

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0627 of 8 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

STAVMAT Injection system St line Vinylester

Bonded anchor for use in concrete

STAVMAT STAVEBNINY a.s. Na Hlavní 18 182 00 PRAHA 8 - BREZINEVES TSCHECHISCHE REPUBLIK

Herstellwerk 1

21 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0627

Page 2 of 21 | 8 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0627

Page 3 of 21 | 8 December 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The STAVMAT injection system St line Vinylester is a bonded anchor consisting of a cartridge with injection mortar St line Vinylester, St line Vinylester High Speed or St line Vinylester Low Speed and a steel element.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for static and quasi-static action, displacements	See Annex C 1 to C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-17/0627

Page 4 of 21 | 8 December 2017

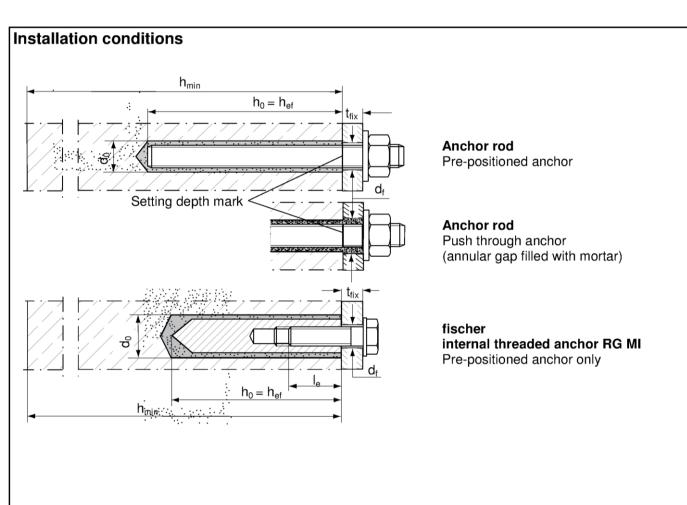
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

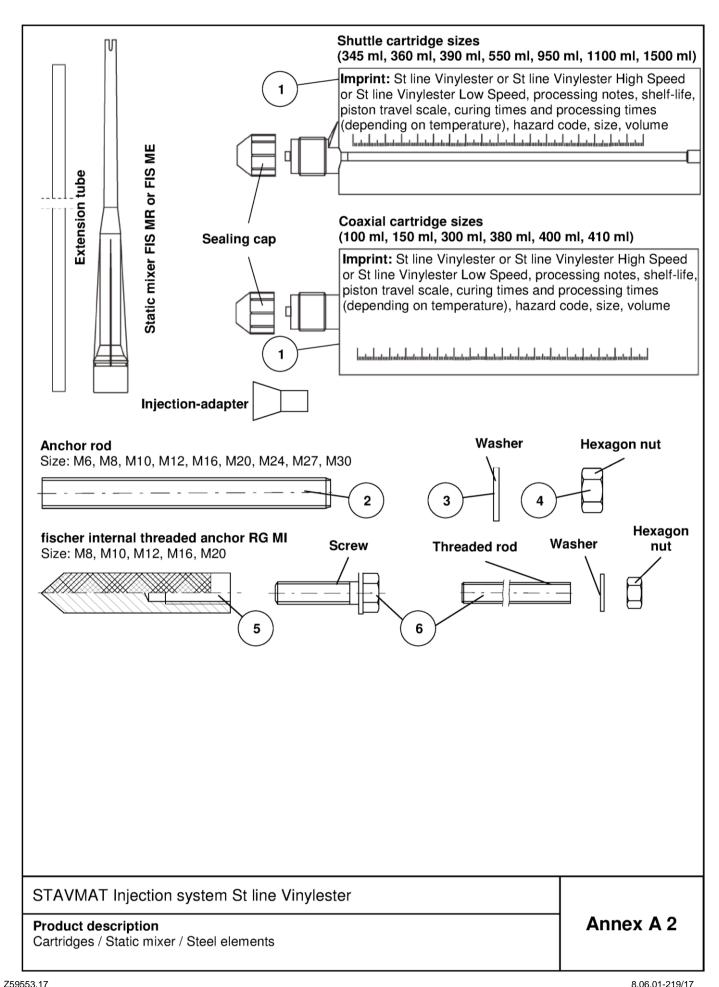

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 8 December 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider

electronic copy of the eta by dibt: eta-17/0627



STAVMAT Injection system St line Vinylester

Product description
Installation conditions

Annex A 1

Z59553.17

English translation prepared by DIBt

Tab	le A1: Materials			
Part	Designation		Material	
1	Mortar cartridge		Mortar, hardener, filler	
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq 1000 \text{ N/mm}^2$ $A_5 > 8 \%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8 \%$ fracture elongation	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8 \%$ fracture elongation
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Commercial standard screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, ISO 4042:1999 A2K fracture elongation $A_5 > 8 \%$	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 fracture elongation A ₅ > 8 %	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %

STAVMAT Injection system St line Vinylester	
Product description Materials	Annex A 3

Deutsches Institut für **Bautechnik**

English translation prepared by DIBt

Specifications of intended use (part 1) Table B1: Overview use and performance categories St line Vinylester, St line Vinylester High Speed or Anchorages subject to St line Vinylester Low Speed with ... fischer Anchor rod internal threaded anchor RG MI Hammer drilling with standard all sizes drill bit Hammer drilling with hollow drill bit (Heller Nominal drill bit diameter (d₀) 12 mm to 35 mm "Duster Expert" or Hilti "TE-CD, TE-YD") Tables: uncracked M6 to M30 M8 to M20 C2, C3, C5, C7 concrete Static and quasi Tables: static load, in C1, C3, C4, C6 cracked M10 to M20 not assessed concrete dry or wet M6 to M30 M8 to M20 concrete Use category flooded hole¹⁾ M12 to M30 M8 to M20 Installation -10 °C to +40 °C temperature Temperature (max. long term temperature +50 °C and -40 °C to +80 °C range I max. short term temperature +80 °C) In-service temperature Temperature (max. long term temperature +72 °C and -40 °C to +120 °C range II max. short term temperature +120 °C) 1) Only with coaxial cartridges: 380 ml, 400 ml, 410 ml STAVMAT Injection system St line Vinylester Annex B 1 Intended Use Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4: 2009

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- · Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

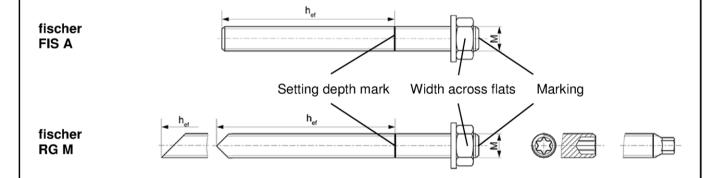

STAVMAT Injection system St line Vinylester	
Intended Use Specifications (part 2)	Annex B 2

Table B2: Installa	ation paran	neters	for an	chor ro	ods							
Size				М6	М8	M10	M12	M16	M20	M24	M27	M30
Width across flats		SW		10	13	17	19	24	30	36	41	46
Nominal drill bit diameter		d ₀		8	10	12	14	18	24	28	30	35
Drill hole depth		h_0						$h_0 = h_{ef}$				
Effective		$h_{\text{ef},\text{min}}$	ef,min	50	60	60	70	80	90	96	108	120
anchorage depth		$h_{\text{ef},\text{max}}$		72	160	200	240	320	400	480	540	600
Minimum spacing and minimum edge distance		S _{min} = C _{min}	= [mm]	40	40	45	55	65	85	105	125	140
Diameter of clearance hole in the fixture ¹⁾	pre- positioned anchorage	d _f		7	9	12	14	18	22	26	30	33
	push through anchorage	d _f		9	11	14	16	20	26	30	32	40
Minimum thickness of concrete member		h _{min}		h _{ef} + 30 (≥ 100)				h _{ef} + 2d ₀				
Maximum installation torque		T _{inst,max}	[Nm]	5	10	20	40	60	120	150	200	300

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Anchor rods:

Marking (on random place) fischer anchor rod:

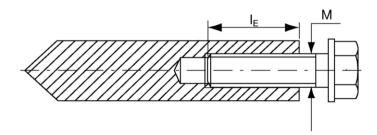
Property class 8.8, stainless steel A4 property class 80 and

high corrosion resistant steel C property class 80: •

Stainless steel A4 property class 50 and high corrosion resistant steel C property class 50: •• Or colour coding according to DIN 976-1

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- · Setting depth is marked


3 2 1 2 2 2	
STAVMAT Injection system St line Vinylester	
Intended Use Installation parameters anchor rods	Annex B 3

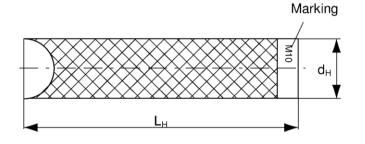


Table B3: Installation para	ameters	for fisc	cher interna	l threaded	anchors R0	3 MI	
Size			М8	M10	M12	M16	M20
Diameter of anchor	d _H		12	16	18	22	28
Nominal drill bit diameter	d_0		14	18	20	24	32
Drill hole depth	h_0				$h_0 = h_{\text{ef}} = L_{\text{H}}$		
Effective anchorage depth $(h_{ef} = L_H)$	h _{ef}	[mm]	90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}		55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d_{f}		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20
Maximum installation torque	$T_{inst,max}$	[Nm]	10	20	40	80	120

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1: 2009, 5.2.3.1

fischer internal threaded anchor RG MI

Marking: Anchor size

e. g.: M10

Stainless steel additional A4

e. g.: M10 A4

High corrosion resistant steel

additional C e. g.: M10 C

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1

STAVMAT Injection system St line Vinylester	
Intended Use Installation parameters fischer internal threaded anchors RG MI	Annex B 4

electronic copy of the eta by dibt: eta-17/0627

English translation prepared by DIBt

Table B4: Dia	meter	s of cle	eaning	g brus	h BS	steel	brush)						
The size of the steel brush refers to the nominal drill bit diameter														
Nominal drill bit diameter	liameter $a_0 = 8 + 10 + 12 + 14 + 16 + 18 + 20 + 24 + 25 + 28 + 30 + 35$													
Steel brush diameter	d _b	[mm]	9	11	14	16	20		25	26	27	30	4	0

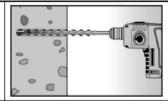
Table B5: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

	Maxin	num processin	g time	Minimum curing time ¹⁾			
System temperature		t _{work}			t _{cure}		
[°C]	St line Vinylester High Speed	St line Vinylester	St line Vinylester Low Speed	St line Vinylester High Speed	St line Vinylester	St line Vinylester Low Speed	
-10 to -5				12 h			
> -5 to ±0	5 min			3 h	24 h		
> ±0 to +5	5 min	13 min		3 h	3 h	6 h	
> +5 to +10	3 min	9 min	20 min	50 min	90 min	3 h	
> +10 to +20	1 min	5 min	10 min	30 min	60 min	2 h	
> +20 to +30		4 min	6 min		45 min	60 min	
> +30 to +40		2 min	4 min		35 min	30 min	

¹⁾ In wet concrete or flooded holes the curing times must be doubled

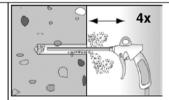
STAVMAT Injection system St line Vinylester

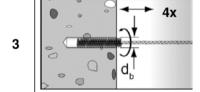
Intended Use
Cleaning tools
Processing times and curing times

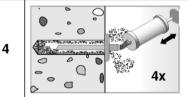

Annex B 5

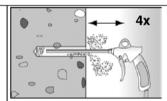
1

Installation instructions part 1


Drilling and cleaning the hole (hammer drilling with standard drill bit)

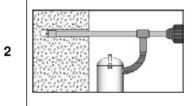

Drill the hole. Drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see Tables B2, B3


Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Brush the drill hole four times. For deep holes use an extension. Corresponding brushes see **Table B4**

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Go to step 5

Drilling and cleaning the hole (hammer drilling with hollow drill bit)

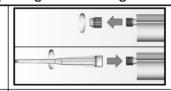
Check a suitable hollow drill (see **Table B1**) for correct operation of the dust extraction

Use a suitable dust extraction system, e. g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Diameter of drill hole \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **Tables B2, B3**

Go to step 5

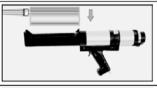
STAVMAT Injection system St line Vinylester


Intended use
Installation instructions part 1

Annex B 6

Installation instructions part 2

Preparing the cartridge

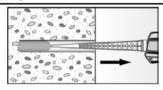

Remove the sealing cap

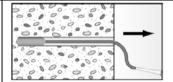
Screw on the static mixer (the spiral in the static mixer must be clearly visible)

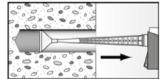
5

Place the cartridge into the dispenser

8






Extrude approximately 10 cm of material until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

Go to step 8

Mörtelinjektion

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

For drill hole depth ≥ 150 mm use an extension tube

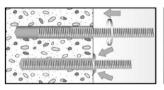
For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 \ge 40$ mm) use an injection-adapter

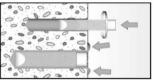
Go to step 9

STAVMAT Injection system St line Vinylester

Intended use

Installation instructions part 2

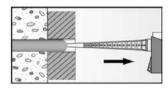

Annex B 7



Installation instructions part 3

Installation of anchor rods or fischer internal threaded anchors RG MI

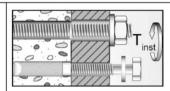
9


Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Push the anchor rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor element, excess mortar must be emerged around the anchor element.

For overhead installations support the anchor rod with wedges.

(e. g. fischer centering wedges)


For push through installation fill the annular gap with mortar

10

Wait for the specified curing time t_{cure} see **Table B5**

11

Mounting the fixture $T_{inst,max}$ see **Tables B2 and B3**

STAVMAT Injection system St line Vinylester

Intended use

Installation instructions part 3

Annex B 8

Partial safety factors Steel zinc plated Property Stainless steel Property Property Stainless steel Property Property Stainless steel Property	ize					М6	M8	M10	M12	M16	M20	M24	M27	M30
Steel zinc plated Property class Steel Stainless steel A4 and High corrosion resistant steel C Property class Froperty class	earin	g capacity under	tensile loa	d, stee	el failu	ıre								
Partial safety factors¹) Steel zinc plated Stainless steel Property class Property	on g	Steel zinc plated											230	281
Partial safety factors¹) Steel zinc plated by a steel zinc plated by a steel control of the	earii N _{rk,}		_										368	449
Partial safety factors¹ Steel zinc plated Stainless steel Property class Property	city city			50	[kN]	10	19	29	43	79	123	177	230	281
Partial safety factors¹) Steel zinc plated Stainless steel Property class Property	ara		Ciass	70		14	26	41	59	110	172	247	322	393
Steel zinc plated Property class Steel zinc plated Steel zinc pla	5 0			80		16	30	47	68	126	196	282	368	449
Steel zinc plated Froperty Stainless steel A4 and High corrosion resistant steel C Froperty Steel zinc plated Froperty Steel zinc plated Froperty Steel zinc plated Froperty Stainless steel A4 and High corrosion resistant steel C Froperty Steel zinc plated Froperty Steel zinc plated Froperty Steel zinc plated Froperty Steel zinc plated Froperty	artial	safety factors ¹⁾												
Stainless steel Ad and High corrosion resistant steel C Property Stainless steel Ad and High corrosion resistant steel C Property Stainless steel Ad and High corrosion H	>	Steel zinc plated												
Steel zinc plated Property class Steel zinc plated Steel zinc plated Property class Steel zinc plated S	atet _{Ms,N}									,				
Steel zinc plated Property Steel zinc plated Steel zinc plated Property Steel zinc plated Steel zinc plated Steel zinc plated Property Steel zinc plated Steel zinc plated Property Steel zinc plated Steel zinc plated Property Steel zinc plated Steel zinc plated Steel zinc plated Property Steel zinc plated Steel zinc plated Steel zinc plated Property Steel zinc plated Steel zinc plated Steel zinc plated Property Steel zinc plated Steel zinc plated Steel zinc plated Property Steel zinc plated Steel	al si tor γ				[-]									
Steel zinc plated Property Steel zinc plated Steel zinc plated Property Steel zinc plated Steel zinc plated Property Steel zinc plated Property Steel zinc plated Steel zin	Parti fact	High corrosion		70					1,	50 ²⁾ / 1,	87			
Steel zinc plated Steel zinc plated Steel zinc plated Stainless steel A4 and High corrosion resistant steel C Steel zinc plated Steel zinc plated High corrosion resistant steel C Steel zinc plated High corrosion resistant steel C Steel zinc plated Steel zinc plated High corrosion resistant steel C High corrosion resistant r										1,60				
Steel zinc plated Property Steel zinc plated Stainless steel A4 and High corrosion resistant steel C Property Class Steel zinc plated Property Stainless steel A4 and High corrosion resistant steel C Property Stainless steel A4 and High corrosion resistant steel C Property Stainless steel A4 and High corrosion resistant steel C Property Stainless steel A4 and High corrosion resistant steel C Property Stainless steel A4 and High corrosion resistant steel C A4 and High corrosion Steel zinc plated Property Stainless steel A4 and High corrosion A4 and A			shear load	l, steel	failu	re								
Steel zinc plated Property Class Steel zinc plated Property Class Stainless steel A4 and High corrosion resistant steel C Property Class Steel zinc plated Property Class Property Class Steel zinc plated Property Class Prop	ithou	ıt lever arm	<u> </u>			_								
Ductility factor acc. to CEN/TS 1,0 1,0 1,0	ing k,s	Steel zinc plated											115 184	141 225
Ductility factor acc. to CEN/TS 1,0 1,0 1,0	oear / V _r	Ctainless steel	Property										115	141
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1 k ₂ [-] 1,0	act.t acity				[kN]									
Ductility factor acc. to CEN/TS 1,0 1,0	cap												161	197
1992-4-5:2009 Section 6.3.2.1 K2 [-] 1,0			N/TO	80		8	15	23	34	63	98	141	184	225
Steel zinc plated Property Stainless steel A4 and High corrosion Steel zinc plated Property Stainless steel A4 and High corrosion High corrosion High corrosion A4 and High corrosion High				k_2	[-]					1,0				
Steel zinc plated Property Stainless steel A4 and High corrosion Steel zinc plated Property Stainless steel A4 and High corrosion High corrosion Property Steel zinc plated Property Stainless steel A4 and High corrosion High corrosion High corrosion High corrosion High corrosion Property High corrosion High corrosi	ith le	ever arm												
Stainless steel Property Property Stainless steel Property Property Stainless steel Property Property Property Property Stainless steel Property Property Property Property Property Property Stainless steel Property Pro		Steel zinc plated											833	1123
Partial safety factors Steel zinc plated Stainless steel A4 and High corrosion High corrosion A4 and High corrosion A5 A6 A7 A7 A7 A7 A7 A7 A7			_										1333	1797
Steel zinc plated Property class P	andir endir	Stainless steel		50	[Nm]	7	19	37	65	166	324	560	833	1123
Partial safety factors Steel zinc plated Property class From the property class From t	2	nigh comosion		70		10	26	52	92	232	454	784	1167	1573
Steel zinc plated 5.8 8.8 1,25		resistant steel C		80		12	30	60	105	266	519	896	1333	1797
Steel zinc plated Stainless steel Property Stainless steel A4 and High corrosion High corrosion	artial	safety factors ¹⁾												
Stainless steel class Property class 70 From the control of t	>	Steel zinc plated												
	atet ′ _{Ms,V}		Drangutu											
	ial s tor γ				[-]									
resistant steel C 80 1,33	Part fac					1,25 ²⁾ / 1,56								
		resistant steel C		80						1,33				
1) In absence of other national regulations 2) Only for fischer FIS A and RG M made of high corrosion-resistant steel C	¹⁾ ln a ²⁾ On	absence of other rally for fischer FIS A	national regu A and RG M	ılations made	of hig	h corro	sion-res	sistant s	teel C					
STAVMAT Injection system St line Vinylester	STA	VMAT Injection	system S	t line	Viny	lester								

Table C2: Characteristic values for the steel bearing capacity of fischer internal threaded anchors RG MI under tensile / shear load										
Size				М8	M10	M12	M16	M20		
Bearing capacity under	tensile loa	d, stee	l failu	ıre						
a	Property	5.8		19	29	43	79	123		
Characteristic bearing capacity N _{Rk.s}	class	8.8	[kN]	29	47	68	108	179		
bearing capacity N _{Rk,s} with screw	Property	A4	[KIN]	26	41	59	110	172		
	class 70	С		26	41	59	110	172		
Partial safety factors ¹⁾										
	Property	5.8				1,50				
Partial safety	class	8.8	[-]			1,50				
factor YMs,N	Property	_A4	[-]	1,87						
	class 70	С		1,87						
Bearing capacity under	shear load	l, steel	failu	re						
without lever arm										
Characteristic	Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0		
bearing capacity V _{Rk,s}	class	8.8		14,6	23,2	33,7	54,0	90,0		
with screw	Property	_A4		12,8	20,3	29,5	54,8	86,0		
	class 70	С		12,8	20,3	29,5	54,8	86,0		
Ductility factor acc. to CE 1992-4-5:2009 Section 6		k ₂	[-]	1,0						
with lever arm										
Ola a va ata viati a	Property	5.8		20	39	68	173	337		
Characteristic bending moment M ⁰ _{Rk,s}	class	8.8	[Nm]	30	60	105	266	519		
with screw	Property	_A4	[]	26	52	92	232	454		
	class 70	С		26	52	92	232	454		
Partial safety factors ¹⁾										
	Property	5.8				1,25				
Partial safety	class	8.8	[-]			1,25				
factor	Property class 70	A4 C	ιJ			1,56 1,56				

' In absence of	fother	national	regulations
-----------------	--------	----------	-------------

STAVMAT Injection system St line Vinylester	
Performances Characteristic steel bearing capacity of fischer internal threaded anchors RG MI	Annex C 2

Bearing capacity under tensile load Factors acc. to CEN/TS 1992-4:2009																
Factors acc. to CEN/TS 1992-4:2009	Size							All sizes								
Factors acc. to CEN/TS 1992-4:2009																
U	Section	5.2.2.3														
Uncracked concrete k ₁₁	cr [1					10,1										
Cracked concrete k						7,2										
Factors for the compressive strength		rete > 0	220/25			- ,										
C25/30						1,05										
C30/37						1,10										
Increasing C35/45						1,15										
factor $-\frac{C40/50}{}$ Ψ	c [-]					1,19										
for τ _{Rk} — C40/50 C45/55						1,22										
C50/60						1,26										
Splitting failure						1,20										
·						1 0 h										
$\frac{h / h_{ef} \ge 2.0}{2.0 \times h / h_{ef} \ge 1.3}$					4.0	1,0 h _{ef}										
Edge distance $2.0 > h / h_{ef} > 1.3$ c_{cr}	sp [mm					h _{ef} - 1,										
h / h _{ef} ≤ 1,3	_					2,26 h _e										
Spacing s _{cr}						2 c _{cr,sp}										
Concrete cone failure acc. to CEN/TS		5:2009	Section	1 6.2.3.2	2											
Edge distance c _{cr}						1,5 h _{ef}										
Spacing s _{cr}	,N	'				2 c _{cr,N}										
Bearing capacity under shear load																
Installation safety factors																
All installation conditions $\frac{\gamma_2}{\gamma_{in}}$: [-]					1,2										
Concrete pry-out failure		_														
Factor k acc. to TR029 Section 5.2.3.3 resp. k_3 acc. to CEN/TS 1992-4-5:2009 Section 6.3.3	s) [-]	2,0														
Concrete edge failure		_														
The value of h_{ef} (= l_f)	[mm				mi	n (h _{ef} ; 8	3d)									
under shear load																
Calculation diameters		NAC	MO	MAAO	Mag	MAG	MOO	MOA	MOZ	N400						
Size		M6	M8	M10	M12	M16	M20	M24	M27	M30						
Anchor rods d	[mm]	6	8	10	12	16	20	24	27	30						
fischer internal threaded anchors RG MI d _{no}	m [[IIIII]		12	16	18	22	28									

Table C4: Characteristic values of resistance for anchor rods in hammer drilled holes; uncracked or cracked concrete											
Size		_	М6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pullout and concre	Combined pullout and concrete cone failure										
Calculation diameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked concrete											
Characteristic bond resistance in uncracked concrete C20/25											
Hammer-drilling with standard of	<u>drill bit or</u>	hollow dr	ill bit (d	lry and	wet con	crete)					
Tem- I: 50 °C / 80 °C		[N 1/ma ma 2]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature II: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling with standard	drill bit or	hollow dr	ill bit (fl	ooded I	nole) ¹⁾						
Tem- I: 50 °C / 80 °C		22				9,5	8,5	8,0	7,5	7,0	7,0
perature II: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]				7,5	7,0	6,5	6,0	6,0	6,0
Installation safety factors											
Dry and wet concrete							1,2				
Flooded hole	$\gamma_2 = \gamma_{\rm inst}$	[-]				1,41)					
Cracked concrete											
Characteristic bond resistand	ce in cra	cked con	crete C	220/25							
Hammer-drilling with standard of	drill bit or	hollow dr	ill bit (d	lry and	wet con	crete)					
Tem- I: 50 °C / 80 °C	_	 [N/mm²]			6,0	6,0	6,0	5,5			
range II: 72 °C / 120 °C	$ au_{Rk,cr}$	[[N/IIIII]			5,0	5,0	5,0	5,0			
Hammer-drilling with standard	drill bit or	hollow dr	ill bit (fl	ooded l	nole) ¹⁾						
Tem- I: 50 °C / 80 °C	T	[N/mm ²]				5,0	5,0	4,5			
range II: 72 °C / 120 °C	τ _{Rk,cr}	[[14/11111]				4,0	4,0	4,0			
Installation safety factors											
Dry and wet concrete	20/ 2/-	[-]					1,2				
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,41)						

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

STAVMAT Injection system St line Vinylester

Performances

Characteristic values for static or quasi-static action under tensile load for anchor rods (uncracked or cracked concrete)

Annex C 4

Table C5: Characteristic values of resistance for fischer internal threaded anchors RG MI in hammer drilled holes; uncracked concrete										
Size			М8	M10	M12	M16	M20			
Combined pullout and concrete cone failure										
Calculation diameter	d	[mm]	12	16	18	22	28			
Uncracked concrete										
Characteristic bond resistant	ce in un	cracked o	concrete C20	/25						
Hammer-drilling with standard	drill bit o	hollow d	rill bit (dry and	d wet concret	<u>e)</u>					
Tem- I: 50 °C / 80 °C	_	[N/mm ²]	10,5	10,0	9,5	9,0	8,5			
range II: 72 °C / 120 °C	τ _{Rk,ucr}	[14/11111]	9,0	8,0	8,0	7,5	7,0			
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (flooded	d hole) ¹⁾						
Tem- I: 50 °C / 80 °C	_	[N/mm ²]	10,0	9,0	9,0	8,5	8,0			
range II: 72 °C / 120 °C	τ _{Rk,ucr}		7,5	6,5	6,5	6,0	6,0			
Installation safety factors										
Dry and wet concrete		[]			1,2					
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]	[-]							

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

STAVMAT Injection system St line Vinylester	
Performances Characteristic values for static or quasi-static action under tensile load for fischer internal threaded anchors BG MI and reinforcing bars (uncracked concrete)	Annex C 5

Table C6: Displacements for anchor rods											
Size		М6	М8	M10	M12	M16	M20	M24	M27	M30	
Displacement-Factors for tensile load ¹⁾											
Uncracked concrete; Temperature range I, II											
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12	
$\delta_{N\infty ext{-Faktor}}$	[[[[[[]]]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14	
Cracked	concrete; Ten	nperature	range I, I	l							
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]			0,12	0,12	0,13	0,13				
$\delta_{N\infty ext{-Faktor}}$	[[[[[[]]]			0,27	0,30	0,30	0,30				
Displacement-Factors for shear load ²⁾											
Uncracked or cracked concrete; Temperature range I, II											
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07	
$\delta_{V^{\infty} ext{-Faktor}}$	[IIIII/KIN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09	

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}}$: Design value of the applied tensile stress)

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot \text{V}_{\text{Ed}}$

 $(V_{Ed}: Design\ value\ of\ the\ applied\ shear\ force)$

Table C7: Displacements for fischer internal threaded anchors RG MI

Size		M8	M10	M12	M16	M20				
Displacement-Factors for tensile load ¹⁾										
Uncracked concrete; Temperature range I, II										
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,10	0,11	0,12	0,13	0,14				
$\delta_{N\infty\text{-Faktor}}$	[[[]]]]]	0,13	0,14	0,15	0,16	0,18				
Displace	Displacement-Factors for shear load ²⁾									
Uncracked concrete; Temperature range I, II										
$\delta_{\text{V0-Faktor}}$	[/I. N.I]	0,12	0,12	0,12	0,12	0,12				
$\delta_{\text{V}\infty\text{-Faktor}}$	[mm/kN]	0,14	0,14	0,14	0,14	0,14				

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

STAVMAT Injection system St line Vinylester

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

Annex C 6

²⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement: