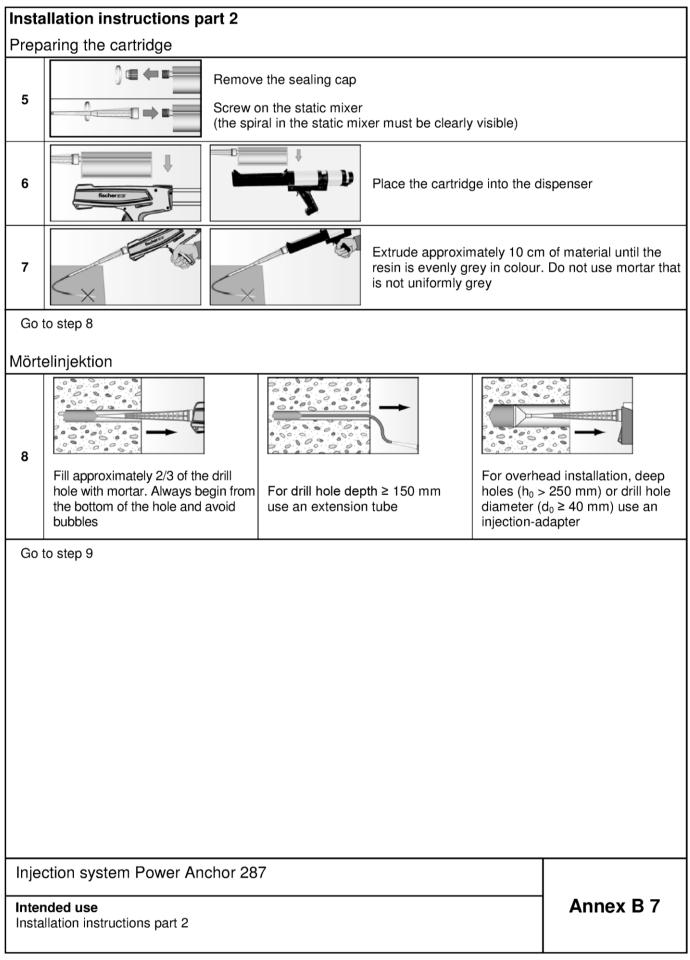
Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1

Injection system Power Anchor 287

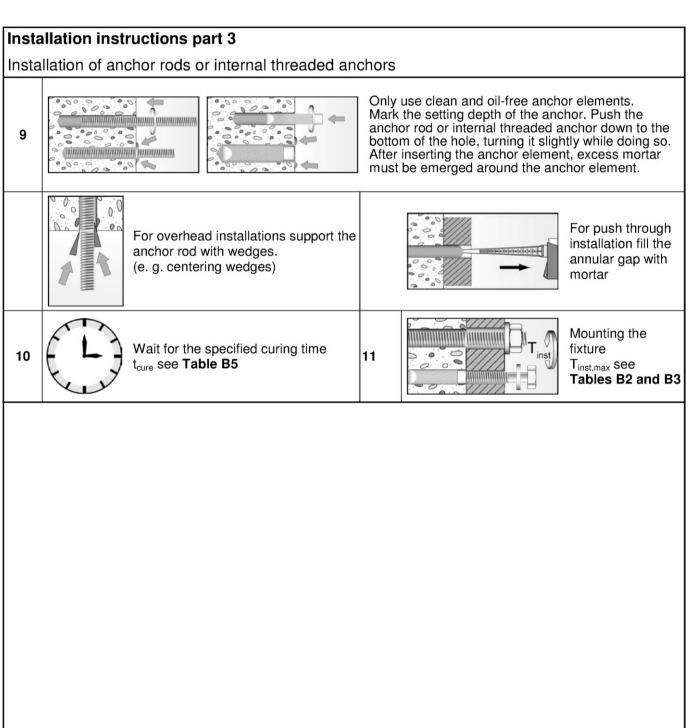
Intended Use

Installation parameters internal threaded anchors


Annex B 4


35
40
⁻ Ancho 7 Low beed
 3 h 3 h
3h
3 h 3 h
7 De

Cleaning tools Processing times and curing times Annex B 5



Injection system Power Anchor 287

Intended use Installation instructions part 3 Annex B 8

Size					M6	M8	M10	M12	M16	M20	M24	M27	M30
Beari	ng capacity unde	r tensile loa	id, stee	el failu	ire		-						
۵ ور	Steel zinc plated		5.8		10	19	29	43	79	123	177	230	281
arir V _{ak}		-	8.8		16	29	47	68	126	196	282	368	449
itv he	Stainless steel	Property	50	[kN]	10	19	29	43	79	123	177	230	281
Charact.bearing capacity N _{Bk s}	A4 and High corrosion	class	70		14	26	41	59	110	172	247	322	393
Cha	resistant steel C		80	1	16	30	47	68	126	196	282	368	449
Partia	al safety factors ¹⁾												
	Stool zing plated		5.8						1,50				
fety « N	Steel zinc plated		8.8						1,50				
l sa N yw	Stainless steel	Property	50	[-]					2,86				
Partial safety factor YMe N	A4 and High corrosion	class	70						1,87				
<u>ل</u> ب	resistant steel C		80	1					1,60				
Beari	ng capacity unde	r shear load	l, stee	l failui	re 🛛								
witho	ut lever arm											1	
° bu	Steel zinc plated		5.8		5	9	15	21	39	61	89	115	141
eari V _{ak}	Steel zinc plated		8.8	_ [kN]	8	15	23	34	63	98	141	184	225
ct.b	 Stainless steel A4 and 	Property class	50		5	9	15	21	39	61	89	115	141
Charact.bearing capacity V _{Bk s}	High corrosion		70		7	13	20	30	55	86	124	161	197
ò°	resistant steel C		80		8	15	23	34	63	98	141	184	225
	ity factor acc. to CI 4-5:2009 Section 6		k ₂	[-]					1,0				
with	ever arm												
	Steel zinc plated		5.8		7	19	37	65	166	324	560	833	1123
g c:			8.8		12	30	60	105	266	519	896	1333	1797
	² Stainless steel	Property class	50	[Nm]	7	19	37	65	166	324	560	833	1123
be be	A4 and High corrosion	CIASS	70		10	26	52	92	232	454	784	1167	1573
	[£] resistant steel C		80	1	12	30	60	105	266	519	896	1333	1797
Partia	al safety factors ¹⁾												
	Steel zinc plated		5.8						1,25				
fety ° ^			8.8						1,25				
Partial safety	Stainless steel	Property	50	[-]					2,38				
artia acto	A4 and High corrosion	class	70] ' [1,56				
۳, ۳	resistant steel C		80	1					1,33				
¹⁾ In	absence of other I	national regi		<u> </u>					-				

Performances

Characteristic steel bearing capacity anchor rods

Table C2: Cha inte						n g capacit e / shear lo			
Size					M8	M10	M12	M16	M20
Bearing capacity	unde	r tensile loa	ad, stee	el failu	ire			-	<u>.</u>
		Property	5.8		19	29	43	79	123
Characteristic	N I	class	8.8	FLANI	29	47	68	108	179
bearing capacity with screw	N _{Rk,s}	Property	A4	[kN]	26	41	59	110	172
		class 70	С		26	41	59	110	172
Partial safety fac	tors ¹⁾								
		Property	5.8				1,50		
Partial safety	N	class	8.8	[-]			1,50		
factor	γMs,N	Property	A4	[-]			1,87		
		class 70	С				1,87		
Bearing capacity		r shear load	d, steel	failu	re 🛛				
without lever arn	n								
Characteristic		Property	5.8		9,2	14,5	21,1	39,2	62,0
bearing capacity	Volue	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
with screw	▼ HK,S	Property	A4	[,.,,]	12,8	20,3	29,5	54,8	86,0
		class 70	С		12,8	20,3	29,5	54,8	86,0
Ductility factor acc 1992-4-5:2009 Se			k_2	[-]			1,0		
with lever arm									
Oh a wa a ta wia ti a		Property	5.8		20	39	68	173	337
Characteristic bending moment	M ⁰	class	8.8	[Nm]	30	60	105	266	519
with screw	IVI Rk,s	Property	A4	[14111]	26	52	92	232	454
		class 70	С		26	52	92	232	454
Partial safety fac	tors ¹⁾								
		Property	5.8				1,25		
Partial safety	N/	class	8.8	[-]			1,25		
factor	γMs,V	Property	A4	[_]			1,56		
		class 70	С				1,56		

Injection system Power Anchor 287

Performances

Characteristic steel bearing capacity of internal threaded anchors

	eneral design fa ncracked or crac				ring ca	apacity	/ unde	r tensi	ile / sh	ear lo	ad;	
Size								All size	s			
Bearing capac	ity under tensile loa	ad										
	CEN/TS 1992-4:20		ction 6	2.2.3								
Uncracked con	crete	k_{ucr}						10,1				
Cracked concre	ete	k _{cr}	[-]					7,2				
Factors for the	compressive strer		f concr	ete > C	20/25							
	C25/30							1,05				
	C30/37							1,10				
Increasing	C35/45							1,15				
factor	C40/50	$\Psi_{\rm c}$	[-]					1,19				
for τ _{Rk}	C45/55							1,22				
	C50/60							1,26				
Splitting failur	e											
	h / h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	2,0 > h / h _{ef} > 1,3	C _{cr.sp}					4,6	6 h _{ef} - 1,	8 h			
	h / h _{ef} ≤ 1,3		[mm]					2,26 h _e	f			
Spacing		S _{cr,sp}						2 c _{cr,sp}				
Concrete cone	failure acc. to CEN	I/TS 19	92-4-5	:2009 \$	Section	6.2.3.2	2					
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Spacing		S _{cr,N}	[IIIII]					$2 c_{\text{cr,N}}$				
Bearing capac	ity under shear loa	d										
Installation sat	fety factors											
		γ2										
All installation c	conditions	=	[-]					1,2				
0		γinst										
Concrete pry-c												
Factor k acc. to Section 5.2.3.3 CEN/TS 1992-4 Section 6.3.3	8 resp. k₃ acc. to	k ₍₃₎	[-]					2,0				
Concrete edge	failure											
The value of h _{et} under shear loa			[mm]				mi	in (h _{ef} ; 8	3d)			
Calculation dia	ameters											
Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
Anchor rods		d	[mm]	6	8	10	12	16	20	24	27	30
internal threade	ed anchors	d _{nom}	[mm]		12	16	18	22	28			

Injection system Power Anchor 287

Performances

General design factors relating to the characteristic bearing capacity under tensile / shear load

Size		M6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pullout and concrete cor	ne failure	-	-		-					-
Calculation diameter d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked concrete										
Characteristic bond resistance in u	ncracked o	concret	e C20/2	25						
Hammer-drilling with standard drill bit	or hollow di	<u>rill bit (d</u>	ry and	wet cor	<u>icrete)</u>					
Tem- I: 50 °C / 80 °C	EN 1 /100 - 21	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature	, [N/mm²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling with standard drill bit	or hollow dr	rill bit (fl	ooded	hole) ¹⁾			,			
Tem- I: 50 °C / 80 °C					9,5	8,5	8,0	7,5	7,0	7,0
perature $\frac{1.300070000}{\tau_{\text{Bk,uc}}}$, [N/mm ²]								,	
range II: 72 °C / 120 °C					7,5	7,0	6,5	6,0	6,0	6,0
Installation safety factors										
Dry and wet concrete $\gamma_2 = \gamma_{in}$	st [-]					1,2		. 1)		
Flooded hole							1,	4 ¹⁾		
Cracked concrete	· · ·									
Characteristic bond resistance in c										
Hammer-drilling with standard drill bit	or hollow dr	r <u>ill bit (d</u>	ry and							
Tem- I: 50 °C / 80 °C perature τ _{Βk α}	[N/mm ²]			6,0	6,0	6,0	5,5			
perature τ _{Rk,cr} range II: 72 °C / 120 °C				5,0	5,0	5,0	5,0			
Hammer-drilling with standard drill bit	or hollow dr	rill bit (fl	ooded	nole) ¹⁾						
Tem- I: 50 °C / 80 °C					5,0	5,0	4,5			
perature τ _{Rk,cr} τ _{Rk,cr}	[N/mm ²]				4,0	4,0	4,0			
range II: 72 °C / 120 °C					1,0	1,0	1,0			
Dry and wet concrete						1,2				
Flooded hole $\gamma_2 = \gamma_{in}$	st [-]					1,2	1.	4 ¹⁾		
								-		
¹⁾ Only with coaxial cartridges: 380 n		410 ml					,	4.7		
Injection system Power Ancho Performances	r 287								nex C	

(uncracked or cracked concrete)

Table C5: Characteristic drilled holes; u				nternal thro	eaded ancl	hors in han	nmer
Size			M8	M10	M12	M16	M20
Combined pullout and conc	rete cone	failure		-	-		-
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond resistar	ce in un	cracked o	concrete C20)/25			
Hammer-drilling with standard	drill bit or	^r hollow di	rill bit (dry an	d wet concret	<u>e)</u>		
Tem- I: 50 °C / 80 °C		[N/mm ²]	10,5	10,0	9,5	9,0	8,5
range II: 72 °C / 120 °C	⁻ τ _{Rk,ucr}		9,0	8,0	8,0	7,5	7,0
Hammer-drilling with standard	drill bit or	^r hollow di	rill bit (floode	d hole) ¹⁾			
Tem- I: 50 °C / 80 °C		[N/mm ²]	10,0	9,0	9,0	8,5	8,0
perature II: 72 °C / 120 °C	⁻ τ _{Rk,ucr}	[14/11111]	7,5	6,5	6,5	6,0	6,0
Installation safety factors							
Dry and wet concrete		[]			1,2		
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,4 ¹⁾		

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

Injection system Power Anchor 287

Performances

Characteristic values for static or quasi-static action under tensile load for internal threaded anchors and reinforcing bars (uncracked concrete)

Size	M6	M8	M10	M12	M16	M20	M24	M27	M30
Displacement-Factors	for tensil	e load ¹⁾							
Uncracked concrete; T	emperatu	ire range	I, II						
^{S_{N0-Faktor} [mm/(N/mm²)]}	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
[IIIIII/(IN/IIIII)] N∞-Faktor	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked concrete; Ten	nperature	range I, I	l	-					
[mm/(N/mm ²)]			0,12	0,12	0,13	0,13			
[IIIII/(IN/IIIII)] N∞-Faktor			0,27	0,30	0,30	0,30			
Displacement-Factors	for shear	load ²⁾							
Uncracked or cracked	concrete	; Tempera	ture rang	e I, II					
Ovo-Faktor	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
W∞-Faktor [mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09
¹⁾ Calculation of effective displacement: ²⁾ Calculation of effective displacement:									
2 2									

 $\delta_{\text{NO}} = \delta_{\text{NO-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-}\mathsf{Factor}}\,\cdot\,\tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-}Factor} \, \cdot \, V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

Table C7: Displacements for internal threaded anchors

	M8	M10	M12	M16	M20							
Displacement-Factors for tensile load ¹⁾												
d concrete; T	emperature rang	e I, II										
or [mm/(N/mm ²)]	0,10	0,11	0,12	0,13	0,14							
	0,13	0,14	0,15	0,16	0,18							
ment-Factors	for shear load ²⁾											
d concrete; T	emperature rang	e I, II										
[mm/kN]	0,12	0,12	0,12	0,12	0,12							
V0-Faktor [mm/kN] -	0,14	0,14	0,14	0,14	0,14							
	d concrete; T mm/(N/mm ²)] nent-Factors	nent-Factors for tensile load ¹⁾ d concrete; Temperature rang mm/(N/mm ²)] 0,10 0,13 nent-Factors for shear load ²⁾ d concrete; Temperature rang [mm/kN]	nent-Factors for tensile load1)d concrete; Temperature range I, IImm/(N/mm²)]0,100,130,110,130,14nent-Factors for shear load2)d concrete; Temperature range I, II0,120,12	Inent-Factors for tensile load ¹⁾ d concrete; Temperature range I, II mm/(N/mm²)] 0,10 0,11 0,12 0,13 0,14 0,15 nent-Factors for shear load² 0,12 0,12 d concrete; Temperature range I, II 0,12 0,12	Inent-Factors for tensile load ¹⁾ d concrete; Temperature range I, II mm/(N/mm²)] 0,10 0,11 0,12 0,13 0,13 0,14 0,15 0,16 nent-Factors for shear load²							

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-}\mathsf{Factor}}\,\cdot\,\tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

```
<sup>2)</sup> Calculation of effective displacement:
```

$$\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$$

$$\delta_{\mathsf{V}\infty} = \delta_{\mathsf{V}\infty\text{-}\mathsf{Factor}} \cdot \mathsf{V}_{\mathsf{Ed}}$$

(V_{Ed}: Design value of the applied shear force)

Injection system Power Anchor 287

Performances

Displacements for anchor rods and internal threaded anchors