

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0438 of 12 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

fischer Injection system Anchorstar Plus

Injection system for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

21 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0438

Page 2 of 21 | 12 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 12 December 2017

Specific Part

1 Technical description of the product

The fischer injection system Anchorstar Plus is a bonded anchor consisting of a cartridge with injection mortar Anchorstar Plus, Anchorstar Plus High Speed or Anchorstar Plus Low Speed and a steel element.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for static and quasi-static action, displacements	See Annex C 1 to C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

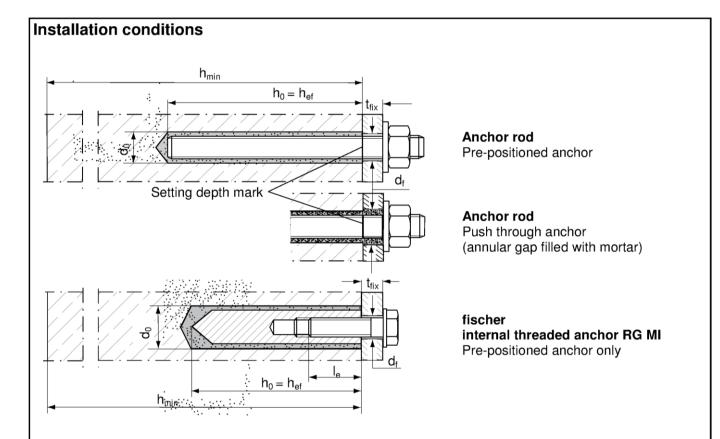
European Technical Assessment ETA-17/0438

Page 4 of 21 | 12 December 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

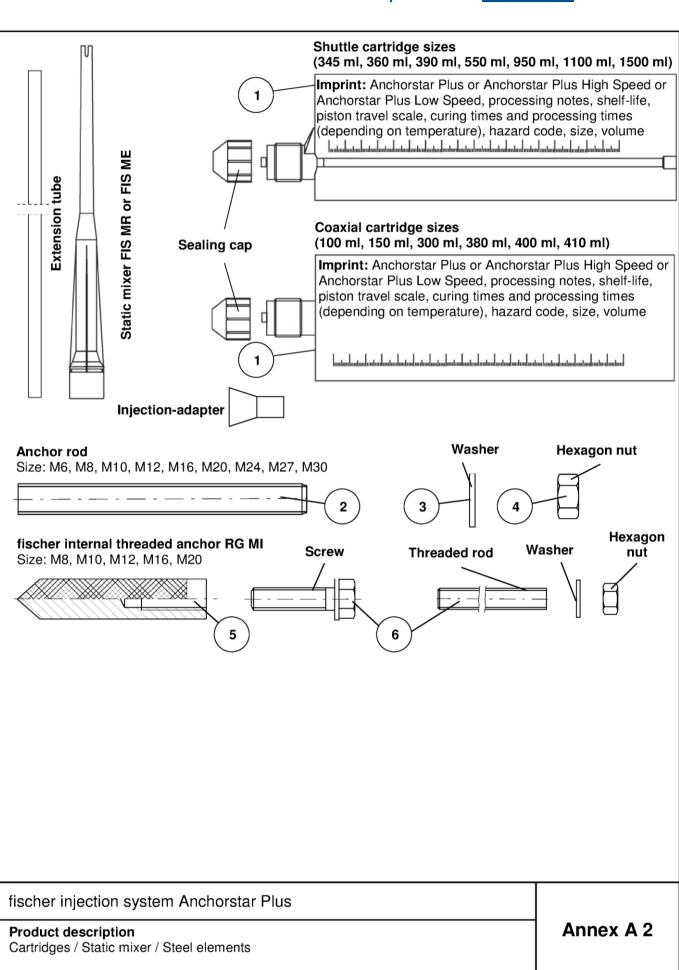
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 12 December 2017 by Deutsches Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt p.p. Head of Department *beglaubigt:* Baderschneider



fischer injection system Anchorstar Plus

Product description Installation conditions Annex A 1

Page 6 of European Technical Assessment ETA-17/0438 of 12 December 2017

English translation prepared by DIBt

Deutsches Institut für Bautechnik

Tabl	e A1: Materials			
Part	Designation		Material	
1	Mortar cartridge		Mortar, hardener, filler	
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8 \%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8 \%$ fracture elongation	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm^2}$ $A_5 > 8 \%$ fracture elongation
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Commercial standard screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:1999 A2K fracture elongation A ₅ > 8 %	$\begin{array}{c} \mbox{Property class} \\ 70 \\ \mbox{EN ISO 3506-1:2009} \\ 1.4401; 1.4404; 1.4578; \\ 1.4571; 1.4439; 1.4362 \\ \mbox{EN 10088-1:2014} \\ \mbox{fracture elongation} \\ \mbox{A}_5 > 8 \% \end{array}$	$\begin{array}{c} \mbox{Property class} \\ 70 \\ \mbox{EN ISO 3506-1:2009} \\ 1.4565; 1.4529 \\ \mbox{EN 10088-1:2014} \\ \mbox{fracture elongation} \\ \mbox{A}_5 > 8 \% \end{array}$

fischer injection system Anchorstar Plus

Product description

Materials

Annex A 3

-		d use (part 1)					
Table B1: Ov	erview use ar	nd performance c		Plue High Spee	d or Anchorstar Plus		
Anchorages subj	ect to	Anchorst		speed with	a of Anchorstal Flus		
		Anch	or rod		fischer aded anchor RG MI		
			-7				
Hammer drilling with standard drill bit	#*************************************		all s	izes			
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")	Î	No	ominal drill bit diamete	er (d $_0$) 12 mm to 3	35 mm		
Static and quasi	uncracked concrete	M6 to M30	Tables:	M8 to M20	Tables: C2, C3, C5, C7		
static load, in	cracked concrete	M10 to M20	C1, C3, C4, C6	not	assessed		
Use category	dry or wet concrete	M6 to	o M30	Μ	8 to M20		
Use category	flooded hole ¹⁾	M12 t	o M30	M8 to M20			
Installation temperature			-10 °C to) +40 °C			
In-service	Temperature range I	-40 °C to +80 °C	(max. long term temp max. short term temp		Ind		
temperature	Temperature range II	-40 °C to +120 °C	(max. long term temp max. short term temp				
¹⁾ Only with coa	axial cartridges:	380 ml, 400 ml, 410	ml				
	ion system Ar	nchorstar Plus					
Intended Use Specifications (part 1)				Annex B 1		

Specifications of intended use (part 2)

Base materials:

Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4: 2009

Installation:

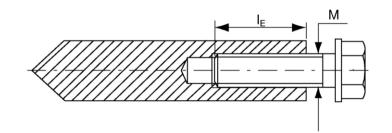
- Anchor installation is to be carried out by appropriately gualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- Overhead installation is allowed

fischer injection system Anchorstar Plus

Intended Use

Specifications (part 2)

Annex B 2


Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
Width across flats		SW		10	13	17	19	24	30	36	41	46
Nominal drill bit diameter		d ₀		8	10	12	14	18	24	28	30	35
Drill hole depth		h ₀						$h_0 = h_{ef}$				
Effective		h _{ef,min}		50	60	60	70	80	90	96	108	120
anchorage depth		h _{ef,max}		72	160	200	240	320	400	480	540	600
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[40	40	45	55	65	85	105	125	140
Diameter of clearance hole in -	pre- positioned anchorage	d _f			7	9	12	14	18	22	26	30
the fixture ¹⁾	push through anchorage	d _f		9	11	14	16	20	26	30	32	40
Minimum thickness of concrete member		h _{min}				⊦ 30 00)				h _{ef} + 2d	0	
Maximum installation torque		T _{inst,max}	[Nm]	5	10	20	40	60	120	150	200	300
Anchor rods:	-		h	ef	•			W				
	-			/	mark	Widt		- My	Marki	20		
fischer	h _{er}	•	Settin	ng depth	n mark	Widt		s flats	Marki	ng		
fischer FIS A fischer	, stainless st istant steel C property clas	eel A4 p ; propert ss 50 an	Settin r nchor roperty y class d high	rod: class & 80: •	30 and			TW	0			
fischer FIS A fischer RG M Marking (on rand Property class 8.8 high corrosion res Stainless steel A4	, stainless st istant steel C property clas according to I dard thread fulfilled: ensions and tificate 3.1 ac	eel A4 p propert ss 50 an DIN 976 ed rods mechan	Settin roperty y class d high -1 , wash	rod: class & 80: • corrosic	30 and on resis d hexage accord	tant ste jon nut ing Ann	el C pro	operty c also be Table /	lass 50 used i	: •• f the fo	llowing	
fischer FIS A fischer RG M Marking (on rand Property class 8.8 high corrosion resi Stainless steel A4 Or colour coding a Commercial stan requirements are • Materials, dim • Inspection cer	, stainless st istant steel C property clas according to I dard thread fulfilled: ensions and tificate 3.1 ac is marked	eel A4 p propert ss 50 an DIN 976 ed rods mechan ccording	Settin r roperty y class d high -1 a, wash ical pro	rod: class & 80: • corrosid ers and pperties 10204::	30 and on resis d hexage accord	tant ste jon nut ing Ann	el C pro	operty c also be Table /	lass 50 used i	: •• f the fo	llowing	

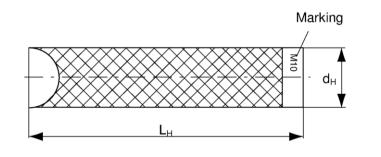


Table B3: Installation para	ameters	for fisc	cher interna	al threaded	anchors R	g MI	
Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H		12	16	18	22	28
Nominal drill bit diameter	d _o		14	18	20	24	32
Drill hole depth	h ₀				$h_0 = h_{\text{ef}} = L_{\text{H}}$		-
Effective anchorage depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	I _{E,min}		8	10	12	16	20
Maximum installation torque	T _{inst,max}	[Nm]	10	20	40	80	120

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1: 2009, 5.2.3.1

fischer internal threaded anchor RG MI

Marking: Anchor size e. g.: M10 Stainless steel additional A4

e. g.: M10 A4

High corrosion resistant steel additional **C** e. g.: **M10 C**

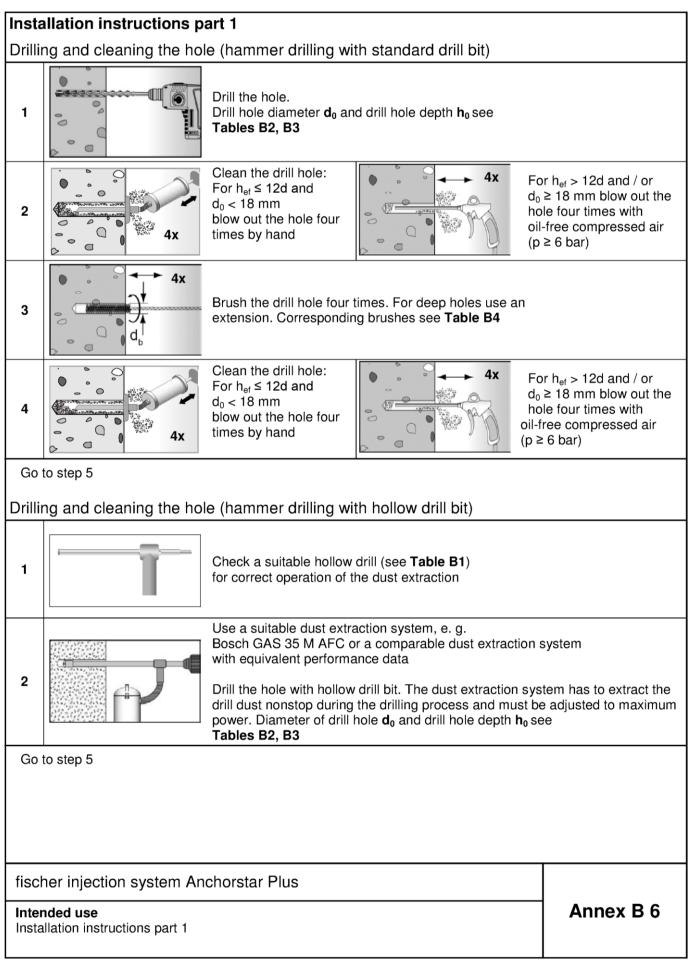
Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1

fischer injection system Anchorstar Plus

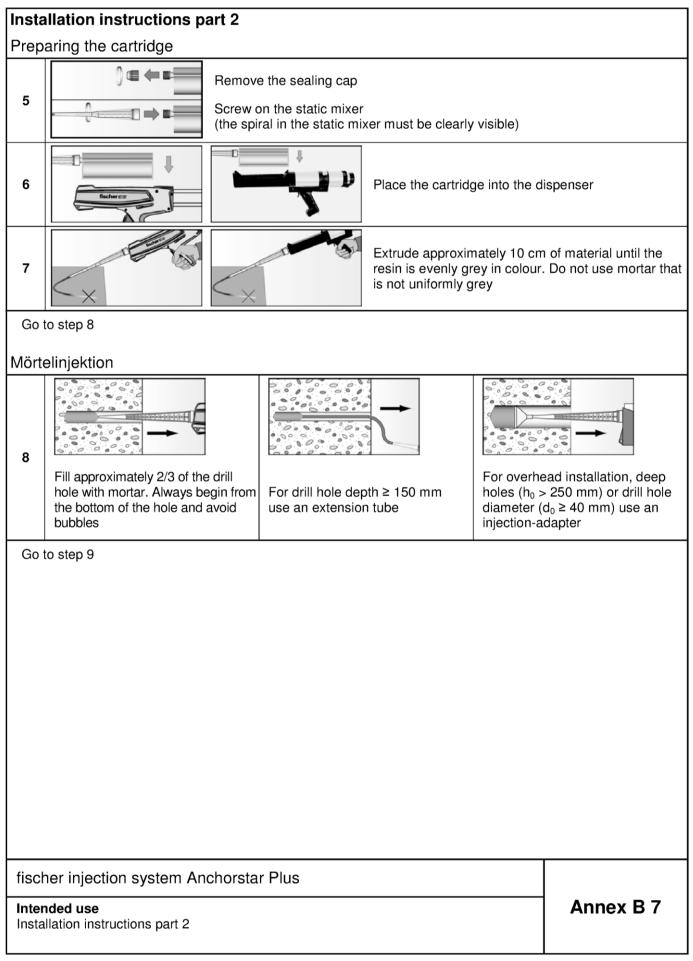
Intended Use

Installation parameters fischer internal threaded anchors RG MI

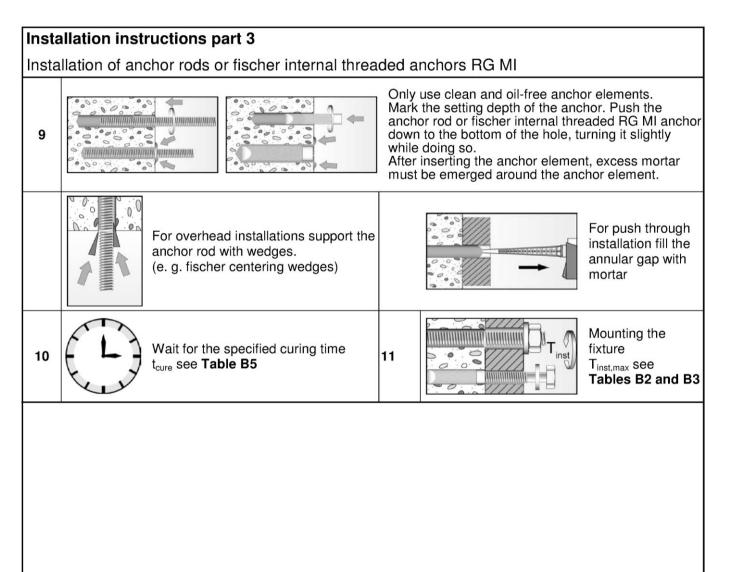
Annex B 4


Table B4: Dia			-)						
The size of the s	steel brus	sh refers	s to the	nomir	hal drill b	oit diar	neter				1			
Nominal drill bit diameter	d ₀	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter	d _b	[mm] -	9	11	14	16	2	0	25	26	27	30	4	0
Ğ				SVASUAL NYANAAN					~~~	~~~	~~~	X		
												. 410 0		
(Du	aximum uring the ed minin	curing t	time of peratu	the mo re)	ortar the	concr	ete terr			not fa	ll below		1)	
liste	uring the ed minin	curing t	time of peratu	the mo re) mum p		concr	ete terr			not fa		ring tim	ıe ¹⁾	
(Du	uring the ed minin	curing t	time of peratu Maxi orstar us	the mo re) mum p	ortar the	ng tim	ete terr	ar A		not fa Minim tar	II below	ring tim	Ancho Plu Low S	IS
(Du liste System tempe	uring the ed minin rature	curing t num tem Ancho Plu	time of nperatu Maxi orstar us Speed	the mo re) mum p	ortar the processi t _{work} thorstar	ng tim	e e chorsta Plus	ar A	nchors Plus	not fa Minim tar	II below num cur t _{cure} Anchor	ring tim	Ancho Plu	us peed
(Du liste System tempe [°C]	uring the ed minin rature 5	Curing t num tem Ancho Pli High S	time of nperatu Maxi orstar us Speed	the mo re) mum p	ortar the processi t _{work} thorstar Plus	ng tim	e e chorsta Plus w Spee	ar A	nchors Plus igh Spe	not fa Minim tar	II below num cur t _{cure} Anchor Plus	ring tim star	Ancho Plu Low S	us peed -
(Du liste System tempe [°C] -10 to -{	uring the ed minin rature 5 :0	Ancho High S	time of nperatu Maxi orstar us Speed nin	the more) mum p Anc	ortar the processi t _{work} horstar Plus	ng tim	e e chorsta Plus w Spee 	ar A	ire may inchors Plus igh Spe 12 h	not fa Minim tar	II below num cur t _{cure} Anchor Plus	ring tim star s	Ancho Plu Low S	us peed - -
(Du liste System tempe [°C] -10 to $-5> -5 to \pm> \pm 0 to +> +5$ to $+$	uring the ed minin rature 5 :0 -5 -10	Ancho Pli High S	time of nperatu Maxi orstar us Speed nin nin	the more) mum p Anc I 13	ortar the processi t _{work} thorstar Plus 3 min 0 min	e concr ng tim An Lo	e e Plus w Spee 20 min	ar A	ire may inchors Plus igh Spe 12 h 3 h 3 h 50 mir	Minim tar bed	II below num cur t _{cure} Anchor Plus 24 ř 3 h 90 m	ring tim star s	Ancho Plu Low S 6 3	us peed - - h h
(Du liste System tempe $[^{\circ}C]$ -10 to $-5> -5 to \pm> \pm 0 to +> \pm 5 to +> \pm 10 to +$	uring the ed minin rature 5 -5 -5 -10 -20	Ancho Pli High S 5 n 3 n	time of nperatu Maxi orstar us Speed nin nin	the more) mum p Anc I 10 9 5	ortar the processi t _{work} horstar Plus 3 min min 5 min	An Lo	e chorsta Plus w Spee 20 min 10 min	ar A	Inchors Plus igh Spe 12 h 3 h 3 h	Minim tar bed	II below num cur t _{cure} Anchor Plus 24 k 3 h 90 m 60 m	ring tim star s in in	Ancho Plu Low S 6 3 2	us peed - - h h h
(Du liste System tempe [°C] -10 to -5 > -5 to \pm > ± 0 to + > ± 0 to + > ± 10 to + > ± 20 to +	uring the ed minin rature 5 -0 -5 -10 -20 -30	Ancho Pli High S 5 n 3 n	time of aperatu Maxi orstar us Speed nin nin nin	the more re) Mum p Anc I 10 9 5 5	ortar the processi t _{work} chorstar Plus 3 min 0 min 0 min 0 min	An Lo	e e Plus w Spee 20 min 10 min 6 min	ar A	ire may inchors Plus igh Spe 12 h 3 h 3 h 50 mir	Minim tar bed	II below num cur t _{cure} Anchor Plus 24 f 3 h 90 m 60 m 45 m	ring tim star s in in in	Ancho Plu Low S 6 3 2 60 r	us ipeed - - h h h
(Du liste System tempe $[^{\circ}C]$ -10 to $-5> -5 to \pm> \pm 0 to +> \pm 5 to +> \pm 10 to +$	uring the ed minin rature 5 -5 -10 -20 -30 -40	Ancho Plum tem Ancho Plu High S 5 n 5 n 3 n 1 n 	time of aperatu Maxi orstar us Speed nin nin nin nin 	the mo re) mum p Anc I 1 3 9 9 5 5 4 4 2	ortar the processi t _{work} horstar Plus 3 min min min min 2 min	An Lo	e chorsta Plus w Spee 20 min 10 min 6 min 4 min	ar A d H	Inchors Plus igh Spe 12 h 3 h 3 h 30 mir	Minim tar bed	II below num cur t _{cure} Anchor Plus 24 k 3 h 90 m 60 m	ring tim star s in in in	Ancho Plu Low S 6 3 2	us ipeed - - h h h

fischer injection system Anchorstar Plus


Intended Use

Cleaning tools Processing times and curing times Annex B 5



fischer injection system Anchorstar Plus

Intended use Installation instructions part 3 Annex B 8

Size					M6	M8	M10	M12	M16	M20	M24	M27	M30
Bearir	ng capacity under	r tensile loa	d, stee	el failu	ıre	-				-	-	-	-
g "	Steel zinc plated		5.8		10	19	29	43	79	123	177	230	281
arir V _{Rk,s}			8.8		16	29	47	68	126	196	282	368	449
ity h	Stainless steel	Property	50	[kN]	10	19	29	43	79	123	177	230	281
Charact.bearing capacity N _{Rk,s}	A4 and High corrosion	class	70		14	26	41	59	110	172	247	322	393
ы С	resistant steel C		80		16	30	47	68	126	196	282	368	449
Partia	I safety factors ¹⁾												
	Steel zinc plated		5.8						1,50				
fety ^{Is,N}			8.8						1,50				
ll sa or γ _N	Stainless steel	Property	50	[-]					2,86				
Partial safety factor _{YMs,N}	A4 and High corrosion	class	70					1,	50 ²⁾ / 1,	87			
<u>с</u>	resistant steel C		80						1,60				
Bearir	ng capacity under	r shear load	I, steel	failu	re 🛛								
witho	ut lever arm												
ء م	Steel zinc plated		5.8		5	9	15	21	39	61	89	115	141
Charact.bearing capacity V _{Rk,s}			8.8		8	15	23	34	63	98	141	184	225
city of	Stainless steel	Property class -	50	[kN]	5	9	15	21	39	61	89	115	141
arac apac	A4 and High corrosion	Class	70		7	13	20	30	55	86	124	161	197
ч С	resistant steel C		80		8	15	23	34	63	98	141	184	225
	ty factor acc. to CE 4-5:2009 Section 6		k ₂	[-]					1,0				
with le	ever arm												
	Steel zinc plated		5.8		7	19	37	65	166	324	560	833	1123
ti D°			8.8		12	30	60	105	266	519	896	1333	1797
	Stainless steel	Property	50	[Nm]	7	19	37	65	166	324	560	833	1123
ber ber	A4 and High corrosion	class	70		10	26	52	92	232	454	784	1167	1573
	[£] resistant steel C		80		12	30	60	105	266	519	896	1333	1797
Partia	I safety factors ¹⁾												
_	Steel zinc plated		5.8						1,25				
fety ^{Is,V}			8.8						1,25				
Partial safety factor y _{Ms,V}	Stainless steel	Property	50	[-]					2,38				
artiá facto	A4 and High corrosion	class	70					1,2	25 ²⁾ / 1,	56			
<u>а</u> .	resistant steel C		80						1,33				
¹⁾ In ²⁾ Or	absence of other r nly for fischer FIS A	national regu A and RG M	lations made	of higl	n corro	sion-res	sistant s	teel C					
ficek	ner injection sys	tom Anch	oretar	Plue									

	Table C2: Characteristic values for the steel bearing capacity of fischer internal threaded anchors RG MI under tensile / shear load										
Size					M8	M10	M12	M16	M20		
Bearing capacity	unde	r tensile loa	ad, stee	el failu	ire				<u>.</u>		
		Property	5.8		19	29	43	79	123		
Characteristic	NI	class	8.8	FLAI	29	47	68	108	179		
bearing capacity with screw	N _{Rk,s}	Property	A4	[kN]	26	41	59	110	172		
		class 70	С		26	41	59	110	172		
Partial safety fact	tors ¹⁾										
		Property	5.8				1,50				
Partial safety		class	8.8				1,50				
actor	γMs,N	Property	A4	[-]			1,87				
		class 70	С				1,87				
Bearing capacity	unde	r shear load	d, steel	failu	re						
without lever arm	า										
		Property	5.8		9,2	14,5	21,1	39,2	62,0		
Characteristic bearing capacity	V	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0		
with screw	V Rk,s	Property	A4	[KIN]	12,8	20,3	29,5	54,8	86,0		
		class 70	С		12,8	20,3	29,5	54,8	86,0		
Ductility factor acc 1992-4-5:2009 Se			k ₂	[-]			1,0				
with lever arm											
		Property	5.8		20	39	68	173	337		
Characteristic pending moment	N 40	class	8.8	[Nm]	30	60	105	266	519		
with screw	IVI Rk,s	Property	A4	[iam]	26	52	92	232	454		
		class 70	С		26	52	92	232	454		
Partial safety fact	tors ¹⁾										
		Property	5.8				1,25				
Partial safety		class	8.8				1,25				
actor	γMs,V	Property	A4	[-]			1,56				
		class 70	С				1,56				
¹⁾ In absence of	other I	national regi	ulations								

fischer injection system Anchorstar Plus

Performances

Characteristic steel bearing capacity of fischer internal threaded anchors RG MI

Annex C 2

	eneral design fa				ring ca	apacity	/ unde	r tensi	ile / sh	ear loa	ad;	
Size								All size	s			
Bearing capac	ity under tensile lo	ad										
	CEN/TS 1992-4:20		ction 6	.2.2.3								
Uncracked cond	crete	k _{ucr}						10,1				
Cracked concre	ete	k _{cr}	[-]					7,2				
Factors for the	compressive stre	ngth of	f concr	rete > C	20/25							
	C25/30							1,05				
	C30/37							1,10				
Increasing	C35/45							1,15				
factor - for τ _{Bk} -	C40/50	$\Psi_{\rm c}$	[-]					1,19				
IOI t _{Rk}	C45/55							1,22				
	C50/60							1,26				
Splitting failure	9											
	h / h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	2,0 > h / h _{ef} > 1,3	C _{cr,sp}	[4,6	h _{ef} - 1,	8 h			
	h / h _{ef} ≤ 1,3		[mm]					2,26 h _e	f			
Spacing		S _{cr,sp}						2 c _{cr,sp}				
Concrete cone	failure acc. to CEN	N/TS 19	92-4-5	:2009 \$	Section	6.2.3.2	2					
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Spacing		S _{cr,N}	[[[[[[[$2 c_{cr,N}$				
Bearing capac	ity under shear loa	d										
Installation sat	ety factors											
		γ2										
All installation c	onditions	=	[-]					1,2				
-		γinst										
Concrete pry-c			1									
Factor k acc. to Section 5.2.3.3 CEN/TS 1992-4 Section 6.3.3	resp. k ₃ acc. to	k ₍₃₎	[-]					2,0				
Concrete edge	failure											
The value of h _{ef} under shear loa			[mm]				mi	n (h _{ef} ; 8	3d)			
Calculation dia	ameters											
Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
Anchor rods		d		6	8	10	12	16	20	24	27	30
fischer internal threade	d anchors RG MI	d _{nom}	[mm]		12	16	18	22	28			
							1					

fischer injection system Anchorstar Plus

Performances

General design factors relating to the characteristic bearing capacity under tensile / shear load

Annex C 3

Size		M6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pullout and concrete co	ne failure									
Calculation diameter d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked concrete										
Characteristic bond resistance in u	incracked c	oncret	e C20/2	25						
Hammer-drilling with standard drill bit	or hollow dr	<u>rill bit (d</u>	ry and	wet cor	icrete)					
Tem- I: 50 °C / 80 °C	IN 1/100 - 21	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature	r [N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling with standard drill bit	or hollow dr	rill bit (fl	ooded	hole) ¹⁾			,			
Tem- I: 50 °C / 80 °C					9,5	8,5	8,0	7,5	7,0	7,0
perature To an / top an	r [N/mm ²]						,		,	,
range II: 72 °C / 120 °C					7,5	7,0	6,5	6,0	6,0	6,0
Installation safety factors										
Dry and wet concrete $\gamma_2 = \gamma_1$	nst [-]					1,2		4 1)		
Flooded hole							1,	4 ¹⁾		
Cracked concrete	weeked eeu	avata (200/05							
Characteristic bond resistance in o				wat aan	orata)					
Hammer-drilling with standard drill bit Tem- I: 50 °C / 80 °C			ľ –		<u> </u>	0.0				
perature TPK	, [N/mm ²]			6,0	6,0	6,0	5,5			
range II: 72 °C / 120 °C				5,0	5,0	5,0	5,0			
Hammer-drilling with standard drill bit	or hollow dr	<u>ill bit (fl</u>	ooded	hole) ¹⁾						
Tem- I: 50 °C / 80 °C	[N]/ma.ma ² 1				5,0	5,0	4,5			
perature	_r [N/mm ²]				4,0	4,0	4,0			
Installation safety factors										
Dry and wet concrete						1,2				
Flooded hole $\gamma_2 = \gamma_i$	nst [-]					-	1,	4 ¹⁾		
¹⁾ Only with coaxial cartridges: 380	ml. 400 ml	410 ml								
fischer injection system Ancho	orstar Plus									

(uncracked or cracked concrete)

Table C5: Characteristic RG MI in ham						led anchoi	Ϋ́S
Size			M8	M10	M12	M16	M20
Combined pullout and conci	rete cone	failure		-		-	-
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond resistan	ice in un	cracked o	concrete C20)/25			
Hammer-drilling with standard	drill bit or	r hollow di	rill bit (dry and	d wet concret	<u>e)</u>		
Tem- I: 50 °C / 80 °C		[N/mm ²]	10,5	10,0	9,5	9,0	8,5
range II: 72 °C / 120 °C	$- \tau_{Rk,ucr}$		9,0	8,0	8,0	7,5	7,0
Hammer-drilling with standard	drill bit or	r hollow di	rill bit (flooded	<u>d hole)</u> 1)			
Tem- I: 50 °C / 80 °C	_	[N/mm ²]	10,0	9,0	9,0	8,5	8,0
range II: 72 °C / 120 °C	$- \tau_{Rk,ucr}$		7,5	6,5	6,5	6,0	6,0
Installation safety factors							
Dry and wet concrete		[]			1,2		
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,4 ¹⁾		

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

fischer injection system Anchorstar Plus

Performances

Characteristic values for static or quasi-static action under tensile load for fischer internal threaded anchors RG MI and reinforcing bars (uncracked concrete)

Annex C 5

Size		M6	M8	M10	M12	M16	M20	M24	M27	M30
Displace	ment-Factors	for tensil	e load ¹⁾				-	-	-	
Uncrack	ed concrete; T	emperatu	ire range	I, II						
$\delta_{N0 ext{-Faktor}}$	[mm/(N/mm ²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
$\delta_{N^{\infty}-Faktor}$		0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked	concrete; Tem	nperature	range I, I							
$\delta_{N0-Faktor}$	[mm/(N/mm²)]			0,12	0,12	0,13	0,13			
S _{N∞-Faktor}				0,27	0,30	0,30	0,30			
Displace	ment-Factors	for shear	load ²⁾							
Uncrack	ed or cracked	concrete	Tempera	ture rang	e I, II					
$\delta_{V0-Faktor}$	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
Sv∞-Faktor		0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09
¹⁾ Calculation of effective displacement:					²⁾ Calculation of effective displacement:					

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-}\mathsf{Factor}}\,\cdot\,\tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \, \cdot \, V_{\text{Ed}}$

 $(V_{Ed}: Design value of the applied shear force)$

Table C7: Displacements for fischer internal threaded anchors RG MI

Size	M8	M10	M12	M16	M20							
Displacement-Factors for tensile load ¹⁾												
Uncracked concrete; T	emperature rang	e I, II										
[mm/(N/mm ²)]	0,10	0,11	0,12	0,13	0,14							
[IIIII/(IN/IIIII)] N∞-Faktor	0,13	0,14	0,15	0,16	0,18							
Displacement-Factors	for shear load ²⁾											
Uncracked concrete; T	emperature rang	e I, II										
NO-Faktor	0,12	0,12	0,12	0,12	0,12							
δv∞-Faktor [mm/kN]	0,14	0,14	0,14	0,14	0,14							

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-}\mathsf{Factor}}\,\cdot\,\tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

```
<sup>2)</sup> Calculation of effective displacement:
```

$$\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$$

$$\delta_{\mathsf{V}\infty} = \delta_{\mathsf{V}\infty\text{-}\mathsf{Factor}} \cdot \mathsf{V}_{\mathsf{Ed}}$$

(V_{Ed} : Design value of the applied shear force)

fischer injection system Anchorstar Plus

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

Annex C 6