

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0716 of 8 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Injection system VMH for concrete

Injection system for use in concrete

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

Werk 1, D Werk 2, D

25 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0716

Page 2 of 25 | 8 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 8 December 2017

Specific Part

1 Technical description of the product

The "Injection system VMH for concrete" is a bonded anchor consisting of a cartridge with injection mortar VMH and a steel element. The steel element consist of a threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod VMU-IG M6 to VMU-IG M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static action and seismic performance categories C1, C2	See Annex C 1 to C 7
Displacements	See Annex C 8 to C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment

ETA-17/0716

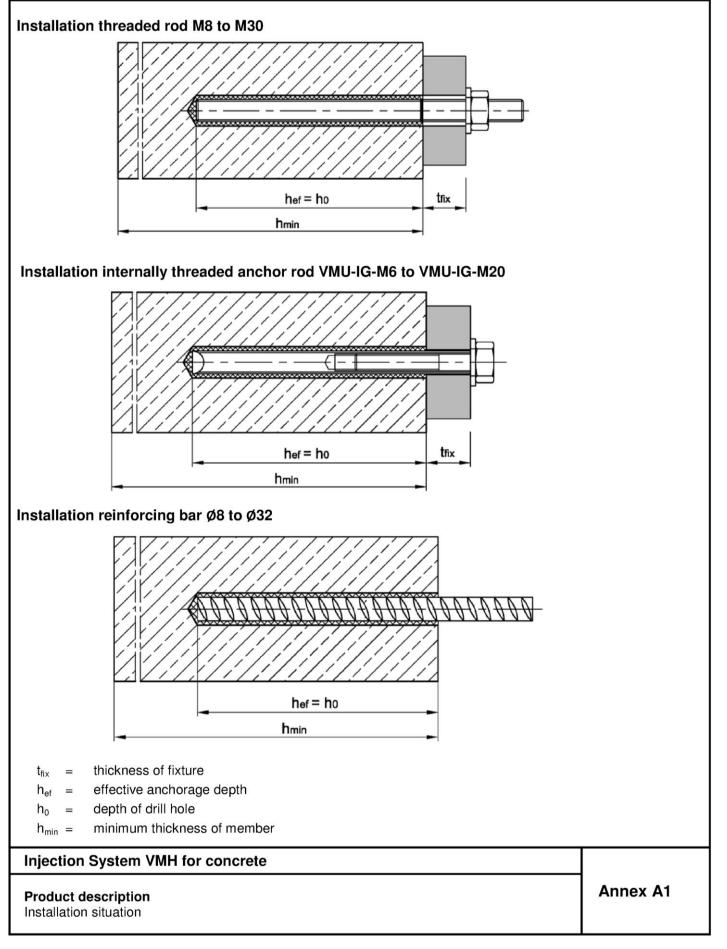
Page 4 of 25 | 8 December 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 8 December 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

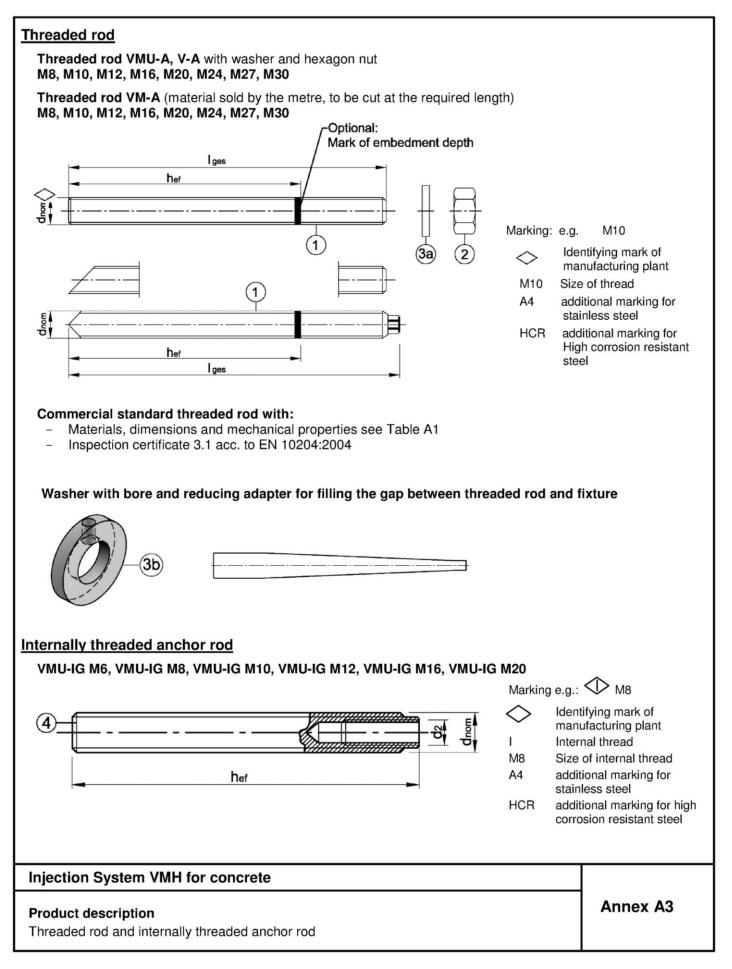


Table A1: Materials Part Designation Material Steel, zinc plated electroplated \geq 5 µm acc. to EN ISO 4042:1999 or hot-dip galvanised \geq 40 µm acc. to EN ISO 1461:2009 EN ISO 10684:2004+AC:2009 or sherardized ≥ 40µm acc. to EN ISO 17668:2016 Property class 4.6 | $f_{uk} \ge 400 \text{ N/mm}^2$; $f_{vk} \ge 240 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation EN 10087:1998, Property class 4.8 | $f_{uk} \ge 400 \text{ N/mm}^2$; $f_{yk} \ge 320 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation EN 10263:2001; Threaded 1 Property class 5.6 | $f_{uk} \ge 500 \text{ N/mm}^2$; $f_{yk} \ge 300 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation Commercial standard rod threaded rod: Property class 5.8 | f_{uk}≥ 500 N/mm²; f_{yk}≥ 400 N/mm²; A₅ > 8 % fracture elongation EN ISO 898-1:2013 Property class 8.8 | $f_{uk} \ge$ 800 N/mm²; $f_{yk} \ge$ 640 N/mm²; $A_5 > 12\%$ fracture elongation¹ Steel, zinc plated Property class 4 (for class 4.6 or 4.8 rod) 2 EN ISO 898-2:2012 Hexagon nut Property class 5 (for class 5.6 or 5.8 rod) Property class 8 (for class 8.8 rod) Steel, zinc plated Washer 3a (e.g..: EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000) 3b Washer with bore Steel, zinc plated Steel, electroplated, $A_5 > 8$ % fracture elongation EN 10087:1998 4 Internally threaded anchor rod Property class 5.8 and 8.8 Stainless steel A4 Material 1.4401 / 1.4404 / 1.4571 / 1.4578 / 1.4362 / 1.4062 EN 10088-1:2014 Threaded Property class 50 f_{uk} = 500 N/mm²; f_{yk} = 210 N/mm²; A_5 > 12% fracture elongation 1 rod f_{uk} = 700 N/mm²; f_{vk} = 450 N/mm²; $A_5 > 12\%$ fracture elongation¹ EN ISO 3506-1:2009 Property class 70 M8 to M24 Stainless steel A4 Property class 50 (for class 50 rod) 2 Hexagon nut EN ISO 3506-2:2009 Property class 70 (for class 70 rod; \leq M24) Stainless steel A4 3a Washer (e.g.: EN ISO 7089:2000, EN ISO 7093:2000, EN ISO 7094:2000) EN 10088-1: 2014 3b Washer with bore Material 1.4401 / 1.4404 / 1.4571 / 1.4362 Material 1.4401 / 1.4404 / 1.4571 / 1.4362; Property class 50 (IG-M20) $A_5 > 8$ % fracture elongation 4 Internally threaded anchor rod EN 10088-1: 2014 Property class 70 (IG-M8 to IG-M16) A₅ > 8 % fracture elongation High corrosion resistant steel HCR Material 1.4529 / 1.4565 EN 10088-1: 2014 Threaded Property class 50 f_{uk} = 500 N/mm²; f_{yk} = 210 N/mm²; $A_5 > 12\%$ fracture elongation¹⁾ 1 rod f_{uk} = 700 N/mm²; f_{vk} = 450 N/mm²; A₅ > 12% fracture elongation¹⁾ EN ISO 3506-1: 2009 Property class 70 M8 to M24 Material 1.4529 / 1.4565 EN 10088-1: 2014 Property class 50 ((for class 50 rod) 2 Hexagon nut EN ISO 3506-2:2009 Property class 70 (for class 70 rod; \leq M24) Material 1.4529 / 1.4565 За Washer (e.g.: EN ISO 7089:2000, EN ISO 7093:2000, EN ISO 7094:2000) EN 10088-1: 2014 Зb Washer with bore Material 1.4529 / 1.4565 Material 1.4529 / 1.4565, A₅ > 8 % fracture elongation 4 Internally threaded anchor rod Property class 50 (IG-M20), EN 10088-1: 2014 Property class 70 (IG-M8 to IG-M16) ¹⁾ Fracture elongation A₅ > 8 % for applications <u>without</u> requirements for seismic performance category C2 Injection System VMH for concrete

Product description

Materials

Annex A4

($5 10, \emptyset 12, \emptyset 14, \emptyset 16, \emptyset 20, \emptyset 25, 0$ $- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	
		area $f_{R,min}$ according to EN 1992-1-1:2004+AC:2010 in the range 0,05d ≤ h ≤ 0,07d par; h: Rip height of the bar)
Tabl	e A2: Material reinforcing l	bar
Tabl Part	_	bar Material
	Designation	

Injection System VMH for concrete

Product description

Product description and material reinforcing bar

	Threaded rod	Internally threaded anchor rod				
Injection System VMH	VMU-A, V-A, VM-A, commercial standard threaded rod	VMU-IG	Rebar			
Static or quasi-static action	M8 - M30 zinc plated, A4, HCR	IG-M6 - IG-M20 electroplated, A4, HCR	Ø8 - Ø32			
Seismic action, category C1	M8 - M30 zinc plated ¹⁾ , A4, HCR	-	Ø8 - Ø32			
Seismic action, category C2	M12 zinc plated ¹⁾ (strength class 8.8) A4, HCR	-	-			
	Reinforced or unreinforced n	ormal weight concrete a	acc. to EN 206-1:2000			
Base materials	Strength classes ac	c. to EN 206-1:2000:C2	20/25 to C50/60			
	Cracked	and uncracked concre	ete			
Temperature Range I -40 °C to +80 °C	max long term temperature	⊦50 °C and max short ter	rm temperature +80 °C			
Temperature Range II -40 °C to +120 °C	max long term temperature	+72 °C and max short te	rm temperature +120 °C			
Temperature Range III -40 °C to +160 °C	max long term temperature +100 °C and max short term temperature +160 °C					

¹⁾ except hot-dip galvanised

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel) Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed

Installation:

- Dry or wet concrete
- Hole drilling by hammer or compressed air drill or vacuum drill mode
- Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible
 for technical matters of the site
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class
 of the internally threaded anchor rod

Injection System VMH for concrete

Intended Use

Specifications

Deutsches Institut für Bautechnik

	parame									
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Diameter of threaded rod	d _{nom} =	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ =	[mm]	10	12	14	18	22	28	30	35
Effective encharge depth	h _{ef,min} =	[mm]	60	60	70	80	90	96	108	120
Effective anchorage depth -	h _{ef,max} =	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Installation torque	T _{inst} ≤	[Nm]	10	20	40 (35) ²⁾	60	100	170	250	300
Minimum thickness of h _{min}		[mm]		∍ _f + 30 m ≥ 100 mn				$h_{ef} + 2d_0$		
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance		[mm]	35	40	45	50	60	65	75	80

Table B1: Installation parameters for threaded rods

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum $d_{nom} + 1$ mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar ²⁾ Installation torque for M12 with steel grade 4.6

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor ro	d		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Inner diameter of threaded rod	$d_2 =$	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod ²⁾	$d_{nom} =$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	18	22	28	35
Effective anchorage depth	h _{ef,min} =	[mm]	60	70	80	90	96	120
Effective anchorage depth	h _{ef,max} =	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	I _{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of h _{mir}		[mm]		30 mm 0 mm		h _{ef} +	- 2d ₀	
Minimum spacing	S _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	C _{min}	[mm]	40	45	50	60	65	80

¹⁾ For larger clearance hole see TR029 section 1.1

²⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter of rebar	$d = d_{nom} =$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ =	[mm]	12	14	16	18	20	25	32	35	40
Effective encharge depth	h _{ef,min} =	[mm]	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} =	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]		80 mm 0 mm				h _{ef} + 2d ₀)		
Minimum spacing	S _{min}	[mm]	40	50	60	70	75	95	120	130	150
Minimum edge distance	C _{min}	[mm]	35	40	45	50	50	60	70	75	85

Injection System VMH for concrete

Intended use

Installation parameters

Annex B2

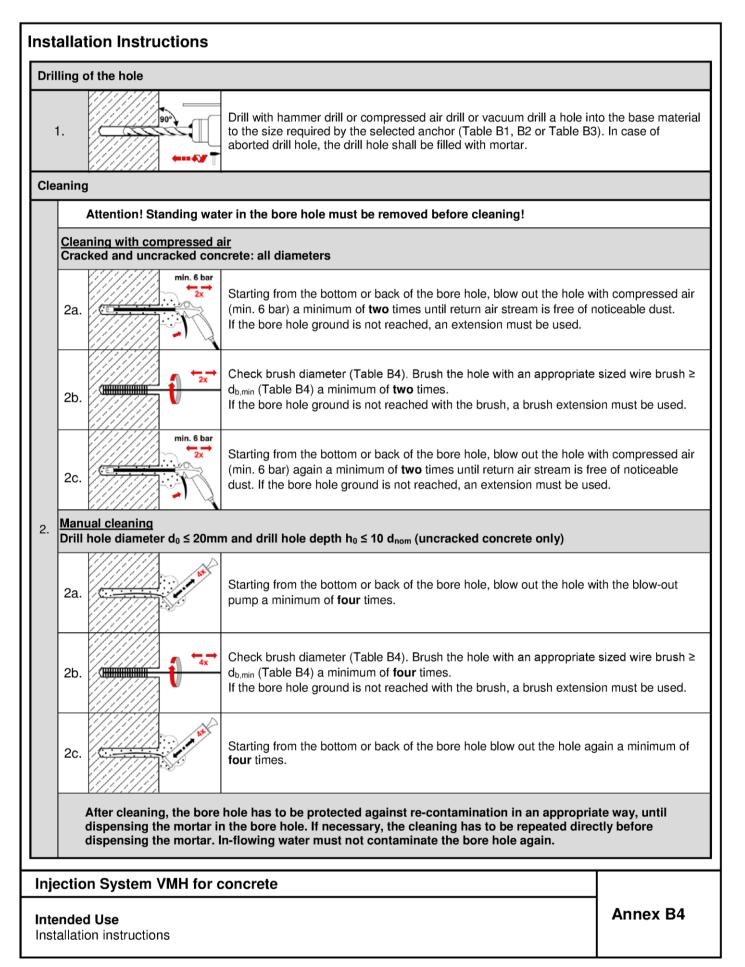
Table B4	Fable B4: Parameter cleaning and setting tools											
Threaded rod	Rebar	Internally threaded anchor rod	Drill bit Ø	Brush Ø	min. Brush Ø		Retaining washer					
	477777777777777777						on and /asher					
[-]	Ø [mm]	[-]	d₀ [mm]	d ⊾ [mm]	d _{b,min} [mm]	[-]	₽	→	1			
M8			10	11,5	10,5	-						
M10	8	VMU-IG M 6	12	13,5	12,5	-						
M12	10	VMU-IG M 8	14	15,5	14,5	-	No retaining washer required					
	12		16	17,5	16,5	-						
M16	14	VMU-IG M10	18	20,0	18,5	VM-IA 18						
	16		20	22,0	20,5	VM-IA 20						
M20		VMU-IG M12	22	24,0	22,5	VM-IA 22						
	20		25	27,0	25,5	VM-IA 25	b >	. .				
M24		VMU-IG M16	28	30,0	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all			
M27			30	31,8	30,5	VM-IA 30	2001111					
	25		32	34,0	32,5	VM-IA 32						
M30	28	VMU-IG M20	35	37,0	35,5	VM-IA 35						
	32		40	43,5	40,5	VM-IA 40						

Blow-out pump (volume 750ml) Drill bit diameter (d_0) : 10 mm to 20 mm Drill hole depth (h_0) : \leq 10 d_{nom} for uncracked concrete

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Retaining washer for overhead or horizontal installation Drill bit diameter (d₀): 18 mm to 40 mm

Steel brush Drill bit diameter (d₀): all diameters


Injection System VMH for concrete

Intended Use Cleaning and setting tools

electronic copy of the eta by dibt: eta-17/0716

Annex B3

Inje	ection	
3.	ALL S	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.
4.	her	Prior to inserting the rod into the filled bore hole, the position of the embedment depth shall be marked on the threaded rod or rebar
5.	min.3x ➡	Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.
6a.		Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. For embedment larger than 190 mm, an extension nozzle shall be used. Observe working times given in Table B5.
6b.		 Retaining washer and mixer nozzle extensions shall be used according to Table B4 for the following applications: Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Injection System VMH for concrete

Intended Use

Installation instructions (continuation)

Annex B5

Inser	rting the anchor	
7.		Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.
8.		Make sure that the anchor is fully seated up to the full embedment depth and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation, the anchor should be fixed (e.g. by wedges).
9.	°	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).
10.		Remove excess mortar.
11.	Tinst	The fixture can be mounted after curing time. Apply installation torque T _{inst} according to Table B1 or B2 by using a calibrated torque wrench.
12.		Annular gap between anchor rod and attachment may optionally be filled with mortar. Therefore, replace regular washer by washer with bore and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

Tabelle B1: Working time and curing time

Comercia	tom	novotuvo	Maximum	Minimum cu	Iring time
Concrete	tem	perature	working time	dry concrete	wet concrete
-5°C	to	-1°C	50 min	5 h	10 h
0°C	to	+4°C	25 min	3,5 h	7 h
+5°C	to	+9°C	15 min	2 h	4 h
+10°C	to	+14°C	10 min	1 h	2 h
+15°C	to	+19°C	6 min	40 min	80 min
+20°C	to	+29°C	3 min	30 min	60 min
+30°C	to	+40°C	2 min	30 min	60 min
Cartridge	e tem	perature		+ 5°C to + 40°C	

Injection System VMH for concrete

Intended Use

Installation instructions (continuation) Working and curing time Annex B6

Thread	ed rod			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Steel fa	ailure										
Tensio	n load										
e	Steel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
stic tanc	Steel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
sis	Steel, Property class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resistance	Stainless steel A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
ten	Stainless steel A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
	Steel, Property class 4.6	γMs,N	[-]				2				
	Steel, Property class 4.8	γMs,N	[-]				1	,5			
ctor	Steel, Property class 5.6	γMs,N	[-]				2	,0			
Partial factor	Steel, Property class 5.8	γMs,N	[-]				1	,5			
artia	Steel, Property class 8.8	γMs,N	[-]				1	,5			
å	Stainless steel A4 and HCR, Property class 50	γMs,N	[-]				2,	86			
	Stainless steel A4 and HCR, Property class 70	γMs,N	[-]			1,	87			-	-
Shear I											
Steel fa	ailure <u>without</u> lever arm										
a e	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
istic tanc	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
cter	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance	Stainless steel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
) ts	Stainless steel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
Steel fa	ailure <u>with</u> lever arm										
ic ent	Steel, Property class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
istic	Steel, Property class 5.6 and 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
cteri	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Characterist bending mom	Stainless steel A4 and HCR, Property class 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
pe O	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
	Steel, Property class 4.6	γMs,V	[-]				1,	67			
	Steel, Property class 4.8	γMs,V	[-]				-	25			
ctor	Steel, Property class 5.6	γMs,V	[-]				1,	67			
Partial factor	Steel, Property class 5.8	γMs,V	[-]	1,25							
ırtia	Steel, Property class 8.8	γMs,V	[-]				1,	25			
Ра	Stainless steel A4 and HCR, Property class 50	γMs,V	[-]				2,	38			
	Stainless steel A4 and HCR, Property class 70	γMs,V	[-]			1.	56			-	-

Injection System VMH for concrete

Performance

Characteristic values for threaded rods under tension and shear loads

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
				INIO	MIU	MIZ	WI IO	M20	M24	WIZ7	1030
Steel failure		NI	[LN]					able C1			
Obevectoristic torology vecie		N _{Rk,s}	[kN] [kN]					N _{Rk.s}			
Characteristic tension resis	stance	N _{Rk,s,C1}				1,0 •					
		$N_{Rk,s,C2}$	[kN]	N	PD	N _{Rk,s}	No Pe	rforman	ice Dete	rmined	(NPD)
Partial factor		γMs,N	[-]				see Ta	able C1			
Combined pull-out and c	oncrete failure										
Characteristic bond resis	tance in uncracke	ed concret	e C20/25								
Temperature range I: 80°C / 50°C		$\tau_{Rk,ucr}$	[N/mm²]	17	17	16	15	14	13	13	13
Temperature range II: 120°C / 72°C		$\tau_{Rk,ucr}$	[N/mm²]	15	14	14	13	12	12	11	11
Temperature range III: 160°C / 100°C		$\tau_{\text{Rk,ucr}}$	[N/mm²]	12	12	11	10	9,5	9,0	9,0	9,0
Characteristic bond resis	tance in cracked	concrete (C20/25								
Temperature range I:	τ _R	$t_{k,cr} = \tau_{Rk,C1}$	[N/mm ²]	6,5	7,0	7,5	8,5	8,5	8,5	8,5	8,5
80°C / 50°C			[N/mm ²]	N	PD	3,6	No Pe	rforman	ice Dete	rmined	(NPD)
Temperature range II:	τ _R	$r_{k,cr} = \tau_{Rk,C1}$		5,5	6,0	6,5	7,5	7,5	7,5	7,5	7,5
120°C / 72°C		τ _{Rk,C2}	[N/mm ²]	N	PD	3,1	No Pe	rforman	ice Dete	rmined	(NPD)
Temperature range III:	τ _R	$r_{k,cr} = \tau_{Rk,C1}$		5,0	5,5	6,0	6,5	6,5	6,5	6,5	6,5
160°C / 100°C		$\tau_{\text{Rk},\text{C2}}$	[N/mm ²]	N	PD	2,5	No Pe	erforman	ice Dete	rmined	(NPD)
			C25/30					02			
			C30/37				,	04			
Increasing factors for conc	rete	Ψc	C35/45				,	07			
Ū		10	C40/50				,	08			
			C45/55				,	09			
	upproclead appare	ta	C50/60					10			
Factor according to CEN/TS1992-4-5	uncracked concre	— ks	[-]				10	-			
	cracked concre	te					/	,2			
Concrete cone failure		1 I					- ر				
Factor according to	uncracked concre		[-]),1			
CEN/TS1992-4-5	cracked concre	te k _{cr}	[-]				7	,2			
Splitting failure		-									
	h/h _{ef} ≥ 2							h _{ef}			
Edge distance _	2,0> h/h _{ef} > 1		[mm]			2		5 – h / h	ef)		
	h/h _{ef} ≤ 1	,3						h _{ef}			
Spacing		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation factor Compressed air cleaning		$\gamma_2 = \gamma_{inst}$	[-]		1,0 (1,2) ¹⁾			1,	,2	
Installation factor		$\gamma_2 = \gamma_{inst}$	[-]		1	~					

Injection System VMH for concrete

Performance

Characteristic values of tension loads for threaded rods

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure <u>without</u> lever arm										
	$V_{Rk,s}$	[kN]				see Ta	ble C1			
Characteristic shear resistance	$V_{Rk,s,C1}$	[kN]				0,70	V _{Rk,s}			
	$V_{Rk,s,C2}$	[kN]	N	PD	0,80 • V _{Rk,s}	No	Performa	nce Detei	mined (N	PD)
Partial factor	γ̃Ms,∨	[-]				see Ta	ble C1			
Steel failure <u>with</u> lever arm										
	$M^{0}{}_{Rk,s}$	[Nm]				see Ta	ble C1			
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]			No Perf	ormance [Determine			
	$M^0_{Rk,s,C2}$	[Nm]			NO F EIK		Jetermine	a (N D)		
Partial factor	γ _{Ms,V}	[-]				see Ta	ble C1			
Concrete pry-out failure										
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]				2	0			
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]				1,	0			
Concrete edge failure										
Effective length of anchor	I _f	[mm]				$I_f = min(h$	_{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]				1,	0			

Characteristic values of shear loads for threaded rods

a,ucr a,ucr	[kN] [-] [kN] [-] [kN] [-] te C20/25 [N/mm ²] [N/mm ²] C20/25	10 16 14 17 14 12	18 27 26 16 14 11	46	42 ,5 67 ,5 59 14 12 9,5	79 121 110 13 12 9,0	123 196 124 ³⁾ 2,86 13 11
As,N Rk,s As,N Rk,s As,N Cret t,ucr t,ucr t,ucr	[-] [kN] [-] [kN] [-] te C20/25 [N/mm ²] [N/mm ²] [N/mm ²] C20/25	16 14 17 14	27 26 16 14	1 46 1 41 1,87 15 13	,5 ,5 59 14 12	121 110 13 12	196 124 ³⁾ 2,86 13 11
Rk,s <u>As,N</u> Rk,s <u>As,N</u> cret .,ucr .,ucr .,ucr t ,ucr t ,ucr	[kN] [-] [kN] [-] te C20/25 [N/mm ²] [N/mm ²] [N/mm ²] C20/25	14 17 14	26 16 14	46 1 41 1,87 15 13	67 ,5 59 14 12	110 13 12	124 ³⁾ 2,86 13 11
Ms,N Rk,s Ms,N Cret ,ucr ,ucr ,ucr tte C	[-] [kN] [-] e C20/25 [N/mm ²] [N/mm ²] [N/mm ²] C20/25	14 17 14	26 16 14	1 41 1,87 15 13	,5 59 14 12	110 13 12	124 ³⁾ 2,86 13 11
Rk,s cret ,ucr ,ucr ,ucr ttk,cr	[kN] [-] ee C20/25 [N/mm ²] [N/mm ²] [N/mm ²] C20/25	17	16 14	41 1,87 15 13	59 14 12	13	2,86 13 11
Rk,s cret ,ucr ,ucr ,ucr ttk,cr	[-] te C20/25 [N/mm ²] [N/mm ²] [N/mm ²] C20/25	17	16 14	1,87 15 13	14	13	2,86 13 11
cret ,ucr ,ucr ,ucr te C	e C20/25 [N/mm ²] [N/mm ²] [N/mm ²] C20/25	14	14	15 13	12	12	13 11
cret ,ucr ,ucr ,ucr te C	e C20/25 [N/mm ²] [N/mm ²] [N/mm ²] C20/25	14	14	13	12	12	11
a,ucr a,ucr a,ucr e te C tk,cr	[N/mm ²] [N/mm ²] [N/mm ²] C20/25	14	14	13	12	12	11
t,ucr t,ucr te C	[N/mm ²] [N/mm ²] C20/25	14	14	13	12	12	11
t,ucr ete C	[N/mm ²]						
ete C	C20/25	12	11	10	9,5	9.0	
lk,cr						0,0	9,0
, -	[N/mm ²]						
lk,cr		7,0	7,5	8,5	8,5	8,5	8,5
	[N/mm ²]	6,0	6,5	7,5	7,5	7,5	7,5
lk,cr	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5
	C25/30			,			
Ψc				,			
1							
	030/60						
k ₈	[-]				-		
				7	,2		
	C 1			10	、 -I		
K _{cr}	[-]			/	,2		
	[]						
r,sp	լՠՠյ						
r,sp	[mm]			2 c	cr,sp		
/inst	[-]		1,0 (1,2) ²⁾			1,2	
/inst	[-]		1,2			-	
	k ₈ ucr k _{cr} sp sp nst nst	C30/37 C35/45 C40/50 C45/55 C50/60 k ₈ [-] Jor .sp [mm] .sp [mm] .sp [mm] .sp [mm] .sp [mm] .sp [mm] .sp [mm]	C30/37 C35/45 C40/50 C45/55 C50/60 k8 [-] Jor [-] sp [mm] sp [mm] nst [-] ust [-] sp [mm] ust [mm] sp [mst [-] [mst [-]	C30/37 C35/45 C40/50 C45/55 C50/60 k ₈ [-]	C30/37 1, C35/45 1, C40/50 1, C45/55 1, C50/60 1, var [-] Jor [-] sp [mm] 2 * h _{ef} (2, sp [mm] 2 * h _{ef} (2, 1,0 1,2 nst [-] 1,0 1,2 nust comply with the appropriate material and proprior steel failure of the given strength class are valid	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C30/37 1,04 C35/45 1,07 C40/50 1,08 C45/55 1,09 C50/60 1,10 ks [-] Jor [-]

Injection System VMH for concrete

Performance

Characteristic values of tension loads for internally threaded anchor rod

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure <u>without</u> lever arm ¹⁾				I		I		
Characteristic shear resistance Steel, strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	39	61
Partial factor	γ _{Ms,V}	[-]			1,	25		
Characteristic shear resistance Steel, strength class 8.8	$V_{Rk,s}$	[kN]	8	14	23	34	60	98
Partial factor	γ _{Ms,V}	[-]			1,	25		
Characteristic shear resistance Stainless steel A4 / HCR, strength class 70	$V_{Rk,s}$	[kN]	7	13	20	30	55	62 ²⁾
Partial factor	γ _{Ms,V}	[-]			1,56			2,38
Steel failure <u>with</u> lever arm ¹⁾								
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial factor	γ _{Ms,V}	[-]			1,	25		
Characteristic bending moment, Steel, strength class 8.8	${\sf M}^0{}_{\sf Rk,s}$	[Nm]	12	30	60	105	267	519
Partial factor	γ _{Ms,V}	[-]			1,	25		
Characteristic bending moment, Stainless steel A4 / HCR, strength class 70	M ⁰ _{Rk,s}	[Nm]	11	26	53	92	234	643 ²⁾
Partial factor	γ _{Ms,V}	[-]			1,56			2,38
Concrete pry-out failure								
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]			2	,0		
Concrete edge failure								
Effective length of anchor	l _f	[mm]			l _f = min(h	_{ef} ; 8 d _{nom})		
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		
⁹ Fastening screws or threaded rods (incl. threaded anchor rod. The characteristic rod and the fastening element ⁹ For VMU-IG M20: Internally threaded rod	shear resista	ance for st	eel failure of	the given stre	ngth class are	valid for the	internally thre	aded ancho

Performance

Characteristic values of shear loads for internally threaded anchor rod

Reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension	esistance N _{Bk s} =	N _{Rk,s,C1}	[kN]					$A_{s} \cdot f_{uk}^{1}$)			
Cross section area		As	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor		γMs,N	[-]					1,4 ²⁾				
Combined pull-out an	d concrete failure	71013,14						.,				
Characteristic bond r	esistance in <u>uncrack</u>	<u>ed</u> concr	ete C20/25	;								
Temperature range I: 80°C / 50°C		$\tau_{Rk,ucr}$	[N/mm ²]	14	14	14	14	13	13	13	13	13
Temperature range II: 120°C / 72°C		$\tau_{Rk,ucr}$	[N/mm²]	13	12	12	12	12	11	11	11	11
Temperature range III: 160°C / 100°C		$\tau_{Rk,ucr}$	[N/mm²]	10	10	9,5	9,5	9,5	9,0	9,0	9,0	9,0
Characteristic bond r	esistance in <u>cracked</u>	concrete	e C20/25									
Temperature range I: 80°C / 50°C	τ _{Rk,c}	$r = \tau_{Rk,C1}$	[N/mm ²]	5,0	5,5	6,0	6,0	7,5	7,5	7,5	7,5	8,0
Temperature range II: 120°C / 72°C	τ _{Rk,c}	$r = \tau_{Rk,C1}$	[N/mm²]	4,5	5,0	5,0	5,5	6,5	6,5	6,5	6,5	7,0
Temperature range III: 160°C / 100°C	τ _{Rk,c}	$r = \tau_{Rk,C1}$	[N/mm²]	4,0	4,5	4,5	5,0	5,5	6,0	6,0	5,5	6,5
			C25/30					1,02				
			C30/37					1,04				
			C35/45					1,07				
Increasing factor for co	ncrete	Ψc	C40/50					1,08			616 13 11 9,0 7,5 6,5	
			C45/55					1,09				
			C50/60					1,10				
Factor according to	uncracked concrete							10,1				
CEN/TS1992-4-5	cracked concrete	k ₈	[-]					7,2				
Concrete cone failure	l											
Factor according to	uncracked concrete	k _{ucr}	[-]					10,1				
CEN/TS1992-4-5	cracked concrete	k _{cr}	[-]					7,2				
Splitting failure												
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				2 * h _{ef}	(2,5 -				
Oracian	h/h _{ef} ≤ 1,3		[]					2,4 h _{ef}				
Spacing Installation factor		S _{cr,sp}	[mm]				0)	2 c _{cr,sp}				
Compressed air clear	ning	$\gamma_2 = \gamma_{inst}$	[-]		1	,0 (1,2)	3)			1,	,2	
Installation factor Manual cleaning		$\gamma_2 = \gamma_{inst}$	[-]			1,2					-	
⁽¹⁾ f _{uk} shall be taken from the ²⁾ in absence of nation regu ³⁾ Value in brackets for crac	ulation			<u> </u>					<u> </u>			
Injection System Performance Characteristic values	VMH for concrete s of tension loads for									Anr	nex C	6

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
	$V_{Rk,s}$	[kN]				0,5	50 • A _s • 1	: 1) uk			
Characteristic shear resistance	V _{Rk,s,C1}	[kN]				0,3	87 • A _s • 1	: 1) uk			
Cross section area	As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ̃Ms,V	[-]		1	1		1,5 ²⁾		1		
Ductility factor according to CEN/TS 1992-4-5	k ₂	[-]					0,8				
Steel failure with lever arm											
	M ⁰ _{Rk,s}	[Nm]				1,2	₂ • W _{el} • f	uk ¹⁾			
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]			No P	erformar	nce Dete	rmined (NPD)		
Elastic section modulus	W _{el}	[mm ³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γms,v	[-]		1			1,5 ²⁾		1		
Concrete pry-out failure											
Factor k acc. to TR 029 Factor k ₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]					2,0				
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
Concrete edge failure											
Effective length of rebar	I _f	[mm]				$I_f = n$	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of rebar	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0			1	
¹⁾ f _{uk} shall be taken from the specification	ons of reinfo	rcing bar	rs								
²⁾ in absence of nation regulation											

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30			
Uncracked concrete C	20/25 under	static and qua	si-static a	action									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046			
80°C / 50°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,040	0,042	0,044	0,047	0,051	0,054	054 0,057 0,06 044 0,046 0,04 056 0,059 0,06 163 0,171 0,17 168 0,176 0,18 099 0,103 0,16 128 0,133 0,13 103 0,107 0,11 133 0,138 0,14 385 0,399 0,41 396 0,410 0,42				
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048			
120°C / 72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179			
160°C / 100°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184			
Cracked concrete C20/	25 under st	atic and quasi-	static act	ion									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106			
80°C / 50°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,104	0,107	0,110	0,116	0,122	0,128	28 0,133 0,1 03 0,107 0,1 33 0,138 0,1 35 0,399 0,2 96 0,410 0,2				
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,093	0,098	0,103	28 0,133 0, 03 0,107 0, 33 0,138 0, 85 0,399 0, 96 0,410 0, Determined (NPD)				
120°C / 72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,14:			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,41			
160°C / 100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	85 0,399 96 0,410				
Cracked concrete C20/	25 under se	eismic action (C	2)										
All $\delta_{N,seis}$	(DLS) -factor	[mm/(N/mm ²)]		PD)	0,120	No	Porforma	nco Doto	mined (N	חס			
	(ULS) -factor	[mm/(N/mm ²)]		-0)	0,140		renoma	nce Delei	mined (N	FD)			
¹⁾ Calculation of the dis $\delta_{N0} = \delta_{N0}$ - factor $\cdot \tau$; $\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$; Table C9: Displ	-	$\begin{array}{l} \delta_{\text{N,seis}(\text{DLS})} = \delta_{\text{N,s}}\\ \delta_{\text{N,seis}(\text{ULS})} = \delta_{\text{N,s}}\\ \end{array}$	eis(ULS)-fac	tor · τ;		ng bond s od)	tress for t	ension					
Threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30			
Uncracked and cracke	d concrete	C20/25 under st	tatic and	quasi-sta	atic actio	n							
	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03			
All temperature ranges	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05			
Cracked concrete C20/	25 under se	eismic action (C	2)										
All δ _{V,seis}	(DLS) -factor	[mm/(kN)]	(N)	יחכ	0,27	No	Dorformo	nan Data	unain a d (N	רח			
temperature	(ULS) -factor	[mm/(kN)]	(NF	-0)	0,27		Periorma	nce Delei	rmined (N	PD)			
$ \label{eq:constraint} \begin{array}{l} ^{1)} \mbox{Calculation of the dis} \\ \delta_{V0} = \delta_{V0} \mbox{-factor} & V; \\ \delta_{V\infty} = \delta_{V\infty} \mbox{-factor} & V; \end{array} $	δι	$V_{\rm seis(DLS)} = \delta_{V,\rm seis(V,\rm seis(ULS)} = \delta_{V,\rm seis(V,\rm s$			v	: acting sl	near load						
Injection System \		-							Annex C8				

able C10: Displac	ements u	nder tensio r	ר load ¹⁾ (internally	threaded	d anchor	rod)	
Internally threaded and	hor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked concrete C2	0/25 under s	tatic and quasi-	-static actio	on				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C / 50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C / 100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete C20/2	25 under stat	ic and quasi-st	atic action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C / 50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,107	0,110	0,116	0,122	0,128	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C / 100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : acting bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \quad \cdot \ \tau;$

Table C11: Displacements under shear load¹⁾ (internally threaded anchor rod)

Internally threaded anch	or rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked and cracked	concrete C20	/25 under sta	tic and qua	si-static act	ion	-	-	
	δ_{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
All temperature ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06
$\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor · V;								
njection System VM	IH for cond	rete						

injection bystem vinit for

Performance

Displacements (internally threaded anchor rod)

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C2	20/25 under	static and quas	i-static a	action							
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm ²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,043	0,045	0,048
80°C / 50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,055	0,058	0,063
Temperature range II:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm ²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,045	0,047	0,050
120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,057	0,060	0,065
Temperature range III:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm ²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,164	0,172	0,186
160°C / 100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,169	0,177	0,192
Cracked concrete C20/2	25 under sta	tic and quasi-s	tatic act	ion							
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm ²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,103	0,108
80°C / 50°C	$\delta_{N\infty}\text{-}factor$	[mm/(N/mm ²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,133	0,141
Temperature range II:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm ²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,107	0,113
120°C / 72°C	δ_{N_∞} -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,138	0,148
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,399	0,425
160°C / 100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,410	0,449

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{- factor } \cdot \tau;$

Table C13: Displacements under shear load¹⁾ (rebar)

ebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 3:
racked and uncracked	concrete C20	/25 under stat	tic and o	quasi-st	atic acti	ion					
	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,0
I temperature ranges -	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,0
¹⁾ Calculation of the disp $\delta_{V0} = \delta_{V0}$ -factor · V; $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;		ting shear load	I								

Injection System VMH for concrete

Performance Displacements (rebar)