

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0513 of 27 October 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Deutsches Institut für Bautechnik

SPIT VIPER XTREM / SPIT VIPER XTREM TR

Injection system for post-installed rebar connections

SPIT Route de Lyon 26500 BOURG-LÉS-VALENCE FRANKREICH

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of 20 pages including 3 annexes which form an integral part of this assessment

EAD 330087-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0513

Page 2 of 20 | 27 October 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 27 October 2017

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the injection mortar "SPIT VIPER XTREM" or "SPIT VIPER XTREM TR" in accordance with the regulations for reinforced concrete construction.

Ribbed reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm according to Annex A and the injection mortar "SPIT VIPER XTREM" or "SPIT VIPER XTREM TR" are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the post-installed rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C1 – C3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	The post-installed rebar connection satisfies requirements for Class A1
Resistance to fire	See Annex C4

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-00-0601, the applicable European legal act is: [96/582/EC].

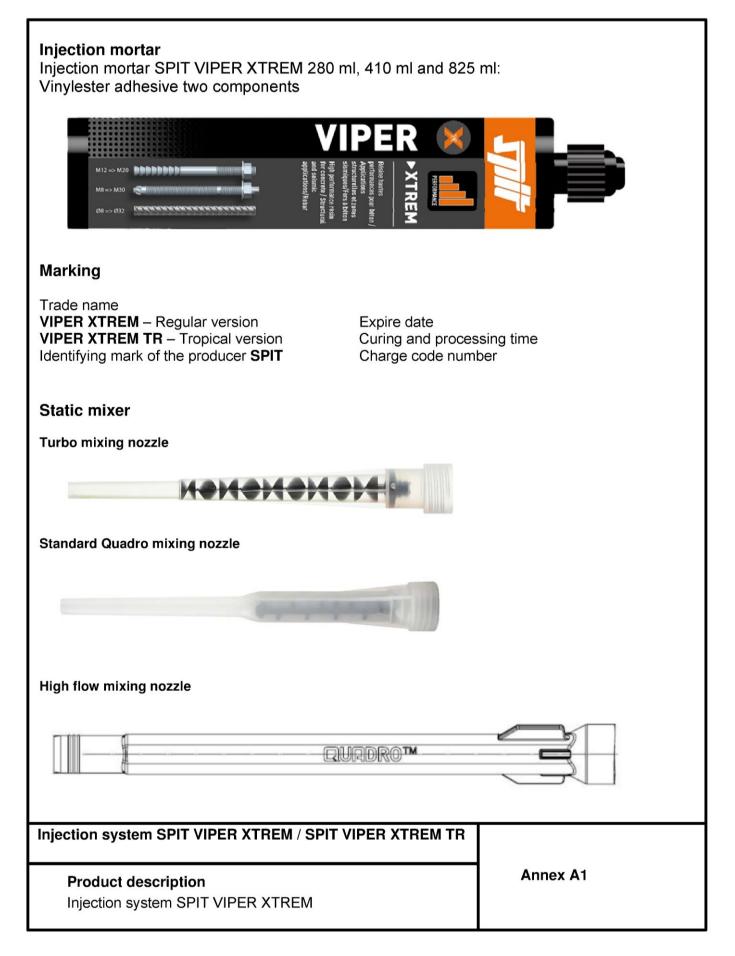
The system(s) to be applied is (are): 1

European Technical Assessment ETA-17/0513

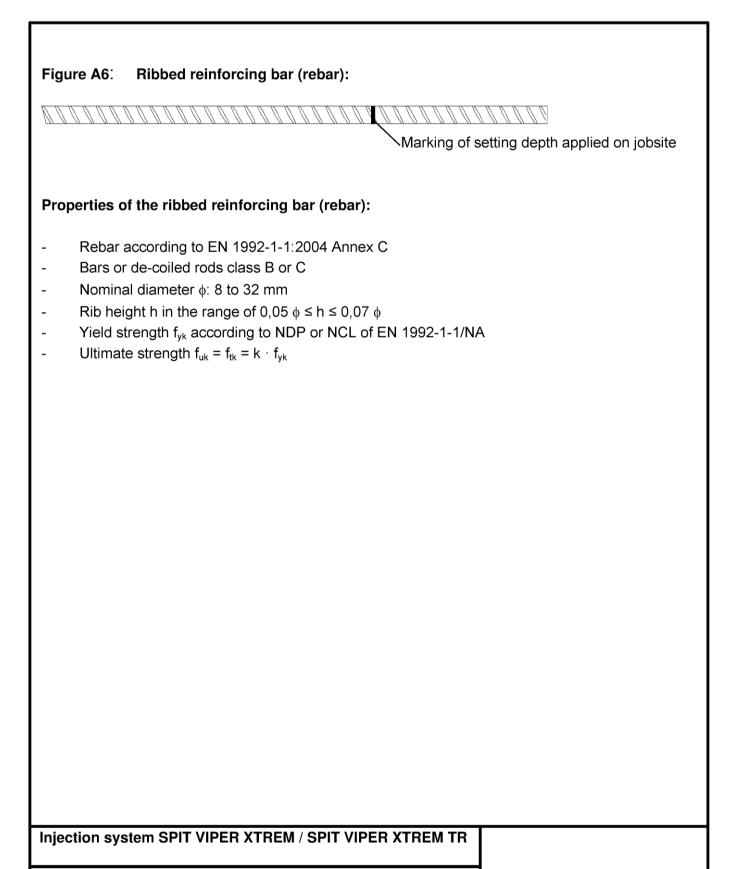
Page 4 of 20 | 27 October 2017

English translation prepared by DIBt

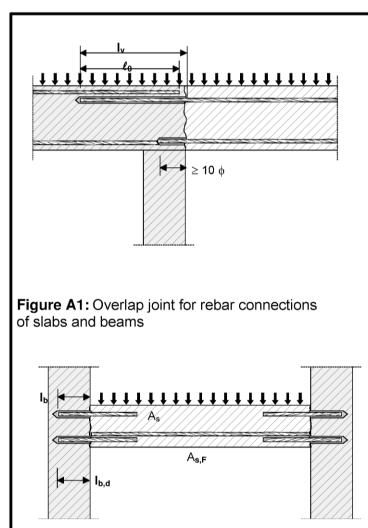
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

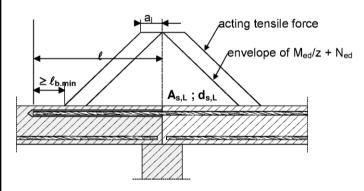
Issued in Berlin on 27 October 2017 by Deutsches Institut für Bautechnik


Dr.-Ing. Lars Eckfeldt p. p. Head of Department

beglaubigt: Lange


Product description Specification rebar Annex A2

electronic copy of the eta by dibt: eta-17/0513


Page 7 of European Technical Assessment ETA-17/0513 of 27 October 2017

English translation prepared by DIBt

Figure A3: End anchoring of slabs or beams, designed as simply supported

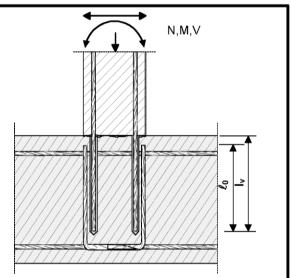
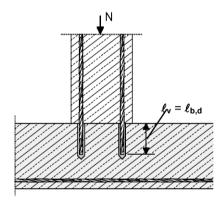


Figure A5: Anchoring of reinforcement to cover the line of acting tensile force


Injection system SPIT VIPER XTREM / SPIT VIPER XTREM TR

Product description Specification rebar

Annex A3

Figure A2: Overlap joint at a foundation of a column or wall where the rebars are stressed in tension

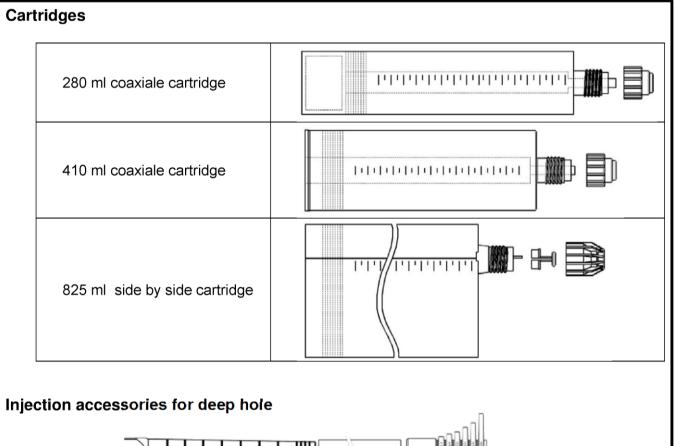


Figure A4: Rebar connection for components stressed primarily in compression. The rebars are stressed in compression

Note to Figure A1 to A5:

- In the Figures no transverse reinforcement is plotted, the transverse reinforcement as required by EN 1992-1-1 shall be present.
- Preparing of joints according to Annex B2

Plastic extension must be use for hole deeper $h_0 > 250$ mm Piston plug for hole deeper must be use for hole deeper $h_0 > 350$ mm

Cartridge volume	Mixing Nozzle	Extension for piston plug	Piston plug
All cartridges	Turbo or Standard Quadro	Ø13x1000	
Cartridge 825 ml	High flow	Ø20x1000	

Injection system SPIT VIPER XTREM / SPIT VIPER XTREM TR

Product description Cartridges Injection accessories for deep hole

Annex A4

Specifications of intended use

Anchorages subject to:

- Static and quasi static loading
- Fire exposure

Base material:

- Reinforced or unreinforced normal weight concrete of strength classes C 20/25 to C50/60 according to EN 206-1:2000
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206-1:2000
- Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004.The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature range:

-40°C to +80°C: max short term temperature +80°C, max long term temperature +50°C

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design under static or quasi-static loading in accordance with EN 1992-1-1 and Annex B2
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- Drilling technique:
 - Hammer drilling technique
 - Hammer drilling with hollow drill bit XTD
 - Compressed air drilling
 - Diamond drilling technique with roughening tool
- Use category:
 - dry or wet concrete (not in flooded holes) for Hammer drilling technique, compressed air drilling and diamond drilling technique with roughening tool
 - Only dry concrete for hammer drilling with hollow drill bit XTD
 - Installation direction downwards, horizontal and overhead
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

njection system SPIT VIPER XTREM / SPIT VIPER XTREM TR
--

Intended Use

Specifications

Figure B1: Construction rules for post-installed rebars

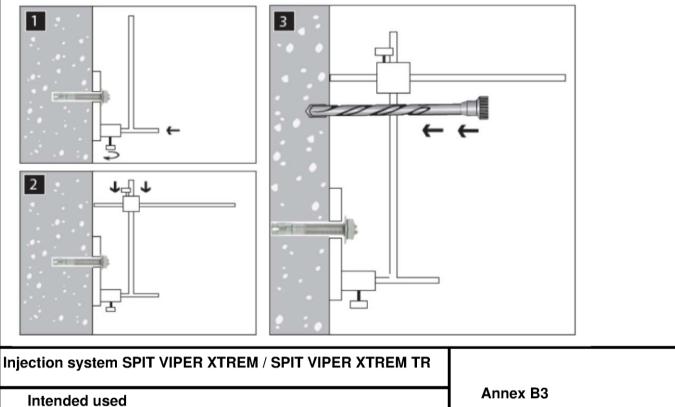
- Post-installed rebar may be designed for tension forces only.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

	$c \geq c_{\min}$
Martin and	- INANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
≥ 5 · φ ≥ 50 mm	$8 \text{ mm} \leq \phi \leq 32$
	{\/////////////////////////////////////
ΛΛΛΛΛΛΛΛΛ	
	l0 C1

- *) If the clear distance between lapped bars exceeds $4.\phi$, then the lap length shall be increased by the difference between the clear bar distance and $4.\phi$
- c: concrete cover of post-installed rebar
- c1: concrete cover at end-face of existing rebar
- cmin: minimum concrete cover according to Table B1 and to EN 1992-1-1:2004 AC:2010, Section 4.4.1.2
- I₀: lap length, according to EN 1992-1-1:2004/AC:2010, Section 8.7.3
- I_v : effective embedment depth $\ge I_0 + c_1$
- d₀ nominal drill bit diameter, see Annex B3
- Minimum spacing between two post-installed bars a = 50 mm $\geq 5\varphi$

njection system	SPIT VIPER	XTREM / SPIT	VIPER XTREM T	R
-----------------	------------	--------------	---------------	---

Intended used


General construction rules for post-installed rebars

Drilling method	Bar diameter $\boldsymbol{\phi}$	Without drilling aid	With drilling aid	
Hommor drilling	< 25 mm	$30 \ \textbf{+} \ 0,06 \ \textbf{I}_{v} \geq 2 \varphi$	$30 + 0,02 I_v \ge 2\phi$	
Hammer drilling	≥ 25 mm	$40 + 0,06 \ I_v \geq 2\varphi$	$40 + 0,02 \text{ I}_v \ge 2\varphi$	
Hammer drilling with hollow drill	< 25 mm	$30 \textbf{ + 0,06 } \textbf{ I_v} \geq 2 \varphi$	$30 \ \textbf{+} \ 0,02 \ \textbf{I}_{v} \geq 2\varphi$	
bit XTD	≥ 25 mm	$40 \ \textbf{+} \ 0,06 \ \textbf{I}_{v} \geq 2\varphi$	$40 \ \textbf{+} \ 0,02 \ \textbf{I}_{v} \geq 2 \varphi$	
Compressed air	< 25 mm	50 + 0,08 l _v $\ge 2\phi$	50 + 0,02 $I_v \ge 2\varphi$	
drilling	≥ 25 mm	$60 \textbf{ + 0,08 } I_v \! \geq \! 2\varphi$	$60 \ \textbf{+} \ 0,02 \ \textbf{I}_v \geq 2\varphi$	
Diamond core	< 25 mm	Drill stand is used	$30 \ \textbf{+} \ 0,02 \ \textbf{I}_v \geq 2 \varphi$	
drilling	≥ 25 mm	as drilling aid	$40 + 0,02 \ I_v \geq 2\varphi$	

Table B1: Minimum concrete cover c_{min} of post-installed rebar

Figure B2: Drilling aid system

Minimum concrete cover cmin

electronic copy of the eta by dibt: eta-17/0513

Rebar diameter ϕ	Maximum embedment length l _{v,max} [mm]					
	Manuel Dispenser	Pneumatic	Dispenser			
[mm]	280 ml					
	410 ml	410 ml	825 ml			
	825 ml					
8						
10		600	900			
12						
16	500					
20	500	000	300			
25						
28						
32						

Table B2: Maximum embedment depth I_{v,max} depending on bar diameter and dispenser

Table B3: Installation parameters

Rebar diameter ϕ	Nominal drilling diameter d _{cut} [mm]					
[mm]	Hammer drilling	Hammer drilling with hollow drill bit XTD ¹⁾	Diamond core	Diamond core and roughening drill bit		
8	10	-	-	-		
10	12	-	-	-		
12	15	16	16	-		
16	20	20	-	20		
20	25	25	-	25		
25	30	30	_	30		
28	35	-	-	35		
32	40	-	-	40		

¹⁾ Maximum working length: 600 mm

Injection system SPIT VIPER XTREM / SPIT VIPER XTREM TR

Intended used

Maximum embedment depth Iv_{max} Installation parameters

40

English translation prepared by DIBt

le B4: Parameters for use of Roughening tool						
Diamond coring	Roughtening tool ¹⁾					
d _{cut} [mm]	d _{cut} [mm]					
20	20					
25	25					
30	30					
35	35					

¹⁾ For checking the wear of roughening drill bit, a wear gauge is delivered with each roughtening tool

Table B5: Dimensions of the cleaning tools for reinforcing bars (rebars)

40

		Nominal diameter of the reinforcing bars (rebars)							
Dimensions	ф8	φ 10	φ 12	φ 14	φ 16	φ 20	φ 25	 ¢28	¢ 32
Ø Brush [mm] ¹⁾	11	13	16	20	22	26	32	37	42
Ø Plastic extension for compress air	6	9	9	13	13	13	13/20	13/20	13/20

¹⁾ The diameter of the round steel brush shall be checked before use. The minimum brush diameter has to be at least equal to the borehole diameter d₀. The round steel brush shall produce natural resistance as it enters the drill hole. If this is not the case, please use a new brush or a brush with a larger diameter.

Injection system SPIT VIPER XTREM / SPIT VIPER XTREM TR

Intended used

Parameters for using of roughening drill bit Dimensions of cleaning tools

Table B6: Gel time and curing time for Regular Version

Temperature of base material	Working time	Curing time
-10°C to -5°C	90 min	24 h
-4°C to 0°C	50 min	240 min
1°C to 5°C	25 min	120 min
6°C to 10°C	15 min	90 min
11°C to 20°C	7 min	60 min
21°C to 30°C	4 min	45 min
31°C to 40°C	2 min	30 min

Table B7: Gel time and curing time for Tropical Version:

Temperature of base material	Working time	Curing time
+ 5°C	60 min	240 min
6°C to 10°C	40 min	180 min
11°C to 20°C	15 min	120 min
21°C to 30°C	8 min	60 min
31°C to 40°C	4 min	60 min

Injection system SPIT VIPER XTREM / SPIT VIPER XTREM TR

Product description

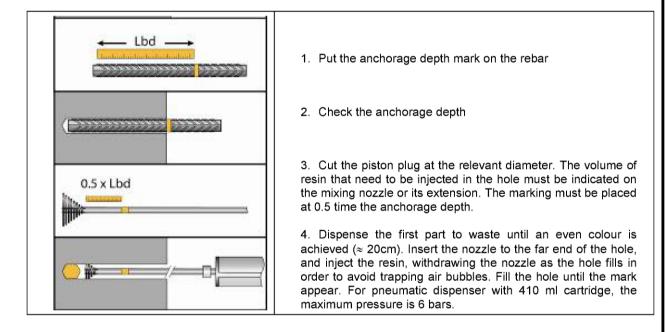
Minimum curing time and maximum working time

rilling the hole:	
	Rotary hammer drilling or compressed air drilling
	Electrical hammer drilling with XTD hollow drill bit used in relation with the SPIT AC 1625 vacuum or the type. This drilling technique allows for cleaning the hole from the dust debris while operating drilling. No further cleaning is then required before injecting resin.
£ 🍋	Diamond core drilling The roughening tool must be used for core diameter higher thar 20 mm.
leaning the hole:	
	Hammer drilling technique
	 Using compress air cleaning (min 6 bars), use the appropriate extension, starting from the top of the hole blow out at least 2 times by moving downward to the bottom of the hole then moving upward to the top of the hole and until no dust is evacuated. (not less than 10s per each blowing). Using the relevant brush and extension fitted on a Spit drilling machine, starting from the top of the hole, move downward to the bottom of the hole then move upward to the top of the hole. Repear this operation. Using compress air cleaning (min 6 bars), use the appropriate extension, starting from the top of the hole blow out at least 2 times by moving downward to the bottom of the hole and until no dust is evacuated. (not less than 10s per each blowing).
	Hammer drilling technique
	ollow drill bit used in relation with the SPIT AC 1625 vacuum or the type aning the hole from the dust debris while operating drilling. No furthe ting resin.
Di	amond core drilling technique
	 For core diameter higher than 20 mm, remove water in the hole and use the roughening drill bit before applying cleaning procedure Clean the hole with tap water. Using the relevant brush and extension fitted on a Spit drilling machine, starting from the top of the hole, move downward to the bottom of the hole then move upward to the top of the hole. Repeat this operation. Clean the hole with tap water Using compress air cleaning (mini 6 bars), use the appropriate extension, starting from the top of the hole blow out at least 2 times by moving downward to the bottom of the hole then moving upward to the top of the hole and until no dust is evacuated. (not less than 10s per each blowing).

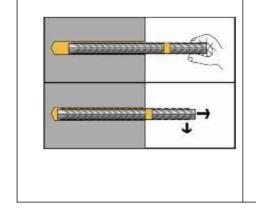
Injection system SPIT VIPER XTREM / SPIT VIPER XTREM TR

Product description

Installation instruction



Safety precaution:


The safety data sheet must be read before using the product and the safety instructions followed.

- Storage temperature of cartridge +0°C à +35°C
- Cartridge temperature at time of installation: Must be ≥ +5°C
- Base material temperature at time of installation: Must be between -10°C and +40°C
- Check the date of expiry of the cartridge

Dispensing into the hole:

Inserting the rebar:

1. Immediately insert the rebar, slowly and with a slight twisting motion. Remove excess resin from around the mouth of the hole before it sets. Control the embedment depth during the working time (See Annex B6 Table B6 or B7) which varies according to temperature of base material.

2. Leave the rebar undisturbed until the curing time has elapse. (See Annex B6 Table B6 or B7).

Injection system SPIT VIPER XTREM / SPIT VIPER XTREM TR

Product description

Installation instruction

Table C1: Amplification factor α_{lb} for Hammer drilling and compressed air drilling

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1 shall be multiplied by the relevant amplification factor α_{lb} given in Table C1.

Bar		_		Concret	e streng	th class			_
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ8				1	,0				1,1
φ10				1,0				1,1	1,2
φ12				1,0				1,1	1,2
φ14		1,0		1,1	1,1	1,1	1,1	1,1	1,2
φ16	1	,0	1,1	1,1	1,1	1,1	1,1	1,2	1,3
φ20	1,0	1,1	1,2	1,2	1,2	1,2	1,2	1,3	1,3
φ 2 5	1,1	1,1	1,3	1,3	1,3	1,3	1,3	1,4	1,4
φ28	1,1	1,2	1,3	1,4	1,4	1,4	1,4	1,4	1,4
φ 3 2	1,1	1,2	1,4	1,5	1,5	1,5	1,5	1,5	1,5

Table C2: Bond efficiency value k_b for Hammer drilling and compressed air drilling

Bar	Concrete strength class								
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
ф8- ф32	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0

Table C3: Design values of the ultimate bond stress f_{bd}^{1} in N/mm² for Hammer drilling and compressed air drilling

Bar		Concrete strength class									
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
ф8- ф32	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		

¹⁾ According to EN 1992-1-1 for good bond conditions. For all other bond conditions multiply the values by 0,7.

Injection system SPIT VIPER XTREM / SPIT VIPER XTREM TR

Performance

Minimum anchorage length and minimum lap length, Bond efficiency value $k_{\rm b}$ and Design values of ultimate bond resistance $f_{\rm bd}$

Table C4: Amplification factor α_{lb} for Hammer drilling with XTD hollow drill bit

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1 shall be multiplied by the relevant amplification factor α_{lb} given in Table C1.

Bar				Concret	e streng	th class			
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ12-φ25					1,5				

Table C5: Bond efficiency value k_b for Hammer drilling with XTD hollow drill bit

	Bar				Concret	e streng	th class			
dia	meter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ 1	2- 425					1,0				

Table C6: Design values of the ultimate bond stress $f_{bd}^{1)}$ in N/mm² for Hammer drilling with XTD hollow drill bit

Bar		Concrete strength class									
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ12-φ25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		

¹⁾ According to EN 1992-1-1 for good bond conditions. For all other bond conditions multiply the values by 0,7.

Performance

Minimum anchorage length and minimum lap length Bond efficiency value $k_{\rm b}$ and Design values of ultimate bond resistance $f_{\rm bd}$

Table C7: Amplification factor α_{lb} for Diamond drilling

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1 shall be multiplied by the relevant amplification factor α_{lb} given in Table C1.

Bar		Concrete strength class										
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
φ12												
φ14								1,1	1,2			
φ16								1,1				
φ20				1,0					1,1			
φ25									·, ·			
φ28								1,0	1,0			
φ32									1,0			

Table C7: Bond efficiency value k_b for Diamond drilling

Bar				Concret	e streng	th class					
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ12-φ20		1,0									
φ25				1,	,0				0,9		
φ28		1,0 0,9									
φ32		1,0 0,9 0,8									

Table C8: Design values of the ultimate bond stress f_{bd}^{1} in N/mm² for Diamond drilling

Bar				Concret	e streng	th class			
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ12-φ20					20 24			4,0	4,3
φ25	16	2,0	2,3	2,7		24	3,7		4,0
φ28	1,6	2,0			3,0	3,4		3,7	4,0
φ32							3,4	3,4	3,7

¹⁾ According to EN 1992-1-1 for good bond conditions. For all other bond conditions multiply the values by 0,7.

Injection system SPIT VIPER XTREM / SPIT VIPER XTREM TR

Performance

Minimum anchorage length and minimum lap length Bond efficiency value $k_{\rm b}$ and Design values of ultimate bond resistance $f_{\rm bd}$

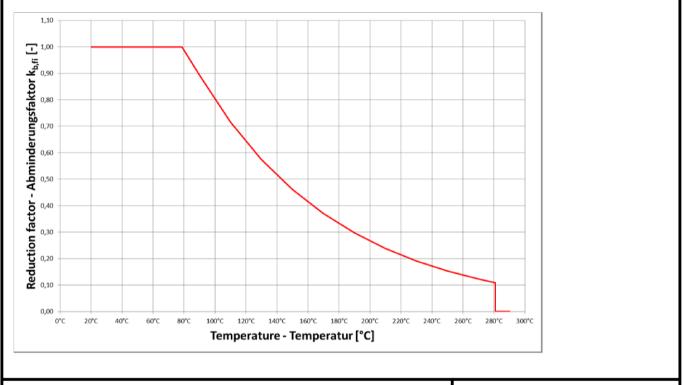
Design value of ultimate bond stress in case of fire $f_{b,\rm fi}$ [N/mm²] for concrete strength classes C12/15 to C50/60

The design value of bond strength under fire exposure $f_{b,fi}$ shall be calculated by the following equation:

 $\mathbf{f}_{\mathbf{bd},\mathbf{fi}} = \mathbf{k}_{\mathbf{b},\mathbf{fi}}(\boldsymbol{\theta}) \bullet \mathbf{f}_{\mathbf{bd}} \bullet \gamma_{\mathbf{c}} / \gamma_{\mathsf{M},\mathbf{fi}}$

where

 $\begin{array}{ll} \theta < 281 \ ^{\circ}\text{C}: & k_{b, fi} \ (\theta) = \min \left\{ 1, 0; \ 23, 755 \ e^{-0.011 \ \bullet \ \theta} \ / (f_{bd} \ \bullet \ 4, 3) \right\} \\ \theta > 281 \ ^{\circ}\text{C}: & k_{b, fi} = 0 \end{array}$


f_{bd,fi} Design value of ultimate bond stress in case of fire

- k_{b,fi} (θ) Reduction factor according to Figure C1
- Design values of the ultimate bond stress in cold state according to Annexes C1 to C3 depending on concrete strength class, size of rebar, drilling method and bond condition according to EN 1992-1-1
- γ_c safety factor according to EN 1992-1-1

 $\gamma_{M,fi}$ safety factor according to EN 1992-1-2

For evidence under fire exposure the anchorage length shall be calculated according to EN 1992-1-1, Equation 8.3 using the temperature-dependent bond strength $f_{bd,fi}$.

Example curve for the reduction factor k_{b,fi} for concrete strength class C20/25, good bond conditions

Injection system SPIT VIPER XTREM / SPIT VIPER XTREM TR

Performance

Bond strength in case of fire for concrete C20/25 to C50/60