

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0784 of 6 October 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

SMART high load anchor type S-ZA

Mechanical anchor for use in concrete

pgb - Polska Sp. z o.o. ul. Fryderyka Wilhelma Redena 3 41-807 ZABRZE POLEN

pgb-Polska plant 4

20 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0784 English translation prepared by DIBt

Page 2 of 20 | 6 October 2017

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 6 October 2017

European Technical Assessment ETA-17/0784 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The SMART highload anchor type S-ZA is an anchor made of galvanised steel or made of stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type S-ZAK with threaded bolt,
- Anchor type S-ZAT with hexagon head screw,
- Anchor type S-ZAV with countersunk washer and countersunk screw.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading	See Annex C1 to C5
Characteristic resistance for seismic performance category C1 and C2	See Annex C6 to C7
Displacements under tension and shear loads	See Annex C9 and C10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C8

European Technical Assessment ETA-17/0784

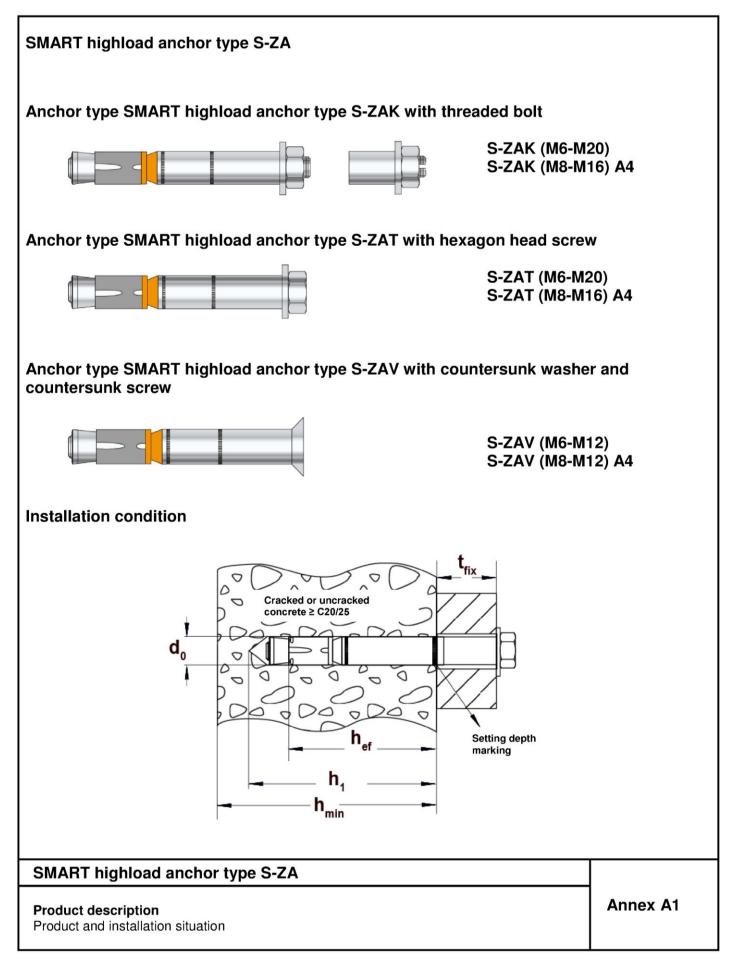
Page 4 of 20 | 6 October 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD Nr. 330232-00-0601 the applicable European legal act is: [96/582/EC].

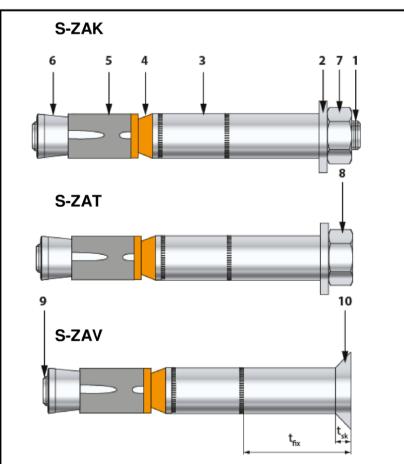
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document Technical details necessary for the implementation of the AVCP system are laid down in the

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 6 October 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *Beglaubigt:* Baderschneider



Page 6 of European Technical Assessment ETA-17/0784 of 6 October 2017

English translation prepared by DIBt

Marking: expansion sleeve: Identifying mark of manufacturing plant additional marking of stainless steel A4 A4 Anchor identity (alternatively on distance sleeve) SZ size of thread (alternatively on distance sleeve) M10 Distance sleeve: Diameter 15 max. thickness of fixture 25 additional marking for countersunk version SK additional marking L on the washer of anchor size SZ 24/M16L

Table A1:	Designation of anchor parts and materials

Part	Designation	Materials galvanised \ge 5 μ m, acc. to EN ISO 4042:1999	Stainless steel A4
1	Threaded bolt	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
2	Washer	Steel, EN 10139:1997	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
3	Distance sleeve	Precision steel tubes DIN 2394/2393	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
4	Ring	Polyethylene	Polyethylene
5	Expansion sleeve	Steel, EN 10139:1997	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
6	Threaded cone	Steel, Strength class 8, EN ISO 898-2:2012	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
7	Hexagon nut	Steel, Strength class 8, EN ISO 898-2:2012	ISO 3506, strength class 70, stainless steel 1.4401 or 1.4571, EN 10088:2005
8	Hexagon head screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
9	Countersunk screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
10	Countersunk washer	Steel, EN 10083-2:2006	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005, zinc plated

SMART highload anchor type S-ZA

Product description

Marking and materials

Annex A2

٦

Specifications of intended use							
SMART highload anchor type S-ZA, steel zinc plated	10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Static or quasi-static action				\checkmark			
Seismic action (S-ZAK and S-ZAT)	-			C1 ·	+ C2		
Seismic action (S-ZAV)	-		C1 + C2			-	
Fire exposure			R	30 R 1	20		
SMART highload anchor type S-ZA, stainless steel A4		12/M8	15/M10	18/M12	24/M16		
Static or quasi-static action		\checkmark					
Seismic action (S-ZAK and S-ZAT)		C1 + C2					
Seismic action (S-ZAV)		C1 + C2 -					
Fire exposure			R30	. R120			

Base materials:

- Cracked and uncracked concrete •
- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions, seismic actions und under fire exposure are designed in accordance with FprEN 1992-4:2016 and TR 055.

Installation:

- Anchor installation carried out by appropriately gualified personnel and under the supervision of the person • responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with. This compliance is ensured when the embedment mark of the anchor does no more exceed the concrete surface.
- Drill hole by hammer drilling only (use of vacuum drill bits is admissible)

SMART highload anchor type S-ZA

Intended use Specifications

Installation instructions

90°)	Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3.
2	Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
	Drive in anchor.
4	Apply tightening torque T _{inst} by using calibrated torque wrench.

SMART highload anchor type S-ZA

Intended use Installation instructions Annex B2

Deutsches Institut DIBt für Bautechnik

Table B1: Installation parameters, steel zinc plated												
Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20			
Size of thread		[-]	M6	M8	M10	M12	M16	M16	M20			
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125			
Nominal diameter of drill bit	$d_0 =$	[mm]	10	12	15	18	24	24	28			
Cutting diameter of drill bit	$d_{cut} \le$	[mm]	10,45	12,5	15,5	18,5	24,55	24,55	28,55			
Depth of drill hole	$h_1 \geq$	[mm]	65	80	95	105	130	145	160			
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	12	14	17	20	26	26	31			
Thickness of fixture	t _{fix min}	[mm]	0	0	0	0	0	0	0			
S-ZAK and S-ZAT	t _{fix max}	[mm]	200	200	200	250	300	300	300			
Thickness of fixture S-ZAV	t _{fix min} 2)	[mm]	8	10	14	18	-	-	-			
Thickness of fixture S-ZAV	t _{fix max}	[mm]	200	200	200	250	-	-	-			
Thickness of countersunk washer S-ZAV	t _{sk}	[mm]	4	5	6	7	-	-	-			
Required setting T _{inst} (S-ZAF	K, S-ZAT)	[Nm]	15	30	50	80	160	160	280			
torque T _{inst}	(S-ZAV)	[Nm]	10	25	55	70	-	-	-			
Minimum thickness of member	h _{min}	[mm]	100	120	140	160	200	230	250			
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	50	60	70	100	100	125			
cracked concrete	for $c \ge$	[mm]	50	80	120	140	180	180	300			
Minimum edge distance ^{1) 3)}	C _{min}	[mm]	50	55	60	70	100	100	180			
cracked concrete	for s \geq	[mm]	50	100	120	160	220	220	540			
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	60	60	70	100	100	125			
uncracked concrete	for $c \ge$	[mm]	80	100	120	140	180	180	300			
Minimum edge distance ^{1) 3)}	C _{min}	[mm]	50	60	60	70	100	100	180			
uncracked concrete	for $s \ge$	[mm]	100	120	120	160	220	220	540			

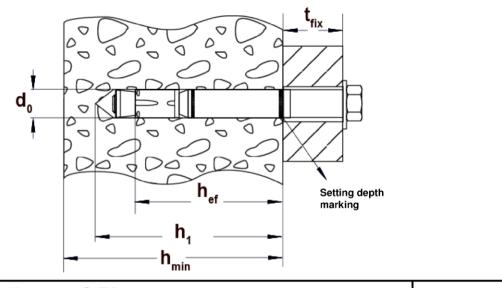
¹⁾ Intermediate values by linear interpolation

²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole). ³⁾ For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

SMART highload anchor type S-ZA

Intended use

Installation parameters, steel zinc plated


Annex B3

Deutsches Institut) für Bautechnik

Anchor size			12/M8	15/M10	18/M12	24/M16
Size of thread		[-]	M8	M10	M12	M16
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100
Nominal diameter of drill bit	d ₀ =	[mm]	12	15	18	24
Cutting diameter of drill bit	$d_{cut} \le$	[mm]	12,5	15,5	18,5	24,55
Depth of drill hole	$h_1 \ge$	[mm]	80	95	105	130
Diameter of clearance hole in the fix	ture d _f ≤	[mm]	14	17	20	26
Thickness of finiture C ZAK and C ZA	T t _{fix min}	[mm]	0	0	0	0
Thickness of fixture S-ZAK and S-ZA	t _{fix max}	[mm]	200	200	250	300
Thickness of fixture S-ZAV	t _{fix min} 2)	[mm]	10	14	18	-
Thickness of fixture S-ZAV	t _{fix max}	[mm]	200	200	250	-
Thickness of countersunk washer S-ZAV	t _{sk}	[mm]	5	6	7	-
	T _{inst} (S-ZAK)	[Nm]	35	55	90	170
Required setting torque	T _{inst} (S-ZAT)	[Nm]	30	50	80	170
	T _{inst} (S-ZAV)	[Nm]	17,5	42,5	50	-
Minimum thickness of member	h _{min}	[mm]	120	140	160	200
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	60	70	80
cracked concrete	for $c \ge$	[mm]	80	120	140	180
Minimum edge distance 1) 3)	C _{min}	[mm]	50	60	70	80
cracked concrete	for s \geq	[mm]	80	120	160	200
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	60	70	80
uncracked concrete	for $c \ge$	[mm]	80	120	140	180
Minimum edge distance ^{1) 3)}	C _{min}	[mm]	50	85	70	180
uncracked concrete	for s \geq	[mm]	80	185	160	80

¹⁾ Intermediate values by linear interpolation
 ²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex 100). It must be varified that the present shear load can be transferred completely into the distance sleeve (bearing of hole).

³⁾ For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

SMART highload anchor type S-ZA

Intended use

Installation parameters, stainless steel A4

Annex B4

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Installation safety factor	γinst	[-]				1,0			
Steel failure	,								
Characteristic resistance	N _{Rk,s}	[kN]	16	29	46	67	126	126	196
Partial safety factor	γ́Ms	[-]				1,5			
Pull-out failure									
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	12	16	1)	1)	1)	1)
Increasing factor for $N_{Rk,p}$	Ψc	[-]				$\left(\frac{f_{ck}}{20}\right)^{0,5}$			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125
				00	7.		100	110	
	k _{cr,N}	[-]				7,7	100	110	
⁾ Pull-out is not decisive.	c values	for ter	nsion lo	ad, cra	cked co	7,7			
⁾ Pull-out is not decisive. Table C2: Characteristic	c values	for ter	nsion lo	ad, cra	cked co s steel /	7,7	18/M1		//M16
⁾ Pull-out is not decisive. Fable C2: Characteristic under static c	c values	for ter	nsion lo	ad, cra tainles	cked co s steel /	7,7 oncrete A4	18/M1		
under static o	c values	[-] for ter	nsion lo action, s	ad, cra tainles	cked co s steel /	7,7 oncrete A4 /M10	18/M1		
¹⁾ Pull-out is not decisive. Table C2: Characteristic under static c Anchor size Installation safety factor	c values	[-] for ter	nsion lo action, s	ad, cra tainles	cked co s steel /	7,7 oncrete A4 /M10	18/M1		
⁹ Pull-out is not decisive. Table C2: Characteristic under static of Anchor size Installation safety factor Steel failure	c values	[-] for ter	nsion lo action, s	ad, cra tainles	cked co s steel / 15	7,7 oncrete A4 /M10	18/M1	2 24	
 Pull-out is not decisive. Table C2: Characteristic under static c Anchor size Installation safety factor Steel failure S-ZAK 	c values	[-] for ter static a	action, s	ad, cra tainles 12/M8	cked co s steel / 15	7,7 oncrete A4 /M10 1,0	18/M1 2	2 24	/ M 16
 Pull-out is not decisive. Table C2: Characteristic under static of under static of anchor size Installation safety factor Steel failure S-ZAK Characteristic resistance 	c values	[-] for ter static a γ _{inst}	action, s	ad, cra tainles 12/M8	cked co s steel / 15	7,7 PACE PACE 7,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7	18/M1 2	2 24	//M16
 Pull-out is not decisive. Table C2: Characteristic under static c Anchor size Installation safety factor Steel failure S-ZAK Characteristic resistance Partial safety factor 	c values	[-] for ter static a γ _{inst}	action, s	ad, cra tainles 12/M8	cked co s steel / 15	7,7 PACE PACE 7,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7	18/M1 2	2 24	/ M 16

SMART highload anchor type S-ZA

Performance

Characteristic resistance in

Characteristic values for tension load in cracked concrete under static or quasi-static action

 $N_{Rk,p}$

Ψc

h_{ef}

 $k_{cr,N}$

[kN]

[-]

[mm]

[-]

9

60

16

71

Annex C1

1)

100

1)

80

 $\left(\frac{f_{ck}}{20}\right)^{0,5}$

7,7

Table C3: Characteristic						concre	te,		
under static or Anchor size	quasi-s	tatic ac	10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Installation safety factor	γinst	[-]				1,0			
Steel failure	,		1						
Characteristic resistance	N _{Rk,s}	[kN]	16	29	46	67	126	126	196
Partial safety factor	γ́Ms	[-]				1,5			
Pull-out failure									
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	1)	20	1)	1)	1)	1)	1)
Splitting failure (The higher re-	sistance of	case 1 a	nd case 2 i	may be ap	plied.)				
Case 1									
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	30	40	70	50
Edge distance	C _{cr,sp}	[mm]				1,5 h _{ef}			
Case 2									
Characteristic resistance in uncracked concrete C20/25	${\sf N}^0_{\sf Rk,sp}$	[kN]	17,4	20,0	29,4	35,2	49,2	60,7	68,8
Edge distance	C _{cr,sp}	[mm]			2,5 h _{ef}			1,5 h _{ef}	2,5 h _{ef}
Increasing factor for $N_{\text{Rk},p}$ and $N^0_{\text{Rk},\text{sp}}$	Ψc	[-]				$\left(\frac{f_{ck}}{20}\right)^{0,5}$			
Concrete cone failure									
Effective Anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125
Edge distance	C _{cr,N}	[mm]				1,5 h _{ef}			
Factor for k ₁	$k_{\text{ucr},N}$	[-]				11,0			

¹⁾ Pull-out is not decisive.

SMART highload anchor type S-ZA

Performance

Characteristic values for **tension load** in **uncracked concrete**, under static or quasi-static action, **steel zinc plated**

Table C4: Characteristic values for tension load in uncracked concrete under static or quasistatic action, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16
Installation safety factor	γinst	[-]		1	,0	
Steel failure				-	-	-
S-ZAK						
Characteristic resistance	N _{Rk,s}	[kN]	26	41	60	110
Partial safety factor	γMs	[-]		1	,5	
S-ZAT and S-ZAV						
Characteristic resistance	N _{Rk,s}	[kN]	26	41	60	110
Partial safety factor	γMs	[-]		1,	87	
Pull-out failure		·				-
Characteristic resistance in	N _{Rk,p}	[kN]	16	25	35	1)
uncracked concrete C20/25	IN Rk,p		10	20		
Splitting failure					-	
Characteristic resistance in	N ⁰ _{Rk,sp}	[kN]	16	25	35	49,2
uncracked concrete C20/25	-					
Edge distance	C _{cr,sp}	[mm]	180	235	265	300
Increasing factor for $N_{Rk,p}$ and $N_{Rk,sp}^{0}$	Ψc	[-]		$\left(\frac{f_{ck}}{20}\right)$) ^{0,5}	
	ΨĊ					
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100
Edge distance	C _{cr,N}	[mm]		1,5	h _{ef}	
Factor for k ₁	k _{ucr,N}	[-]		11	,0	

¹⁾ Pull-out is not decisive.

Performance

Characteristic values for **tension loads** in **uncracked concrete** under static or quasi-static action, **stainless steel A4**

Table C5:Characteristic values of shear load under static or quasi-static action,
steel zinc plated

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Steel failure without lever a	rm								
S-ZAK									
Characteristic resistance	$V_{Rk,s}$	[kN]	16	25	36	63	91	91	122
Factor	k ₇	[-]				1,0			I
S-ZAT									
Characteristic resistance	$V_{Rk,s}$	[kN]	18	30	48	73	126	126	150
Factor	k ₇	[-]				1,0			
S-ZAV									
Characteristic resistance	$V_{Rk,s}$	[kN]	18	30	48	73	126	126	150
Factor	k ₇	[-]				1,0			
Partial safety factor	γ _{Ms}	[-]				1,25			
Steel failure with lever arm									
Characteristic resistance	${\sf M}^0_{{\sf Rk},{\sf s}}$	[Nm]	12	30	60	105	266	266	519
Partial safety factor	γ _{Ms}	[-]			•	1,25			
Concrete pry-out failure									
Factor	k ₈	[-]	1,8			2	,0		
Concrete edge failure		_							
Effective length of anchor in shear loading	۱ _f	[mm]	50	60	71	80	100	115	125
Outside diameter of anchor	d _{nom}	[mm]	10	12	15	18	24	24	28

SMART highload anchor type S-ZA

Performance

Characteristic values for **shear load** under static or quasi-static action, **steel zinc plated**

Table C6: Characteristic values for shear load under static or quasi-static action, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16	
Steel failure without lever arm							
Characteristic resistance	$V_{Rk,s}$	[kN]	24	37	62	92	
S-ZAK							
Factor	k ₇	[-]		1,	,0		
Partial safety factor	γ_{Ms}	[-]		1,	25		
S-ZAT							
Factor	k ₇	[-]		1,	0		
Partial safety factor	γ _{Ms}	[-]		1,	36		
S-ZAV							
Factor	k ₇	[-]			,8		
Partial safety factor	γ _{Ms} [-] 1,36						
Steel failure with lever arm							
Characteristic resistance	${\sf M}^0{}_{\sf Rk,s}$	[Nm]	26	52	92	232	
S-ZAK						I	
Factor	k ₇	[-]	1,0				
Partial safety factor	γ _{Ms}	[-]	1,25				
S-ZAT							
Factor	k ₇	[-]		1,	0		
Partial safety factor	γ_{Ms}	[-]		1,	56		
S-ZAV							
Factor	k ₇	[-]		0	,8		
Partial safety factor	I safety factor γ_{Ms} [-] 1,56						
Concrete pry-out failure							
Factor	k ₈ [-] 2,0						
Concrete edge failure							
Effective length of anchor in shear loading	ا _f	[mm]	60	71	80	100	
Outside diameter of anchor	d _{nom}	[mm]	12	15	18	24	

SMART highload anchor type S-ZA

Performance

Characteristic values for **shear load** under static or quasi-static action, **stainless steel A4**

Anchor size			12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Tension load								
Installation safety factor	γinst	[-]			1	,0		
Steel failure								
Characteristic tension resistance category C1	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	126	196
Characteristic tension resistance category C2	N _{Rk,s,eq,C2}	[kN]	29	46	67	126	126	196
Partial safety factor	γ_{Ms}	[-]			1	,5		
Pull-out failure								
Characteristic tension resistance category C1	N _{Rk,p,eq,C1}	[kN]	12	16	25	36	44,4	50,3
Characteristic tension resistance category C2	N _{Rk,p,eq,C2}	[kN]	5,4	16,4	22,6	29,0	41,2	43,6
Shear load								
Steel failure without lever arm								
S-ZAK								
Characteristic shear resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4
Characteristic shear resistance category C2	$V_{\rm Rk,s,eq,C2}$	[kN]	12,7	20,5	31,5	50,1	50,1	67,1
S-ZAT								
Characteristic shear resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4
Characteristic shear resistance category C2	$V_{\rm Rk,s,eq,C2}$	[kN]	12,7	20,5	31,5	69,3	69,3	67,1
S-ZAV								
Characteristic shear resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	25,2	36,5	50,4	-	-	-
Characteristic shear resistance category C2	$V_{Rk,s,eq,C2}$	[kN]	19,2	29,3	39,4	-	-	-
Partial safety factor	γ_{Ms}	[-]				25	·	

SMART highload anchor type S-ZA

Performance

Characteristic values for seismic action, steel zinc plated

Table C8:Characteristic values for seisstainless steel A4	mic action	, Cate	gory C1	and C2,			
Anchor size			12/M8	15/M10	18/M12	24/M16	
Tension load					5	<u>-</u>	
Installation safety factor	[-]	1,0					
Steel failure							
Characteristic tension resistance, category C1	$N_{Rk,s,eq,C1}$	[kN]	26	41	60	110	
Characteristic tension resistance, category C2	$N_{Rk,s,eq,C2}$	[kN]	26	41	60	110	
Partial safety factor S-ZAK	γ_{Ms}	[-]	1,5				
Partial safety factor S-ZAT and S-ZAV	[-]		1,	87			
Pull-out failure							
Characteristic tension resistance, category C1	$N_{Rk,p,eq,C1}$	[kN]	9	16	26	36	
Characteristic tension resistance, category C2	N _{Rk,p,eq,C2}	[kN]	4,8	16,5	24,8	44,5	
Shear load	-						
Steel failure without lever arm							
S-ZAK							
Characteristic shear resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4	
Characteristic shear resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2	
Partial safety factor	γ_{Ms}	[-]	1,25				
S-ZAT							
Characteristic shear resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4	
Characteristic shear resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2	
Partial safety factor	γ_{Ms}	[-]	1,36				
S-ZAV							
Characteristic shear resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	11,5	23,3	31,6	-	
Characteristic shear resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	10,8	17,4	15,4	-	
Partial safety factor	γ_{Ms}	[-]		1,36		-	

SMART highload anchor type S-ZA

Performance

Characteristic values for seismic action, stainless steel A4

Anchor size				10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M2
Tension load										
Steel failure										
Steel zinc pla	ted									
	R30	_		1,0	1,9	4,3	6,3	1	1,6	18,3
Characteristic	R60	— N _{Rk,s,fi}	[kN]	0,8	1,5	3,2	4,6	8	3,6	13,5
resistance	R90	INHK,S,⊓		0,6	1,0	2,1	3,0	5	5,0	7,7
	R120			0,4	0,8	1,5	2,0	3	3,1	4,9
Stainless stee	el A4				_	_		_		
	R30	_		-	6,1	10,2	15,7	29,2	-	-
Characteristic	R60	— N _{Rk,s,fi}	[kN]	-	4,4	7,3	11,1	20,6	-	-
resistance	R90	INRk,s,fi		-	2,6	4,3	6,4	12,0	-	-
	R120			-	1,8	2,8	4,1	7,7	-	-
Shear load										
Steel failure v	vithout leve	er arm								
Steel zinc pla	ted									
•	R30			1,0	1,9	4,3	6,3	1	1,6	18,3
Characteristic	R60	_	[kN]	0,8	1,5	3,2	4,6	8	3,6	13,5
resistance	R90	- V _{Rk,s,fi}		0,6	1,0	2,1	3,0	5	5,0	7,7
	R120	_		0,4	0,8	1,5	2,0	3,1		4,9
Stainless stee	el A4									
	R30			-	14,3	22,7	32,8	61,0	-	-
Characteristic	R60	—	s,fi [kN]	-	11,1	17,6	25,5	47,5	-	-
resistance	R90	— V _{Rk,s,fi}		-	7,9	12,6	18,3	34,0	-	-
	R120	_		-	6,3	10,0	14,6	27,2	-	-
Steel failure v	vith lever a	rm							1	
Steel zinc pla	ted									
	R30			0,8	2,0	5,6	9,7	2	4,8	42,4
Characteristic	R60	_		0,6	1,5	4,1	7,2		8,3	29,8
resistance	R90	— M ⁰ _{Rk,s,fi}	[Nm]	0,4	1,0	2,7	4,7		1,9	17,1
	R120	_		0,3	0,8	1,9	3,1		5,6	10,7
Stainless stee				- / -	- / -	- / -	-,-		- , -	, .
	R30			-	6,2	13,2	24,4	61,8	-	-
Characteristic	R60	_		-	4,5	9,4	17,2	43,6	-	-
resistance	R90	— M ⁰ _{Rk,s,fi}	[Nm]	-	2,7	5,6	10,0	25,3	-	-
	R120	_		-	1,8	3,6	6,4	16,2	-	-
If pull-out is not	decisive in E	quation (D	4) and (D.5) FprEN	1992, N _{Rk,j}	must be re	placed by N	J ⁰ _{Rk,c} .		

Performance Characteristic values under fire exposure

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Tension load				-			-		
Tension load in cracked concrete	Ν	[kN]	2,4	5,7	7,6	12,3	17,1	21,1	24
Displacement	δ_{N0}	[mm]	0,5	0,5	0,5	0,7	0,8	0,7	0,9
	δ _{N∞}	[mm]	2,0	2,0	1,3	1,3	1,3	1,3	1,4
Tension load in uncracked concrete	Ν	[kN]	8,5	9,5	14,3	17,2	24	29,6	34
Displacement	δ_{N0}	[mm]	0,8	1,0		1,1		1,3	0,3
	δ_{N^∞}	[mm]	3	,4		1,7		2,3	1,4
Seismic action C2									
Displacement for DLS	$\delta_{N,eq (DLS)}$	[mm]	-	3,3	3,0	5,0	3,0	3,0	4,0
Displacement for ULS	$\delta_{\text{N,eq (ULS)}}$	[mm]	-	12,2	11,3	16,0	9,2	9,2	13,8
Shear load									
S-ZAK									
Shear load in cracked and uncracked concrete	V	[kN]	9,1	14	20,7	35,1	52,1	52,1	77
Displacement	δ_{V0}	[mm]	2,5	2,1	2,7	3,0	5,1	5,1	4,3
	δ_{V^∞}	[mm]	3,8	3,1	4,1	4,5	7,6	7,6	6,5
Seismic action C2									
Displacement for DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]	-	2,3	3,1	3,0	2,6	2,6	1,6
Displacement for ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	-	4,8	6,4	6,1	6,6	6,6	4,8
S-ZAT									
Shear load in cracked and uncracked concrete	V	[kN]	10,1	17,1	27,5	41,5	72	72	77
Displacement	δ_{V0}	[mm]	2,9	2,5	3,6	3,5	7,0	7,0	4,3
	δ_{V^∞}	[mm]	4,4	3,8	5,4	5,3	10,5	10,5	6,5
Seismic action C2									
Displacement for DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]	-	2,3	3,1	3,0	3,3	3,3	1,6
Displacement for ULS	$\delta_{\text{V,eq (ULS)}}$		-	4,8	6,4	6,1	8,2	8,2	4,8
S-ZAV									
Shear load in cracked and uncracked concrete	V	[kN]	10,1	17,1	27,5	41,5	72	72	77
Displacement	δ_{V0}	[mm]	2,9	2,5	3,6	3,5	7,0	7,0	4,3
	δ_{V^∞}	[mm]	4,4	3,8	5,4	5,3	10,5	10,5	6,5
Seismic action C2									
Displacement for DLS	$\delta_{V,eq (DLS)}$	[mm]	-	3,1	3,9	3,9	-	-	-
Displacement for ULS	$\delta_{V,eq (ULS)}$	[mm]	-	10,2	11,8	13,0	-	_	_

SMART highload anchor type S-ZA

Performance

Displacements under tension and shear load, steel zinc plated

Anchor size			12/M8	15/M10	18/M12	24/M16
Tension load						
Tension load in cracked concrete	Ν	[kN]	4,3	7,6	12,1	17,0
Displacement	δ _{N0}	[mm]	0,5	0,5	1,3	0,5
	$\delta_{N\infty}$	[mm]	1,2	1,6	1,8	1,6
Tension load in uncracked concrete	N	[kN]	7,6	11,9	16,7	24,1
Displacement	δ _{N0}	[mm]	0,2	0,3	1,2	1,5
	$\delta_{N\infty}$	[mm]	1,1	-	-	-
Seismic action C2						
Displacement for DLS	$\delta_{\text{N,eq (DLS)}}$	[mm]	4,7	4,5	4,3	4,9
Displacement for ULS	$\delta_{\text{N,eq}}$ (ULS)	[mm]	13,3	12,7	9,7	10,1
Shear load						
Shear load in cracked concrete	V	[kN]	13,9	21,1	34,7	50,8
Displacement	δ _{V0}	[mm]	3,4	4,9	4,8	6,7
	$\delta_{V\infty}$	[mm]	5,1	7,4	7,1	10,1
Seismic action C2						
S-ZAK, S-ZAT						
Displacement for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	2,8	3,1	2,6	3,3
Displacement for ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	5,6	5,8	5,0	6,9
S-ZAV						
Displacement for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	2,5	2,8	2,9	-
Displacement for ULS	$\delta_{V,eq~(ULS)}$	[mm]	5,8	5,9	6,9	-

SMART highload anchor type S-ZA

Performance

Displacements under tension and shear load, stainless steel A4