

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0626 of 8 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

STAVMAT Injection system St line Vinylester for masonry

Injection system for use in masonry

STAVMAT STAVEBNINY a.s. Na Hlavní 18 182 00 PRAHA 8 - BREZINEVES TSCHECHISCHE REPUBLIK

Herstellwerk 1

26 pages including 3 annexes which form an integral part of this assessment

ETAG 029, April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0626

Page 2 of 26 | 8 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 26 | 8 December 2017

Specific Part

1 Technical description of the product

The STAVMAT Injection system St line Vinylester for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar St line Vinylester, St line Vinylester Low Speed and St line Vinylester High Speed, a perforated sieve sleeve and an anchor rod with hexagon nut and washer or an internal threaded rod. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1 – C 4
Characteristic resistance for bending moments	See Annex C 5
Displacements under shear and tension loads	See Annex C 5
Reduction Factor for job site tests (β -Factor)	See Annex C 6
Edge distances and spacing	See Annex C 7 – C8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

European Technical Assessment ETA-17/0626

Page 4 of 26 | 8 December 2017

English translation prepared by DIBt

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 029, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

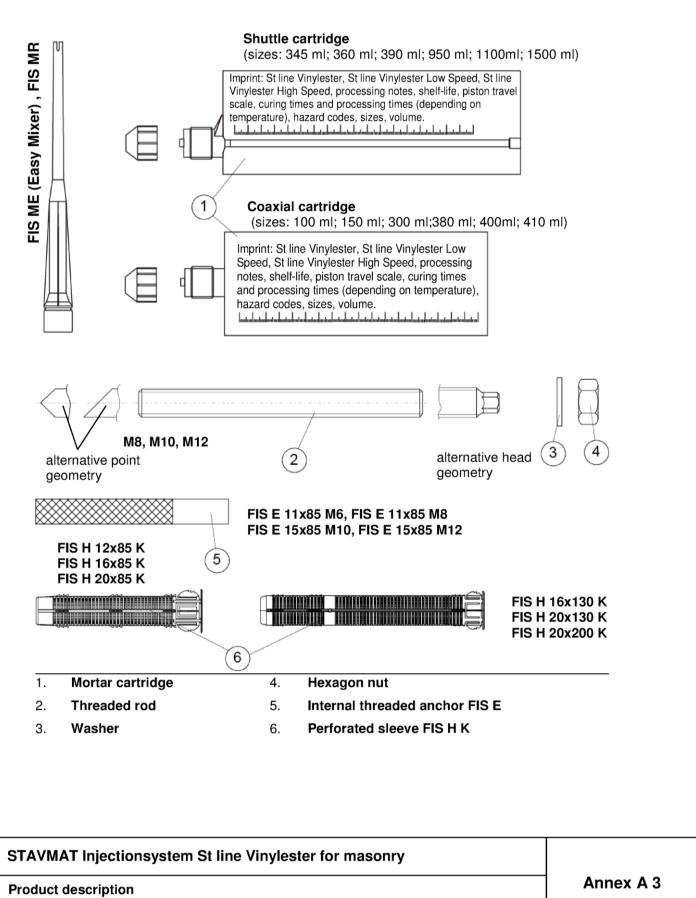
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 8 December 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

Installation conditions part 1 Threaded rods with perforated sleeve FIS H K; Installation in perforated and solid brick masonry **Pre-positioned installation** FIS H 12x85 K FIS H 16x85 K d₀ , T_{inst,max} FIS H 16x130 K FIS H 20x85 K FIS H 20x130 K FIS H 20x200 K h h h Internal threaded anchors FIS E with perforated sleeve FIS H K; Installation in perforated and solid brick masonry **Pre-positioned installation** FIS H 16x85 K - FIS E 11x85 M6 and M8 d₀↓ FIS H 20x85 K - FIS E 15x85 M10 and M12 inst,max t_{fix} h h_o h effective anchorage depth nominal drill bit diameter h_{ef} = $d_0 =$ $h_0 =$ depth of drill hole diameter of clearance hole in the fixture $d_{f} =$ thickness of fixture t_{fix} = T_{inst.max} = maximum torque moment thickness of masonry h =STAVMAT Injectionsystem St line Vinylester for masonry Annex A 1 **Product description** Installation condition, part 1: in perforated and solid brick masonry



Installation conditions part 2 Threaded rods without perforated sleeve FIS H K; Installation in solid brick masonry and autoclaved aerated concrete **Push through installation** Pre-positioned installation d, d₀‡ inst.ma Annular gap filled with mortar h =h h Internal threaded anchors FIS E without perforated sleeve FIS H K; Installation in solid brick masonry and autoclaved aerated concrete **Pre-positioned installation** d_0 inst,max FIS E 11x85 M6 FIS E 11x85 M8 FIS E 15x85 M10 $\mathbf{h}_0 = \mathbf{h}_{\text{sf}}$ fis FIS E 15x85 M12 h $h_{ef} = effective anchorage depth$ d₀= nominal drill bit diameter $h_0 =$ depth of drill hole d_f= diameter of clearance hole in the fixture T_{inst,max} = maximum torque moment t_{fix} = thickness of fixture h = thickness of masonry STAVMAT Injectionsystem St line Vinylester for masonry Annex A 2 **Product description** Installation condition, part 2: in solid brick masonry and autoclaved aerated concrete

Page 7 of European Technical Assessment ETA-17/0626 of 8 December 2017

English translation prepared by DIBt

Table A1: Materials

Part	Designation		Material	
1	Mortar cartridge	r	nortar, hardener; filler	
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C
2	Threaded rod	Property class 5.8 or 8.8; ISO 898-1:2013 zinc plated \geq 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5µm, ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 o 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	Internal threaded anchor FIS E	Property class 5.8; EN 10277-1:2008-06 zinc plated ≥ 5µm, EN ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
	Screw or threaded rod for internal threaded anchor FIS E	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Perforated sleeve FIS H K		PP / PE	

STAVMAT Injectionsystem St line Vinylester for masonry

Product description Materials

Annex A 4

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Solid brick masonry (Use category b) and autoclaved aerated concrete (Use category d), acc. to Annex B8.
 Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength of the masonry unit.
- · Hollow brick masonry (use category c), according to Annex B8
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010
- For other bricks in solid masonry, hollow or perforated masonry and autoclaved aerated concrete, the characteristic resistance of the anchor may be determined by job site tests according to ETAG 029, Annex B under consideration of the β-factor according to Annex C6, Table C4

Temperature Range:

• I: From - 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar)
- Structures subject to dry internal conditions exist
 (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

STAVMAT Injectionsystem St line Vinylester for masonry

Intended Use

Specifications

Specifications of intended use

Design:

 The anchorages have to be designed in accordance with the ETAG 029, Annex C, Design method A under the responsibility of an engineer experienced in anchorages and masonry work
 Applies to all bricks, if no other values are specified:

 $N_{Rk} = N_{Rk,s} = N_{Rk,p} = N_{Rk,b} = N_{Rk,pb}$

 $V_{\mathsf{Rk}} = V_{\mathsf{Rk},\mathsf{s}} = V_{\mathsf{Rk},\mathsf{b}} \, = \, V_{\mathsf{Rk},\mathsf{c}} \, = \, V_{\mathsf{Rk},\mathsf{pb}}$

 Verifiable calculation notes and drawings have to be prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings

Installation:

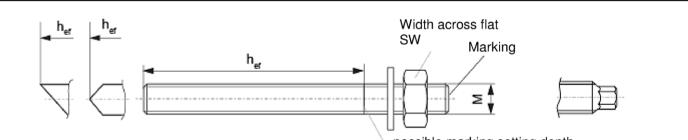
- Category d/d: -Installation and use in dry structures
- Category w/w: -Installation and use in dry and wet structures
- Hole drilling by hammer drill mode
- · In case of aborted hole: The hole shall be filled with mortar
- Bridging of unbearing layer (e.g. plaster) see Annex B 4 (Table B1.3)
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or threaded rods (including nut and washer) must comply with the appropriate material and property class of the fischer internal threaded anchor FIS E
- minimum curing time see Annex B5. Table B3
- Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

Material dimensions and mechanical properties of the metal parts according to the specifications are given in Annex A4, Table A1

Conformation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored

Marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod or by a person on job site

STAVMAT Injectionsystem St line Vinylester for masonry

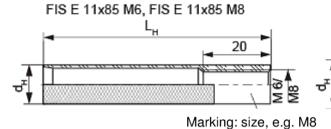

Intended Use

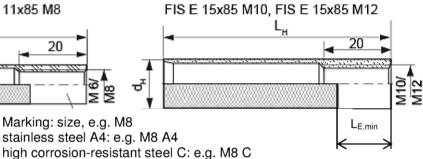
Specifications

Page 11 of European Technical Assessment ETA-17/0626 of 8 December 2017

English translation prepared by DIBt

Marking:


possible marking setting depth


Property class (p.c.) 8.8, Stainless steel A4, p.c. 80 or high corrosion-resistant steel C, p.c. 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel C, property class 50: ••

able B1.1: Installation	on parameters for thread	ed rod w	vithout	perfo	rated sl	eeve	
Size				M8	M10	M12	
Nominal drill hole diame	$d_{nom} = d_0$	[mm]	10	12	14		
Width across flat		SW	[mm]	13	17	19	
Effective anchorage dep	oth ¹⁾	h _{ef,min}	[mm]		50		
Depth of drill hole $h_0 = h$	ef	h _{ef,max}	[mm]	h-30 and ≤ 200 mm			
Effective anchorage dep		h _{ef,min}	mm]	100			
Ellective anchorage dep	JIII AAO	h _{ef,max}	[mm]	120			
Maximum torque mome	nt	T _{inst,max}	[Nm]		10		
Max. torque moment for autoclaved aerated concrete		T _{inst,max}	[Nm]	1		2	
Diameter of clearance	Pre-position anchorage	d _f ≤	[mm]	9	12	14	
hole in the fixture	Push through anchorage	d _f ≤	[mm]	11	14	16	

¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible.

fischer internal threaded anchor FIS E

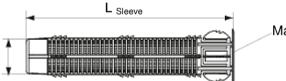
Table B1.2: Installation parameters for internal threaded anchor FIS E without perforated sleeve

Size FIS E			11x85 M6	11x85 M8	15x85 M10	15x85 M12
diameter of internal threaded anchor	d _H	[mm]	1	1	1	5
Nominal drill hole diameter	$d_{nom} = d_0$	[mm]	14		1	8
Depth of drill hole	ho	[mm]			85	
Effective anchorage depth	$L_{H}=h_{ef}$	[mm]			85	
Maximum torque moment	T _{inst, max}	[Nm]	4		10	
Max. torque moment for autoclaved aerated concrete	T _{inst, max}	[Nm]	1		2	2
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14
Screw-in depth	$L_{E,min}$	[mm]	6	8	10	12

STAVMAT Injectionsystem St line Vinylester for masonry

Intended Use

Installation parameters, part 1


Perforated sleeves FIS H 12x85; 16x85; 16x130; 20x85; 20x130; 20x200 K

Sleeve

Δ

Marking:size $D_{Sleeve} \times L_{Sleeve}$ e.g. 16x85

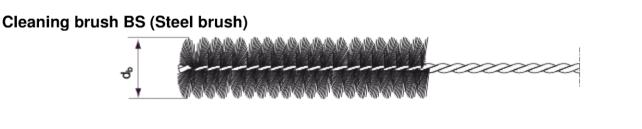
Marking

Table B1.3: Installation parameters (threaded rod and internal threaded anchor with perforated sleeve; only pre-positioned anchorage)

Size FIS HK			12x85	16x85	16x130 ²⁾	20x85	20x130 ²⁾	20x200 ²⁾
Nominal drill hole diameter $(d_0 = D_{Sleeve})$	$d_{nom} = d_0$	[mm]	12		16		20	
Depth of drill hole	h ₀	[mm]	90	90	135	90	135	205
Effective anchorage	h _{ef,min}	[mm]	85	85	110	85	110	180
depth ¹⁾	h _{ef,max}	[mm]	85	85	130	85	130	200
Size of threaded rod		[-]	M8	M8	, M10		M12	
Size of internal threaded anchor		[-]		11x85		15x85		
Maximum torque moment threaded rod and internal threaded anchor	T _{inst,max}	[mm]		-		2		-

 $^{1)}$ h_{ef,min} \leq h_{ef} \leq h_{ef,max} is possible. $^{2)}$ Bridging of unbearing layer (e.g. plaster) possible

STAVMAT Injectionsystem St line Vinylester for masonry


Intended Use

Annex B 4

Installation parameters, part 2

electronic copy of the eta by dibt: eta-17/0626

Only for solid bricks and autoclaved aerated concrete

Table B2: Parameters of steel brush

Drill hole diameter	d ₀	[mm]	10	12	14	16	18	20
Brush diameter	d _{b,nom}	[mm]	11	14	16	20	20	25

Maximum processing time of the mortar and minimum curing time Table B3:

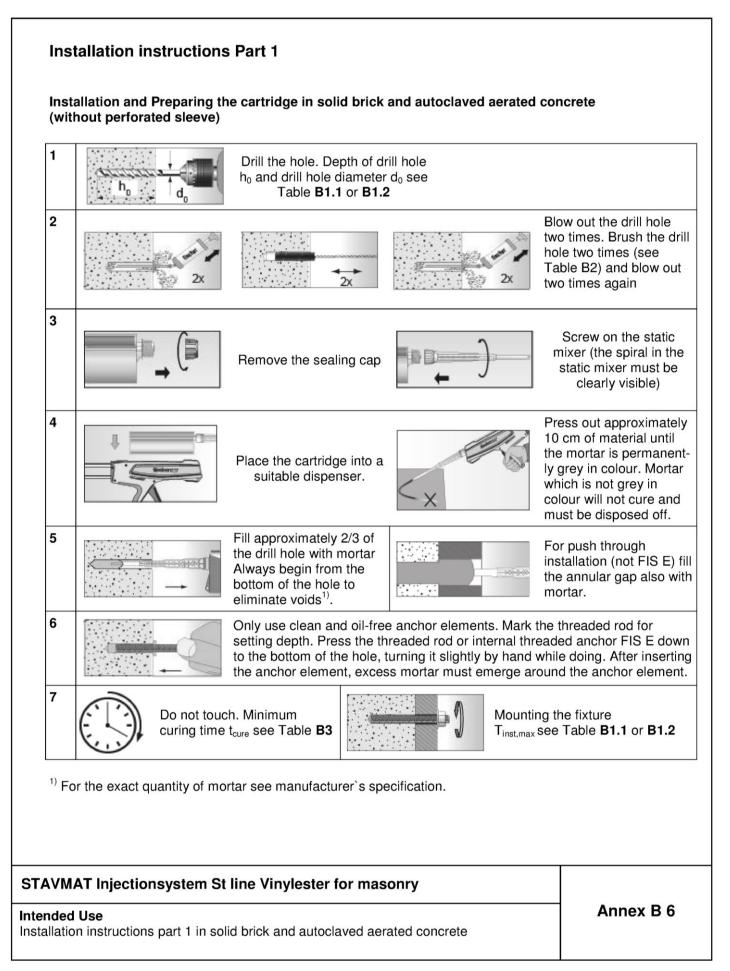
(During the curing time of the mortar the masonry temperature may not fall below the listed minimum temperature).

T			Minim	um curing tin [minutes]	ne ¹⁾ t _{cure}		System-	Maximum processing time t _{work} [minutes]			
anch		ire at base	St line Vinylester High Speed ³⁾	St line Vinylester ²⁾	St line Vinylester Low Speed ²⁾		temperature (mortar) [°C]	St line Vinylester High Speed	St line Vinylester ²⁾	St line Vinylester Low Speed ²⁾	
-10	to	-5	12 hours			1					
>-5	to	±0	3 hours	24 hours		1	±0	5			
>±0	to	+5	90	3 hours	6 hours	1	+5	5	13	20	
>+5	to	+10	45	90	3 hours		+10	3	9	20	
>+10	to	+20	30	60	2 hours		+20	1	5	10	
>+20	to	+30		45	60]	+30		4	6	
>+30	to	+40		35	30]	+40		2	4	

¹⁾ For wet bricks the curing time must be doubled ²⁾ Minimum cartridge temperature +5°C

³⁾ Minimum cartridge temperature ±0°C

STAVMAT Injectionsystem St line Vinylester for masonry


Intended Use

Steel brush Processing times and curing times

Page 14 of European Technical Assessment ETA-17/0626 of 8 December 2017

English translation prepared by DIBt

Installation instructions Part 2 Installation in perforated or solid brick with perforated sleeve (pre-positioned anchorage) Drill the hole (hammer drill). When install perforated sleeves in solid Depth of drill hole ho and drill bricks or solid areas of hollow bricks, also hole diameter d₀ see Table clean the hole by blowing out and B1.3 brushing 2 Screw on the static mixer Remove the sealing (the spiral in the static mixer must be clearly cap visible) 3 Press out approximately 10 cm of material until the Place the cartridge mortar is permanently grey into a suitable in colour. Mortar which is not grey in colour will not dispenser cure and must be disposed off Fill the perforated sleeve 4 Insert the perforated sleeve completely with mortar beginning from the bottom flush with the of the hole¹⁾. surface of the masonry or plaster 5 Only use clean and oil-free anchor elements. Mark the threaded rod for setting depth. Insert the threaded rod or the internal threaded anchor FIS E by hand using light turning motions until reaching the setting depth marking (threaded rod) or flush with the surface (internal threaded anchor). 6 Do not touch. Minimum curing Mounting the fixture. time t_{cure} see Table **B3** T_{inst.max} see Table B1.3

¹⁾ For the exact quantity of mortar see manufacturer`s specification.

STAVMAT Injectionsystem St line Vinylester for masonry

Intended Use Installation instructions part 2 in hollow brick masonry

Table B 4: Sum	nmary of brick	s and block	S		
Brick No. 1 Solid brick Mz according to EN 771-2 $\rho \ge 1.8 [kg/dm^3]$ fb ≥ 10 or 20 [N/mm ²]	LIS A		Brick No. 6 Perforated brick HLz according to EN 771-1 $\rho \ge 1,4 [kg/dm^3]$ fb $\ge 20 [N/mm^2]$		
Brick No. 2 Solid sand-lime brick according to EN 771-2 $\rho \ge 1,8 [kg/dm^3]$ fb ≥ 10 or 20 [N/mm ²]			Brick No. 7 Perforated brick HLz according to EN 771-1 $\rho \ge 1,0 [kg/dm^3]$ fb $\ge 10 [N/mm^2]$	and the second s	
Brick No. 3 Solid sand-lime brick according to EN 771-2 $\rho \ge 1,8 [kg/dm^3]$ fb ≥ 10 or 20 [N/mm ²]	KEEF		Brick No. 8 Perforated brick HLz filled with mineral wool according to EN 771-1 $\rho \ge 0,6 [kg/dm^3]$ fb $\ge 8 [N/mm^2]$	and the second s	\$7 \$7 \$10 132 55
Brick No. 4 Sand-lime hollow brick according to EN 771-2 $\rho \ge 1,4 [kg/dm^3]$ fb ≥ 12 or 20 [N/mm ²]	EFF		Brick-No. 9 Light-weight con- crete hollow block Hbl according to EN 771-1 $\rho \ge 1,0 [kg/dm^3]$ fb $\ge 4 [N/mm^2]$	R R R R R R R R R R R R R R R R R R R	
Brick No. 5 Perforated brick HLz according to EN 771-1 $\rho \ge 0.9 [kg/dm^3]$ fb $\ge 10 [N/mm^2]$	FE CHI	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ $	Brick No. 10 Autoclaved aerated concrete block $\rho \ge 0.35, 0.5 \text{ or}$ $0.65 [kg/dm^3]$ fb $\ge 2, 4 \text{ or } 6$ [N/mm ²]		

Imaging of the bricks are not scaled

STAVMAT Injectionsystem St line Vinylester for masonry

Intended Use

Types and dimensions of blocks and bricks

Kind of masonry	Brick	Valid anchor rods, internal thr perforated sleeves	eaded rods and
Brick No. 1 Solid brick Mz according to EN 771-2 $\rho \ge 1,8 [kg/dm^3]$ fb ≥ 10 or 20 [N/mm ²]	R R R R R R R R R R R R R R R R R R R		M8; M10; M12 FIS E 11x85
Brick No. 2 Solid sand-lime brick according to EN 771-2 $\rho \ge 1.8 [kg/dm^3]$ fb ≥ 10 or 20 [N/mm ²]	K HS		M8; M10; M12 FIS E 11x85
Brick No. 3 Solid sand-lime brick according to EN 771-2 $\rho \ge 1.8 [kg/dm^3]$ fb ≥ 10 or 20 [N/mm ²]	EIT +		FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K
Brick No. 4 Sand-lime hollow brick according to EN 771-2 $\rho \ge 1,4 [kg/dm^3]$ fb ≥ 12 or 20 [N/mm ²]	EH-		FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K
Brick No. 5 Perforated brick HLz according to EN 771-1 $\rho \ge 0.9 [kg/dm^3]$ $fb \ge 10 [N/mm^2]$	TIS A		FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K
Brick No. 6 Perforated brick HLz according to EN 771-1 $\rho \ge 1,4 [kg/dm^3]$ $fb \ge 20 [N/mm^2]$			FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K
¹⁾ Other combinatio ²⁾ Sleeve/anchor ro	ons can be used aft d combination see	ter job site tests acc. to ETAG 029 table B1.3	, Annex B.
The β- factor for this Imaging of the brick		given in Table C4	

Intended Use

Allocation of anchor rods, perforated sleeves and bricks, part 1

Annex B 9

electronic copy of the eta by dibt: eta-17/0626

Kind of masonry	Brick	Valid anchor rods internal th perforated sleeves	readed rods and
Brick No. 7 Perforated brick HLz according to EN 771-1 $\rho \ge 1,0 [kg/dm^3]$ fb $\ge 10 [N/mm^2]$	Really Control of the second s		FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 20x130 K
Brick No. 8 Perforated brick HLz filled with mineral wool according to EN 771-1 $\rho \ge 0,6 [kg/dm^3]$ fb $\ge 8 [N/mm^2]$			FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K FIS H 20x200 K
Brick-No. 9 Light-weight con- crete hollow block Hbl according to EN 771-1 $\rho \ge 1,0 [kg/dm^3]$ fb $\ge 4 [N/mm^2]$	at the second se		FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K
Brick No. 10 Autoclaved aerated concrete block			M8; M10; M12
$\rho \ge 0.35, 0.5 \text{ or}$ 0.65 [kg/dm ³] fb ≥ 2, 4 or 6 [N/mm ²]			FIS E 11x85 M6 FIS E 11x85 M8 FIS E 15x85 M10 FIS E 15x85 M12

¹⁾ Other combinations can be used after job site tests acc. to ETAG 029, Annex B. ²⁾ Sleeve/anchor rod combination see table B1.3

The β - factor for this job site tests are given in Table C4

Imaging of the bricks are not scaled

STAVMAT Injectionsystem St line Vinylester for masonry

Intended Use Allocation of anchor rods, perforated sleeves and bricks, part 2

Table C1.1:	Charae shear		values of resistan	ce und	der te	ensio	n loa	ids and ur	
	Density p			Effec ancho	rage			cteristic nce [kN]	
Brick	[kg/dm ³]	Perforated sleeve	Anchor size or screw size in internal	dep	th	N	Rk	V _{Rk}	
	Compressive strength f _b	FIS HK	threaded anchor	h _{ef,min}	h _{ef,max}		mp. 30°C	All categories	
	[N/mm ²]			[mm]	[mm]	d/d	w/w	calegones	
			M8	50	200	4,0	2,5	2,5	
			M10	50	79	3,5	2,0	4,0	
			M10	80	199	5,0	3,0	4,0	
	ρ≥1,8		M10	200	200	8,5	7,5	8,5	
	f _b ≥ 10		M12	50	79	3,0	2,0	4,0	
7 115			M12	80	199	5,5	3,5		
			M12	200	200	8,0	5,0	8,5	
			FIS E11x85 M6/ M8,	85	85	5,5	3,5	2,5	
- 340		• without	M8	50	200	00 5,5 3,5		4,0	
No.1			M10	50	79	5,0	3,0	6.0	
Solid brick Mz			M10	80	199	7,0	4,5	6,0	
	ρ ≥ 1,8		M10	200	200	8,5	8,5	8,5	
	f _b ≥ 20		M12	50	79	4,5	3,0	5,5	
			M12	80	199	8,0	5,0	5,5	
					M12	200	200	8,5	7,0
			FIS E11x85 M6/ M8,	85	85	8,0	5,0	4,0	
			M8	50	200				
			M10	50	79	2,5	1,5	4.0	
			M10	80	199			4,0	
	ρ≥1,8		M10	200	200	8,5	6,0		
×	f _b ≥ 10		M12	50	79	2,5	1,5		
115			M12	80	199		1,5	5,0	
115			M12	200	200	8,5	6,5		
		without	FIS E11x85 M6/ M8,	85	85	2,5	1,5	3,0	
240]	M8	50	200				
No.2 Solid sand-lime			M10	50	79	3,5	2,0	5,5	
brick			M10	80	199			0,0	
	ρ≥1,8 f⊾>20		M10	200	200	8,5	8,5		
	10 = 20	f _b ≥ 20	M12	50	79	3,5	2,0	7,0	
			M12	80	199				
			M12	200	200	8,5	8,5		
			FIS E11x85 M6/ M8,	85	85	3,5	2,0	4,0	

Imaging of the bricks are not scaled

STAVMAT Injectionsystem St line Vinylester for masonry

Performances

Characteristic values of resistance under tension loads and under shear loads, part 1

Annex C 1

electronic copy of the eta by dibt: eta-17/0626

Table C1.2:		acteristic r loads	values of resista	ance u	nder tei	nsion	load	s and unde		
	Density p		Anchor size or	Effective anchorage		Characteristic resistance [kN]				
Brick	[kg/dm ³]	Perforated sleeve	screw size in	de	epth	N	Rk	V _{Rk}		
	Compressive strength fb	FIS HK	internal threaded anchor	h _{ef,min}	h _{ef,max}	Tei 50/8	mp. 30°C	All categories		
	[N/mm ²]			[mm]	[mm]	d/d	w/w	calegones		
		12x85	M8	85	85	6,0	3,5	2.0		
		16x85	FIS E 11x85 M6	85	85	3,5	2,0	3,0		
115 -	ρ ≥ 1,8 f _b ≥ 10	16x85	M8/M10, FIS E 11x85 M8	85	85	3,5	2,0			
1		20x85	M12, FIS E 15x85	85	85	8,5	6,5	3,5		
No.3 Solid sand-lime brick		16x130	M8/M10	110	130	3,5	2,0			
		20x130	M12	110	130	7,0	4,5			
	ρ ≥ 1,8	12x85	M8	85	85	8,5	5,0	4.5		
	f _b ≥ 20	16x85	FIS E 11x85 M6	85	85	5,5	3,0	4,5		
		16x85	M8/M10, FIS E 11x85 M8	85	85	5,5	3,0			
		20x85	M12, FIS E 15x85	85	85	8,5	8,5	5,5		
		16x130	M8/M10	110	130	5,0	3,0			
		20x130	M12	110	130	8,5	6,0			
		12x85	M8	85	85	2,5	2,5	0.5		
		16x85	FIS E 11x85 M6	85	85	3,0	2,5	2,5		
	ρ ≥ 1,4 f _b ≥ 12	16x85	M8/M10, FIS E 11x85 M8	85	85	3,0	2,5	4,5		
175		20x85	M12, FIS E 15x85	85	85					
		16x130	M8/M10	110	130	3,5	3,0	4,5		
108		20x130	M12	110	130					
240		12x85	M8	85	85	4,5	4,0	4,5		
No.4		16x85	FIS E 11x85 M6	85	85	5,0	4,0	4,0		
Sand-lime hollow brick	ρ≥1,4 f _b ≥20	16x85	M8/M10, FIS E 11x85 M8	85	85	5,0	4,5	7,5		
	10 - 20	20x85	M12, FIS E 15x85	85	85					
		16x130	M8/M10	110	130	6,0	5,5	7,5		
		20x130	M12	110	130		,-	.,0		

Imaging of the bricks are not scaled

STAVMAT Injectionsystem St line Vinylester for masonry

Performances

Characteristic values of resistance under tension loads and under shear loads, part 2

	Density_p		Anchor size or	Effec anchorag	Characteristic resistan [kN]			
D : 1	[kg/dm ³]	Perforated	screw size in			N	Rk	V _{Rk}
Brick	Compressive strength f _b	sleeve FIS HK	internal threaded anchor	h _{ef,min}	h _{ef,max}	Ter	mp. 30°C	All
	[N/mm ²]			[mm]	[mm]	d/d	w/w	categories
115 0000		12x85	M8	85	85	4,0	3,5	4,0
EL CONTRACTOR		16x85	FIS E 11x85 M6	85	85	3,5	3,5	4,0
	ρ≥0,9	16x85	M8/M10, FIS E 11x85 M8	85	85	3,5	3,5	5,5
	f _b ≥ 10	20x85	M12, FIS E 15x85	85	85	5,0	4,5	6,0
No.5 Perforated brick		16x130	M8/M10	110	130	5,0	4,5	5,5
		20x130	M12	110	130	5,0	4,5	6,0
		12x85	M8	85	85	4,0	3,5	7,5 (5,5) ¹⁾
		16x85	FIS E 11x85 M6	85	85	2,5		4,0
	ρ≥1,4 f _b ≥20	16x85	M8/M10, FIS E 11x85 M8	85	85	5 2,5		4,5
No.6 Perforated brick		20x85	M12, FIS E 15x85	85	85	3,0		8,5 (5,5) ¹⁾
Te and		12x85	M8	85	85	0	,9	
	ρ≥1,0	16x85	M8/M10, FIS E 11x85	85	85			1,2
	f _b ≥ 10	20x85	M12, FIS E 15x85	85	85	2,5		
33 (330)		16x130	M8/M10	110	130			1,5
No.7 Perforated brick		20x130	M12	110	130	3,5	3,0	1,5
10 00		12x85	M8	85	85	2,0	2,0	2,5
15 13 10 19 19 19		16x85	FIS E 11x85 M6	85	85	2,0	1,5	2,5
345	ρ≥0,6	16x85	M8/M10, FIS E 11x85 M8	85	85	2,0	1,5	3,0
49	f _b ≥8	20x85	M12, FIS E 15x85	85	85	2,0	2,0	1,5
		16x130	M8/M10	130	130	3,0	2,5	3,0
No.8 Perforated brick		20x130	M12	110	130	2,0	2,0	1,5
		20x200	M12	180	200	3,0	3,0	1,5
240		12x85	M8	85	85			
		16x85	M8/M10, FIS E 11x85	85	85			
	$\rho \ge 1,0$	20x85	M12, FIS E 15x85	85	85	3	,0	2,0
*	f _b ≥4	16x130	M8/M10	110	130			
No.9 Light-weight concrete hollow block		20x130	M12	110	130			

¹⁾ Characteristic value of pushing out of one brick $V_{Rk,pb} = 5,5$ kN

Imaging of the bricks are not scaled

STAVMAT Injectionsystem St line Vinylester for masonry

Performances

Characteristic values of resistance under tension loads and under shear loads, part 3

Table C1.4:	Characte shear loa		ues of resistan	ce uno	der ten	ision	load	s and und	
				anch	ctive orage pth	Characteristic resista [kN]			
Brick	Densityp	Perforated	Anchor size or screw size in			N	Rk	V _{Rk}	
	[kg/dm ³]	sleeve FIS H…K	internal threaded				mp. 30°C		
	Compressive strength f _b [N/mm ²]		anchor	h _{ef,min} [mm]	h _{ef,max} [mm]	d/d	w/w	All categories	
40 Re			M8	100	120	1,5		1,2	
	ρ≥0,35	without	M10	100	120			1,2	
	p ≥ 0,35 f _b ≥ 2		M12	100	120			1,5	
			FIS E 11x85 FIS E 15x85	85				1,2	
	- > 0.5		M8	100	120	2,0		2,5	
No.10 Autoclaved			M10	100	120	2,5		2,0	
Aerated concrete block	ρ≥0,5 f _b ≥4	without	M12	100	120	1		2,5	
	-		FIS E 11x85 FIS E 15x85	85		2,0		2,0	
			M8	100	120	3,5	3,0	3,0	
	ρ≥0,65		M10	100	120	5.0	50 45	3,0	
	ρ≥0,65 f _b ≥6	without	M12	100 120		5,0	4,5	3,5	
	10 2 0		FIS E 11x85 FIS E 15x85	85		3,5		2,5	

Imaging of the bricks are not scaled

Performances

Characteristic values of resistance under tension loads and under shear loads, part 4

Size				M8	M10	M12
	Zing plated stack	Droporty close	5.8 [Nm]	19	37	65
D	Zinc-plated steel	Property class	8.8 [Nm]	30	60	105
	Stainland staal A4	Droporty close	50 [Nm]	19	37	65
beriairig	ु Stainless steel A4 अंट ञ	Property class	70 [Nm]	26	52	92
			80[Nm]	30	60	105
Characteristic Diagram High corrosic Steel C C			50 [Nm]	19	37	65
	High corrosion-resistant steel C	Property class	70 ¹⁾ [Nm]	26	52	92
			80 [Nm]	30	60	105

¹⁾ f_{uk} = 700 N/mm²; f_{vk} =560 N/mm²

Table C2.1: Characteristic bending moments for internal threaded anchors FIS E

Size FIS E	1			11x85 M6	11x85 M8	15x85 M10	15x85 M12
ſ	zinc	Property _	Property 5.8 [Nm]		19	37	65
endinç ^{Rk,s}	plated steel,	class of screw	8.8 [Nm]	12	30	60	105
rracteristic ben moments M _{Rk.s}	stainless steel A4	Property class of screw	70 [Nm]	11	26	52	92
Characteristic bending moments M _{Rk.s}	high corrosion resistant steel C	Property class of screw	70 [Nm]	11	26	52	92

Tabelle C3: Displacements under tension loads and shear loads

Material	N [kN]	δN₀ [mm]	δN∞ [mm]	V [kN]	δV₀ [mm]	δV∞ [mm]
solid units and autoclaved aerated concrete	 1,4 * γ _Μ	0,03	0,06	 1,4 * γ _M	0,59	0,88
hollow units	Ν _{Rk} 1,4 * γ _M	0,03	0,06	V _{Rk} 1,4 * γ _M	1,71	2,56

STAVMAT Injectionsystem St line Vinylester for masonry

Performances

Characteristic bending moments; displacements

Table C4: β- factor for job site tests according to ETAG 029, Annex B

Using categories		w/w	d/d		
Temperature range	50/80	50/80			
Brick	Brick Size ¹⁾				
Solid brick	M8	0,57			
	M10	0,59	0,96		
	M12 FIS E 11x85 FIS E 15x85	0,60			
Hollow brick	All sizes	0,86	0,96		
Autoclaved aerated concrete	All size	0,73	0,81		

STAVMAT Injectionsystem St line Vinylester for masonry

Performances

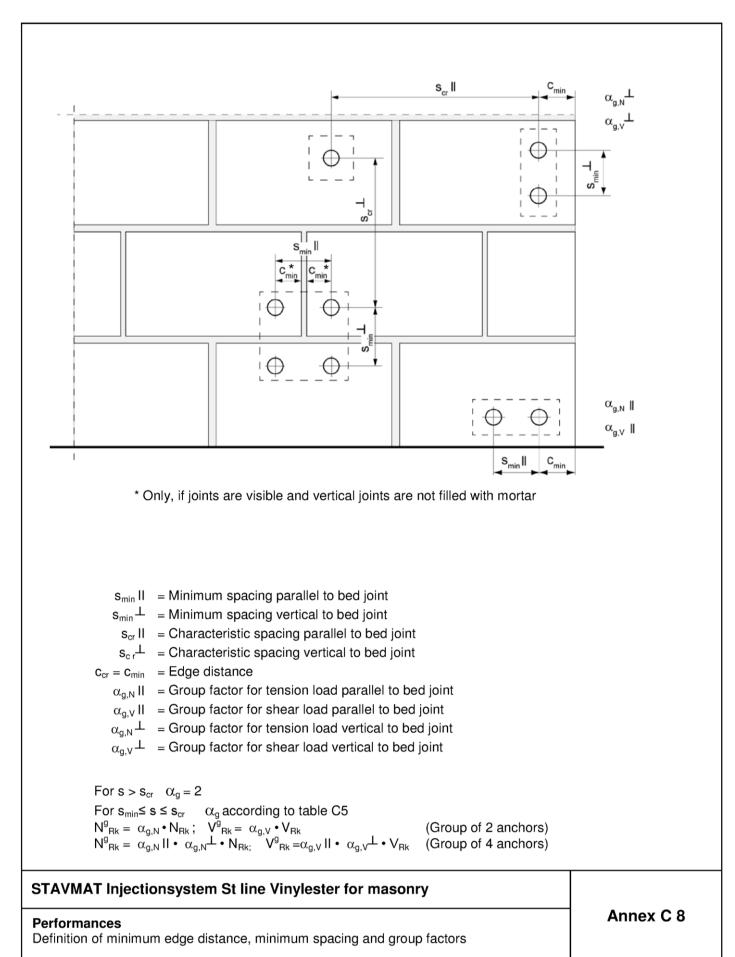
 β - factors for job site tests

Direction to bed joint		1				Group factor				Min. thickness			
Brick No.	h _{ef}	$C_{cr} = C_{min}$	S _{min}	S _{cr}	S _{min} S _{cr}		T				of the masonry members		
Dirok Ho.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	$\alpha_{\text{g,N}}$	$\alpha_{\text{g,V}}$	$\alpha_{\text{g},\text{N}}$	$\alpha_{g,V}$	[mm]		
	50	100	7	5	60 ¹⁾	150	2	2	1,5	1,4			
1	80	100	7	5	60 ¹⁾	240	2	2	1,5	1,4			
	200	150	7	5	2	240			2				
	50	100	7			240	2						
2	80	100	7			240	2						
	200	150	7	5	2	240			2		2		
3	85	100	1.	15	2	240							
3	130	100	1.	15	2	240	2		h _{ef} + 30				
4	all sizes	100	1.	15	100	240	2	2	1,5	1,5	(≥ 80)		
5	all sizes	100	1.	15	2	240			2				
6	all sizes	100	1.	5	2	240			2				
7	all sizes	100	100	240	100	375 (500) ²⁾	1	1	1	1			
8	all sizes	120	24	15	250		2				1		
9	all sizes	80	24	40	3	865	2						
10	all sizes	100	25	50	3	800	2						

Edge distance and spacing Table C5:

 $^{1)}$ only valid for tension loads, for shear loads $s_{min} \| = s_{cr} \|$ $^{2)}$ spacing depending on brick dimension, brick dimension see table B4, brick 7

STAVMAT Injectionsystem St line Vinylester for masonry


Performances

Edge distance and spacing

Page 26 of European Technical Assessment ETA-17/0626 of 8 December 2017

English translation prepared by DIBt

