

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0873 of 12 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Injection system FME for concrete
Product family to which the construction product belongs	Injection system for use in concrete
Manufacturer	Fasten (Dalian) Engineering Material Co.; Ltd No. 220 Gaoerji Road, Xigang District DALIAN VOLKSREPUBLIK CHINA
Manufacturing plant	Manufacturing plant no. 1 Manufacturing plant no. 2
This European Technical Assessment contains	25 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0873

Page 2 of 25 | 12 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 12 December 2017

Specific Part

1 Technical description of the product

The "Injection system FME for concrete" is a bonded anchor consisting of a cartridge with injection mortar FME and a steel element. The steel element consist of a threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod FMZ-IG-M6 to FMZ-IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static action and seismic performance categories C1, C2	See Annex C 1 to C 7
Displacements	See Annex C 8 to C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-17/0873

Page 4 of 25 | 12 December 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

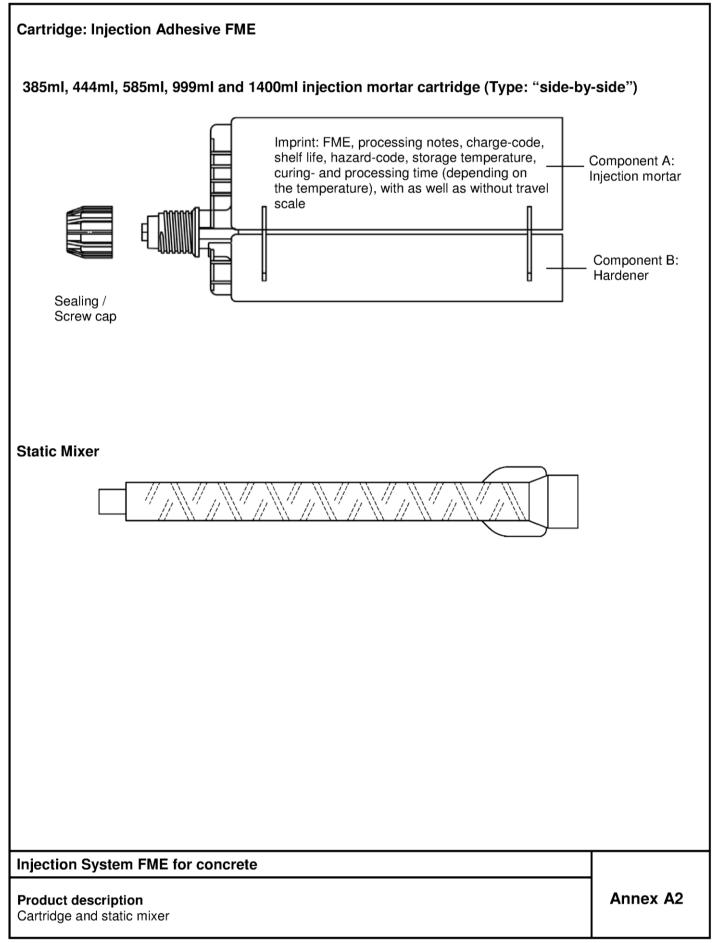
In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

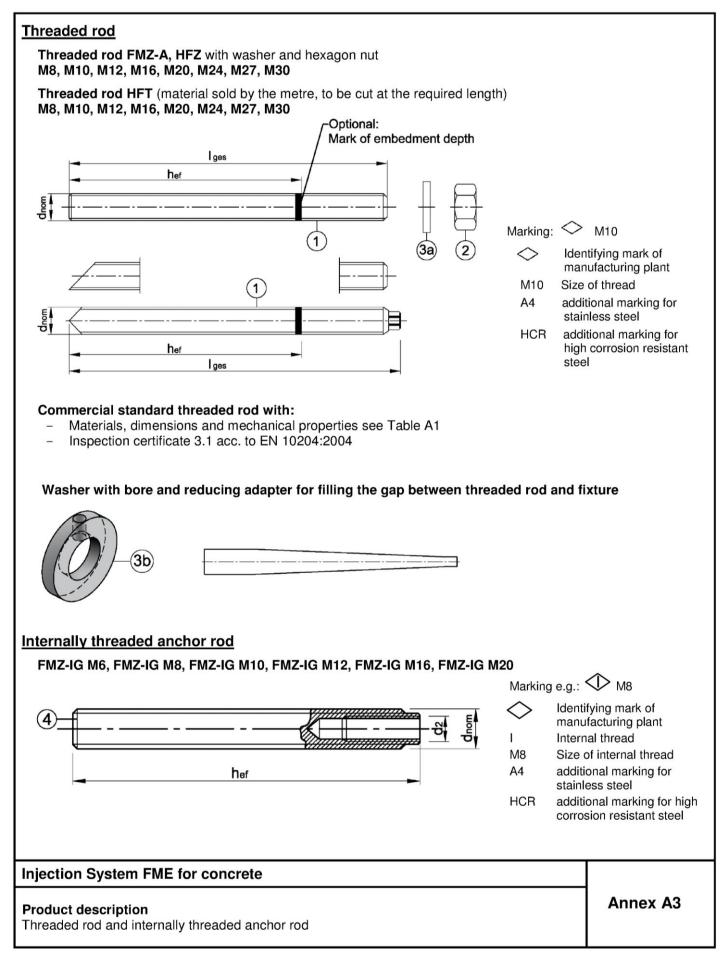
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 12 December 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider



Page 6 of European Technical Assessment ETA-17/0873 of 12 December 2017


English translation prepared by DIBt

electronic copy of the eta by dibt: eta-17/0873

Table A1: Materials

Part	Designatio	n	Material		
	, zinc plated		Material		
		n acc. to EN ISO 404	42:1999 or hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009		
			rdized ≥ 40µm acc. to EN ISO 17668:2016		
			$f_{uk} \ge 400 \text{ N/mm}^2$; $f_{yk} \ge 240 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation	EN 10087:1998,	
	Property class 4.8		$f_{uk} \ge 400 \text{ N/mm}^2$; $f_{yk} \ge 320 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation	EN 10263:2001;	
1	Threaded		$f_{uk} \ge 500 \text{ N/mm}^2$; $f_{yk} \ge 300 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation	Commercial standar	
	rod		$f_{uk} \ge 500 \text{ N/mm}^2$; $f_{vk} \ge 400 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation	threaded rod:	
			$f_{uk} \ge 800 \text{ N/mm}^2$; $f_{yk} \ge 640 \text{ N/mm}^2$; $A_5 > 12 \%$ fracture elongation ¹⁾	EN ISO 898-1:2013	
			Steel, zinc plated		
2	Hexagon nut	ŀ	Property class 4 (for class 4.6 or 4.8 rod)	EN ISO 898-2:2012	
-	lioxagon na		Property class 5 (for class 5.6 or 5.8 rod)		
			Property class 8 (for class 8.8 rod)		
3a	Washer		Steel, zinc plated		
			(e.g: EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)		
Зb	Washer with	bore	Steel, zinc plated		
4	Internally thr	eaded anchor rod	Steel, electroplated, $A_5 > 8$ % fracture elongation	EN 10087:1998	
·			Property class 5.8 and 8.8	211 10007.1000	
Stain	less steel A4				
			Material 1.4401 / 1.4404 / 1.4571 / 1.4578 / 1.4362 / 1.4062	EN 10088-1:2014	
1	Threaded	Property class 50	f_{uk} = 500 N/mm ² ; f_{vk} = 210 N/mm ² ; A_5 > 12% fracture elongation ¹⁾		
1	rod	$f = 700 \text{ N/mm}^2$; $f = 450 \text{ N/mm}^2$; $A = 12\%$ fronture elementic		EN ISO 3506-1:200	
		Property class 70	M8 to M24		
			Stainless steel A4		
2	Hexagon nut	t	Property class 50 (for class 50 rod)	EN ISO 3506-2:200	
			Property class 70 (for class 70 rod; \leq M24)		
3a	Washer		Stainless steel A4		
Sa	vvasner		(e.g.: EN ISO 7089:2000, EN ISO 7093:2000, EN ISO 7094:2000)	EN 10088-1: 2014	
Зb	Washer with	bore	Material 1.4401 / 1.4404 / 1.4571 / 1.4362		
			Material 1.4401 / 1.4404 / 1.4571 / 1.4362; A ₅ > 8 % fracture elongation		
4	Internally thr	eaded anchor rod	EN 10088-1: 2014		
-	internally the	Property class 50 (IG-M20)			
			Property class 70 (IG-M8 to IG-M16)		
High	corrosion res	istant steel HCR			
			Material 1.4529 / 1.4565	EN 10088-1: 2014	
1		Property class 50	f_{uk} = 500 N/mm ² ; f_{yk} = 210 N/mm ² ; A_5 > 12% fracture elongation ¹)		
	rod	Property class 70	f_{uk} = 700 N/mm ² ; f_{yk} = 450 N/mm ² ; A_5 > 12% fracture elongation ¹)	EN ISO 3506-1: 200	
			M8 to M24		
6			Material 1.4529 / 1.4565	EN 10088-1: 2014	
2	Hexagon nut	t	Property class 50 ((for class 50 rod)	EN ISO 3506-2:200	
			Property class 70 (for class 70 rod; ≤ M24)		
3a	Washer		Material 1.4529 / 1.4565		
54			(e.g.: EN ISO 7089:2000, EN ISO 7093:2000, EN ISO 7094:2000)	EN 10088-1: 2014	
Зb	Washer with	bore	Material 1.4529 / 1.4565		
			Material 1.4529 / 1.4565, $A_5 > 8$ % fracture elongation		
4	Internally thr	eaded anchor rod	Property class 50 (IG-M20), Property class 70 (IG-M8 to IG-M16)	EN 10088-1: 2014	
		A D D C C C C C C C C C C			
' Frac	cture elongatio	on $A_5 > 8$ % for appli	cations without requirements for seismic performance category Ca	2	
				T	
njec	tion Syster	m FME for conc	rete		
		_]	
	uct descript	ion		Annex A4	
Mater	rials				

<u>Reinforcing bar</u> Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25, Ø 3	28, Ø 32
5 000000000000000000000000000000000000	
 Minimum value of related rip are Rip height of the bar shall be in (d: Nominal diameter of the bar; 	ea f _{R,min} according to EN 1992-1-1:2004+AC:2010 the range 0,05d \leq h \leq 0,07d ; h: Rip height of the bar)
Table A2: Material reinforcing ba Part Designation	r Material

Part	Designation	Material
Reba	r	
5		Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk}=f_{tk}=k{\boldsymbol{\cdot}} f_{yk}$

Injection System FME for concrete

Product description

Product description and material reinforcing bar

	Anchor rod	Internally threaded anchor rod				
Injection system FME	FMZ-A, HFZ, HFT FMZ-IG commercial standard threaded rod		rebar			
Static or quasi-static action	M8 - M30 (zinc plated, A4, HCR)	IG M6 - IG M20 (electroplated, A4, HCR)	Ø8 - Ø32			
Seismic action Performance Category C1	M8 - M30 (zinc plated ¹⁾ , A4, HCR)	-	Ø8 - Ø32			
Seismic action Performance Category C2	M12 and M16 (zinc plated ¹⁾ (class 8.8), A4, HCR)	-	-			
	Reinforced or unreinforced n	ormal weight concrete a	cc. to EN 206-1:2000			
Base material	Strength classes C2	0/25 to C50/60 acc. to E	N 206-1:2000			
	Cracked	and uncracked concrete	е			
Temperature Range I -40 °C to +40 °C	°C max long term temperature +24 °C and max short term temperature +40 °C					
Temperature Range II -40 °C to +60 °C	C to +60 °C max long term temperature +43 °C and max short term temperature +60 °C					
Temperature Range III -40 °C to +72 °C	+72 °C max long term temperature +43 °C and max short term temperature +72 °C					

except hot-dip galvanised

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular
 aggressive conditions exist (high corrosion resistant steel)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride
 atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where
 de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or - CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- · Dry or wet concrete, flooded holes (not sea water)
- · Hole drilling by hammer or compressed air drill mode or vacuum drill mode
- Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod

Injection System FME for concrete

Intended use Specifications

Table BT: Installation parameters for threaded rod										
Threaded rod		M8	M10	M12	M16	M20	M24	M27	M30	
Nominal drill hole diameter	d ₀ =	[mm]	10	12	14	18	24	28	32	35
Effective anchorage depth	h _{ef,min} =	[mm]	60	60	70	80	90	96	108	120
Enective anchorage depth	h _{ef,max} =	[mm]	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Installation torque	T _{inst} ≤	[Nm]	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min}	[mm]	[mm] h _{ef} + 30 mm ≥ 100 mm			$h_{ef} + 2d_0$				
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	135	150

Table B1: Installation parameters for threaded rod

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum dnom + 1mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of sleeve	d ₂ =	[mm]	6	8	10	12	16	20
Outer diameter of sleeve ²⁾	d _{nom} =	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀ =	[mm]	12	14	18	24	28	35
Effective anchorage depth	h _{ef,min} =	[mm]	60	70	80	90	96	120
Ellective anchorage depth	h _{ef,max} =	[mm]	120	144	192	240	288	360
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	I IG	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]] h_{ef} + 30 mm h_{ef} + 2d ₀					
Minimum spacing	S _{min}	[mm]	50	60	80	100	120	150
Minimum edge distance	C _{min}	[mm]	50	60	80	100	120	150

¹⁾ For larger clearance hole see TR029 section 1.1

²⁾ With metric thread according to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ =	[mm]	12	14	16	18	20	24	32	35	40
Effective encharage depth	h _{ef,min} =	[mm]	60	60	70	75	80	90	100	112	128
Ellective anchorage depth	Effective anchorage depth $h_{ef,max} =$		96	120	144	168	192	240	300	336	384
Minimum thickness of member	h _{min}	[mm]		h _{ef} + 2d ₀							
Minimum spacing	S _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

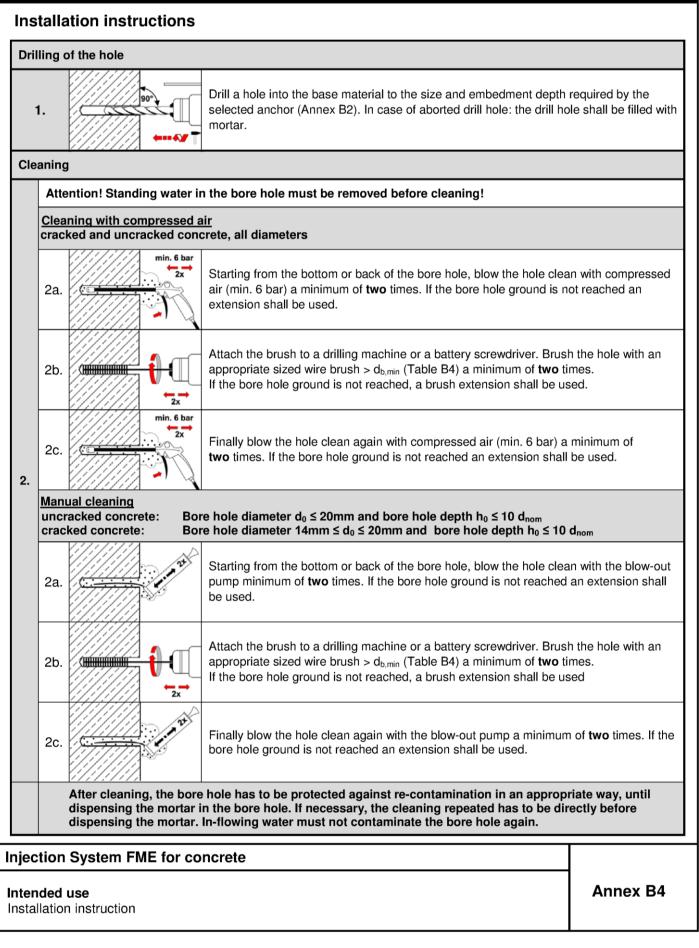
Injection System FME for concrete

Intended use Installation parameters

Table B4	: Para	meter clean	ing and	setting	tools					
Threaded rod	Rebar	Internally threaded anchor rod	Drill bit Ø	Brush Ø	min. Brush Ø	Retaining washer				
5	111111111111				###=====			ation directi f retaining w		
[-]	Ø [mm]	[-]	d₀ [mm]	d₀ [mm]	d_{b,min} [mm]	[-]	₽	•		
M8			10	12	10,5	-			-	
M10	8	FMZ-IG M6	12	14	12,5	-	No retaining washer required			
M12	10	FMZ-IG M8	14	16	14,5	-	NO retair	ling washer	required	
	12		16	18	16,5	-				
M16	14	FMZ-IG M10	18	20	18,5	VM-IA 18				
	16		20	22	20,5	VM-IA 20				
M 20	20	FMZ-IG M12	24	26	24,5	VM-IA 24				
M 24		FMZ-IG M16	28	30	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all	
M 27	25		32	34	32,5	VM-IA 32	2001111	2001111		
M 30	28	FMZ-IG M20	35	37	35,5	VM-IA 35				
	32		40	41,5	40,5	VM-IA 40				

Blow-out pump (volume 750ml) Drill bit diameter (d₀): 10 mm to 20 mm Bore hole depth $h_0 \le 10 d_{nom}$ see annex B4

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters


Retaining washer for overhead or horizontal installation Drill bit diameter (d₀): 18 mm to 40 mm Steel brush

Π

Injection System FME for concrete

Intended use Cleaning and setting tools

njec	tion	
3.	The same	Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.
4.	hof	Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rod or rebar.
5.	min.3x	Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.
6a.		Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Observe the curing and working times given in Table B5.
6b.		For overhead and horizontal installation a retaining washer (Annex B 3) and extension nozzle shall be used. Observe the curing and working times given in Table B5.

Injection System FME for concrete

Intended use Installation instructions (continuation)

Ins	erting the anchor	
7.		Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.
8.		Be sure that the rod is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
9.		Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the rod until it is fully cured (attend Table B5).
10.		Remove excess mortar.
11.	Tinst	After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B2) by using a calibrated torque wrench.
12.		Annular gap between anchor rod and attachment may optionally be filled with mortar. Therefore replace regular washer by washer with bore and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

Table B5: Working and curing time

Bore hole temperature	Maximum working time	Minimum o	curing time
		dry concrete	wet concrete
+5°C to +9°C	120 min	50 h	100 h
+10°C to +19°C	90 min	30 h	60 h
+20°C to +29°C	30 min	10 h	20 h
+30°C to +39°C	20 min	6 h	12 h
+40°C	12 min	4 h	8 h
Cartridge temperature		+ 5°C to + 40°C	

Injection System FME for concrete

Intended use

Installation instructions (continuation), Working and curing time

Table	C1: Characteristic steel resista	inces	for th	reade	ed roc	ls und	der ter	nsion	and s	hear l	oad
Thread	ed rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel fa	ilure										
Tensior	n load										
ce c	Steel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
eristic	Steel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resistance	Steel, Property class 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449
Chai	Stainless steel A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
ter	Stainless steel A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
	Steel, Property class 4.6	γMs,N	[-]				2	,0			
or	Steel, Property class 4.8	γMs,N	[-]				1	,5			
fact	Steel, Property class 5.6	γMs,N	[-]				2	,0			
Partial factor	Steel, Property class 5.8 and 8.8	γMs,N	[-]				1	,5			
Å	Stainless steel A4 and HCR, Property class 50	γMs,N	[-]				2,	86			
	Stainless steel A4 and HCR, Property class 70	γMs,N	[-]			1,	87			-	-
Shear lo	oad										
Steel fa	ilure <u>without</u> lever arm										
<u>د 8</u>	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
resi	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Chai ìear	Stainless steel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
s	Stainless steel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
Steel fa	ilure <u>with</u> lever arm										
ut o	Steel, Property class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment	Steel, Property class 5.6 and 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
racte ng m	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Char	Stainless steel A4 and HCR, Property class 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
p, d	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
	Steel, Property class 4.6	γMs,V	[-]				1,	67			
ъ	Steel, Property class 4.8	γMs,V	[-]				1,	25			
fact	Steel, Property class 5.6		[-]] 1,67							
Partial factor	Steel, Property class 5.8 and 8.8	γMs,V	[-]				1,	25			
Å	Stainless steel A4 and HCR, Property class 50	γMs,V	[-]				2,	38			
	Stainless steel A4 and HCR, Property class 70	γMs,V	[-]			1,	56			-	-

Injection System FME for concrete

Performance

Characteristic steel resistances for threaded rods under tension and shear loads

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel failure											
		N _{Rk,s}	[kN]				see Ta	able C1			
Characteristic tension resista	ance	N _{Rk,s,C1}	[kN]				1.0 •	N _{Rks}			
		N _{Rk,s,C2}	[kN]	N	PD	1.0 •	N _{Rk,s}	-	ormance [Determine	d (NPD)
Dortial factor			[-]			1,0		able C1	onnanoo i		<u>a (i ti b)</u>
Partial factor	e e u e te i lu u e	γMs,N	[-]				366 18				
Combined pull-out and con Characteristic bond resista		oto C20/	25								
Temperature range I:	dry and wet concrete		25 [N/mm²]	15	15	15	14	13	12	12	12
40°C / 24°C	flooded bore hole	$ au_{\mathrm{Rk,ucr}}$	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7.0
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C / 43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C / 43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Characteristic bond resista	ance in <u>cracked</u> concrete	e C20/25									
		$\tau_{\text{Rk,cr}}$	[N/mm ²]	7,0	7,0	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	5,9	7,0	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:		$\tau_{\rm Rk,C2}$	[N/mm ²]		PD	2,4	2,2		ormance [Determine	d (NPD)
40°C / 24°C		$\tau_{Rk,cr}$	[N/mm ²]	7,0	7,0	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	τ _{Rk,C1}	[N/mm ²]	5,9	7,0	7,1	5,8	4,8	4,5	4,0	4,0
		$\tau_{\rm Rk,C2}$	[N/mm ²]		PD	2,4	2,1		ormance [1	T
		$\tau_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	3,7	 PD	4,3	3,8	3,4	3,5	3,5	
emperature range II: 0°C / 43°C		τ _{Rk,C2}	[N/mm ²] [N/mm ²]	4,5	4,5	1,4 4,5	1,4 4,0	3,5	ormance [3,5	3,5	
	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,5	3,8	3,5	3,5	3,5	3,5
		τ _{Rk,C1} τ _{Rk,C2}	[N/mm ²]	,	PD	1,4	1,4	- , .	ormance [/	· · ·
		τ _{Rk,c2}	[N/mm ²]	4,0	4,0	4,0	3,5	3,0	3.0	3,0	3,0
	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	3,2	4,0	3,9	3,4	3,0	3,0	3,0	3,0
Temperature range III:	.,	τ _{Rk,C2}	[N/mm ²]	,	PD	1,3	1,2		ormance [
72°C / 43°C		τ _{Rk,cr}	[N/mm ²]	4,0	4,0	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	τ _{Rk,C1}	[N/mm ²]	3,2	4,0	3,9	3,4	3,0	3,0	3,0	3,0
		$\tau_{\rm Rk,C2}$	[N/mm ²]	N	PD	1,3	1,2	No Perfe	ormance [Determine	d (NPD)
			C25/30				,	02			
			C30/37				,	04			
Increasing factor for concrete	e	Ψc	C35/45				,	07			
	-	**	C40/50				,	08			
			C45/55				. ,	09			
Factor acc. CEN/TS1992-4-{	5 uncracked concrete		C50/60				,	10 0,1			
section 6.2.2.3	cracked concrete	k ₈	[-]					,2			
Concrete cone failure				L			/	, -			
Factor acc. CEN/TS1992-4-{	5 uncracked concrete	k _{ucr}	[-]				1(0,1			
section 6.2.3.1	cracked concrete	Kucr Kcr	[-]					,2			
Edge distance		C _{cr,N}	[-]					5 h _{ef}			
Spacing		S _{cr,N}	[-]) h _{ef}			
Splitting failure											
	h/h _{ef} ≥ 2,0						,) h _{ef}			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				2*h _{ef} (2,	5 – h/h _{ef})			
	h/h _{ef} ≤ 1,3							↓ h _{ef}			
Spacing		S _{cr,sp}	[mm]				2 0	cr,sp			
Installation factor		$\gamma_2 = \gamma_{inst}$	[-]		1	,2			1	,4	
(dry and wet concrete)		r≥ — rinst	. 1			,				, ·	
Installation factor											

Injection System FME for concrete

Performance

Characteristic values of **tension loads** for **threaded rods** under static, quasi-static action and seismic action C1 + C2

Table C3: Characteristic v under static, qu														
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30				
Steel failure without lever arm														
	$V_{Rk,s}$	[kN]				see Ta	able C1							
Characteristic shear resistance	V _{Rk,s,C1}	[kN]	0,86	• V _{Rk,s}	(0,88 • V _{Rk,}	S		0,80 • V _{Rk,}	s				
	V _{Rk,s,C2}	[kN]	N	PD	0,80	• V _{Rk,s}	No Per	formance I	Determine	d (NPD)				
Partial factor	γмs,v	[-]	see Table C1											
Steel failure <u>with</u> lever arm														
	$M^0_{\rm Rk,s}$	[Nm]				see Ta	able C1							
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]					Determine							
	M ⁰ _{Rk,s,C2}	[Nm]	No Performance Determined (NPD)											
Partial factor	γ _{Ms,V}	[-]				see Ta	able C1							
Concrete pry-out failure		-	-											
Factor k in equation (5.7) acc. to Technical Report TR 029 Factor k_3 in equation (27) acc. to CEN/TS 1992-4-5 section 6.3.3	k ₍₃₎	[-]				2	,0							
Concrete edge failure														
Effective length of anchor	I _f	[mm]				$I_f = min(h$	_{ef} ; 8 d _{nom})							
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30				
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0							

Injection System FME for concrete

Performance

Characteristic values of **shear loads** for **threaded rods** under static, quasi-static action and seismic action C1 + C2

Internally threaded anchor r	c and quasi-static od			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure ¹⁾									
Characteristic tension resistance,		N _{Rk,s}	[kN]	10	18	29	42	79	123
Steel, strength class 5.8 Partial factor			[-]			1.	5		
Characteristic tension resistance.		γMs,N							
Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor		γ́мs,N	[-]			1,	,5		
Characteristic tension resistance,	70	N _{Rk.s}	[kN]	14	26	41	59	110	124 ²⁾
Stainless steel A4 / HCR, strength Partial factor	1 Class 70					1.87			2.86
	a failura	γMs,N	[-]			1,07			2,00
Combined pull-out and concret Characteristic bond resistance		C20/25							
Temperature range I:	dry and wet concrete	τ _{Rk.ucr}	[N/mm ²]	15	15	14	13	12	12
40°C / 24°C	flooded bore hole	τ _{Rk.ucr}	[N/mm ²]	10	13	10	9,5	8,5	7,0
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	9,5	9,0	8,5	8,0	7,5	7,5
60°C / 43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	9,5	9,0	8,5	7,5	7,0	6.0
Temperature range III:	dry and wet concrete	τ _{Rk.ucr}	[N/mm ²]	8,5	8,0	7,5	7,0	7,0	6,5
72°C / 43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	8,5	8,0	7,5	7,0	6,0	5,5
Characteristic bond resistance	in cracked concrete C2	0/25							
Temperature range I:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	7,0	7,5	6,5	6,0	5,5	5,5
40°C / 24°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	7,0	7,5	6,0	5,0	4,5	4,0
Temperature range II:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,0	3,5	3,5	3,5
60°C / 43°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,5	4,5	4,0	3,5	3,5	3,5
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,0	4,0	3,5	3,0	3,0	3,0
72°C / 43°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,0	4,0	3,5	3,0	3,0	3,0
			C25/30			1,0	02		
			C30/37			1,0	04		
Increasing factor for concrete			C35/45			1,0	07		
increasing lactor for concrete		Ψc	C40/50			1,0	08		
			C45/55			1,0	09		
			C50/60			1,	10		
Factor acc. to CEN/TS1992-4-5 _	uncracked concrete	k ₈	[-]),1		
section 6.2.2.3	cracked concrete		[]			7,	,2		
Concrete cone failure	uncracked concrete	Ŀ	[]			10	<u>, 1</u>		
Factor acc. to CEN/TS1992-4-5 _ section 6.2.3.1	cracked concrete	k _{ucr}	[-]			10 7,	,		
Edge distance	CIACKEU CUIICIELE	k _{cr}	[-]						
Spacing		C _{cr,N}	[mm] [mm]			3,0	h _{ef}		
Splitting failure		S _{cr,N}	[mm]			5,0	llet		
	h/h _{ef} ≥ 2,0					1.0	h _{ef}		
- Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			2*h _{ef} (2,5			
	h/h _{ef} ≤ 1,3	⊂ci,sp	[]			2,4	-		
Spacing	10 Her = 1,0	S _{cr,sp}	[mm]			2,4 2 c			
Installation factor					1.0		+-;	1.4	
(dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]		1,2			1,4	
Installation factor		$\gamma_2 = \gamma_{inst}$	[-]			1,	4		

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

²⁾ For IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Injection System FME for concrete

Performance

Characteristic values of **tension loads** for **internally threaded anchor rods** under static and quasi-static action

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure <u>without</u> lever arm ¹⁾								
Characteristic shear resistance Steel, strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	39	61
Partial factor	γ _{Ms,V}	[-]			1,	25		
Characteristic shear resistance Steel, strength class 8.8	$V_{Rk,s}$	[kN]	8	14	23	34	60	98
Partial factor	γ _{Ms,V}	[-]			1,	25		
Characteristic shear resistance Stainless steel A4 / HCR strength class 70	$V_{Rk,s}$	[kN]	7	13	20	30	55	62 ²⁾
Partial factor	γ _{Ms,V}	[-]			1,56			2,38
Steel failure <u>with</u> lever arm ¹⁾			I					
Characteristic bending moment, Steel, strength class 5.8	${\sf M}^0_{\sf Rk,s}$	[Nm]	8	19	37	66	167	325
Partial factor	γ _{Ms,V}	[-]			1,	25		
Characteristic bending moment, Steel, strength class 8.8	${\sf M}^0_{\sf Rk,s}$	[Nm]	12	30	60	105	267	519
Partial factor	γ _{мs,v}	[-]			1,	25		
Characteristic bending moment, Stainless steel A4 / HCR strength class 70	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾
Partial factor	γ _{мs,v}	[-]			1,56			2,38
Concrete pry-out failure			I					
Factor k in equation (5.7) of Technical Report TR 029 Factor k₃ in equation (27) of CEN/TS 1992-4-5 section 6.3.3	k ₍₃₎	[-]			2	,0		
Concrete edge failure								
Effective length of anchor	l _f	[mm]			l _f = min(h	_{ef} ; 8 d _{nom})		
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		
Fastening screws or threaded rods (incl. nut an threaded anchor rod. The characteristic shear r rod and the fastening element For IG M20: Internally threaded rod: strength cl	esistance for	steel failu	ire of the giv	en strength	class are val	id for the int	ernally threa	ally ded ancho

Performance

Characteristic values of **shear loads** for **internally threaded anchor rods** under static and quasi-static action

Reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure						L						
Characteristic tension resist	2222	N _{Rk,s}	[kN]					$A_s \cdot f_{uk}^{1)}$				
Characteristic tension resista	ance	N _{Rk,s,C1}	[kN]				1	,0 ∙ N _{Rk}	,s			
Cross section area		As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		γMs,N	[-]					1,4 ²⁾				
Combined pull-out and cor												
Characteristic bond resista				4.4	44	10	10	10	10		44	4.4
Temperature range I: 40°C / 24°C	dry and wet concrete flooded bore hole	τ _{Rk,ucr}	[N/mm ²] [N/mm ²]	14 14	14 13	13 11	13 10	12 9,5	12 8,5	11 7,5	11 7,0	11 6,0
	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	8,5	8,5	8,0	8,0	9,5 7,5	7,0	7,5	6,5	6,5
Temperature range II: 60°C / 43°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C / 43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
Characteristic bond resista	ance in <u>cracked</u> concrete											
	dry and wat concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	7,0	7,0	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,C1}}$	[N/mm ²]	5,9	7,0	7,1	6,4	6,2	5,7	5,5	5,5	5,5
40°C / 24°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm ²]	7,0	7,0	7,5	6,5	6,0	5,0	4,5	4,0	4,0
		$\tau_{\text{Rk,C1}}$	[N/mm ²]	5,9	7,0	7,1	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II: 60°C / 43°C		τ _{Rk,C1}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,5
60°C / 43°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²] [N/mm ²]	4,5 3,7	4,5 4,5	4,5 4,3	4,0	4,0	3,5 3,3	3,5 3,5	3,5 3,5	3,0 3,0
		τ _{Rk,C1}	[N/mm ²]	4,0	4,5	4,3	3,7	3,8 3,5	3,3	3,5	3,5	3,0
Temperature range III:	dry and wet concrete	τ _{Rk,cr} τ _{Rk,C1}	[N/mm ²]	3,2	4,0	3,9	3,5	3,3	2,9	3,0	3,0	3,0
Femperature range III: 72°C / 43°C		τ _{Rk,cr}	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	τ _{Rk,C1}	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0
			C25/30	,	,	,	,	1,02	,		,	,
			C30/37									
Increasing factor for concrete	9	Ψc	C35/45 C40/50					1,07				
			C40/50 C45/55					1,08				
			C50/60					1,10				
Factor acc.CEN/TS1992-4-5		k ₈	[-]					10,1				
section 6.2.2.3	cracked concrete							7,2				
Concrete cone failure Factor acc. CEN/TS1992-4-5	5 uncracked concrete	k _{ucr}	[-]					10,1				
section 6.2.3.1	cracked concrete	K _{cr}	[-]					7,2				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Spacing		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure								1.0.1				
Edge distance	$h/h_{ef} \ge 2,0$ 2,0> $h/h_{ef} > 1,3$	~	[mm]				0*5	1,0 h _{ef} 1(2,5 – ł	a/b)			
Edge distance	2,0> h/h _{ef} ≤ 1,3 h/h _{ef} ≤ 1,3	C _{cr,sp}	[mm]				2°n _e	2,4 h _{ef}	1/n _{ef})			
Spacing	1/11 _{ef} = 1,3	S _{cr,sp}	[mm]					2,4 Tref 2 C _{cr,sp}				
Installation factor						4.0		- Ocr,sp				
(dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]			1,2				1	,4	
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]					1,4				
$j^{(1)}$ f _{uk} shall be taken from the s in absence of national regul	pecifications of reinforcing ation	bar	1									
Injection System FI	ME for concrete											
Performance Characteristic values o under static, quasi-stat			C1							Anr	nex C	6

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure <u>without</u> lever arm			1								
Ohana ta istia ahaan maistana a	$V_{Rk,s}$	[kN]				0,50	$0 \cdot A_{s} \cdot$	$f_{uk}^{(1)}$			
Characteristic shear resistance	V _{Rk,s,C1}	[kN]	0,80	• V _{Rk,s}			0,	88 • V _R	k,s		
Cross section area	As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ̃ms,v	[-]	1,5 ²⁾								
Steel failure with lever arm											
	M ⁰ _{Rk,s}	[Nm]	1.2 • $W_{el} \cdot f_{uk}^{(1)}$								
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]			No Per	forman	ce Dete	ermined	(NPD)	
Elastic section modulus	W _{el}	[mm ³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ̃ms,v	[-]					1,5 ²⁾			I	I
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 Factor k_3 in equation (27) of CEN/TS 1992-4-5 section 6.3.3	k ₍₃₎	[-]					2,0				
Concrete edge failure											
Effective length of anchor	l _f	[mm]				l _f = m	in(h _{ef} ; 8	3 d _{nom})			
Outside diameter of rebar	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				

Injection System FME for concrete

Performance

Characteristic values of **shear loads** for **rebar** under static, quasi-static action and seismic action C1

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concr	ete C	20/25 under	static and qua	si-static	action						
Temperature range	ə I:	δ_{N0} - factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40°C / 24°C		$\delta_{N\infty}$ - factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
Temperature range	e II:	δ_{N0} - factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60°C / 43°C		$\delta_{N\infty}\text{-}$ factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Temperature range	e III:	δ_{N0} - factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
72°C / 43°C		$\delta_{N\infty}\text{-}$ factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Cracked concrete	e C20	/25 under st	atic and quasi-	static act	tion						
remperature range r.		δ_{N0} - factor	[mm/(N/mm²)]	0,032	0,032	0,032	0,037	0,042	0,048	0,053	0,058
40°C / 24°C		$\delta_{N\infty}\text{-}$ factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:		δ_{N0} - factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,067
60°C / 43°C		$\delta_{N\infty}\text{-}$ factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range	e III:	δ_{N0} - factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,067
72°C / 43°C		$\delta_{N\infty}\text{-}$ factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Cracked concrete	e C20	/25 under se	eismic action (C	22)							
All δ temperature	N,seis (_{DLS)} – factor	[mm/(N/mm ²)]	NF	חק	0,03	0,05	No Perf	ormance F	Determined	
ranges d	N,seis (_{ULS)} – factor	[mm/(N/mm ²)]		U	0,06	0,09	Noren	ormance	Jetermined	
¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ - facto $\delta_{N\infty} = \delta_{N\infty}$ - facto Fable C9:	r ·τ; or ·τ;	$\delta_{\text{N},\text{seis}(\text{DL})}$	$s_{\rm S} = \delta_{\rm N,seis(DLS)}$ - fa $s_{\rm S} = \delta_{\rm N,seis(ULS)}$ - fa S under she	ctor · τ;			stress for t	tension			
Threaded rod	-			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30

Uncracked and cracke	d concrete C	20/25 under st	tatic and	quasi-sta	tic action	า					
	δ_{V0} - factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
All temperature ranges	$\delta_{V\infty}$ - factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concrete C20/	25 under se	ismic action (C	2)						-		
All temperature $\delta_{V,seis}$	(DLS) - factor	[mm/(kN)]		PD	0,2	0,1	No Dorf	armonoo D	atorminad		
ranges _{δv,seis}	_{s(ULS)} - factor	[mm/(kN)]		-0	0,2	0,1	No Peri	ormance D	ance Determined (NPD)		
¹⁾ Calculation of the dis $\delta_{V0} = \delta_{V0}$ - factor $\cdot V$; $\delta_{V\infty} = \delta_{V\infty}$ - factor $\cdot V$;	$\delta_{V,seis(DLS)}$	$ = \delta_{v,seis(DLS)} - fa$ $\delta_{v,seis(ULS)} - fa$		V:	action sh	ear load					
Injection System	FME for co	oncrete									
Performance Displacements (threa	ded rod)							/	Annex	C8	

Table C10: Displa	acements	under tensio	n load ¹⁾	(internal	ly thread	ed ancho	or rod)	
Internally threaded anch	or rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked concrete C20)/25 under st	atic and quasi-st	atic action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,020	0,024	0,029	0,035
40°C / 24°C	$\delta_{N_\infty}\text{-}$ factor	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114	0,140
Temperature range II:	δ_{N0} - factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033	0,043
60°Ċ / 43°C	δ_{N_∞} - factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131	0,161
Temperature range III:	δ_{N0} - factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033	0,043
72°Ċ / 43°C	δ_{N_∞} - factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131	0,161
Cracked concrete C20/2	5 under stati	c and quasi-stati	c action					
Temperature range I:	δ_{N0} - factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,042	0,048	0,058
40°C / 24°C	$\delta_{N\infty}\text{-}$ factor	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} - factor	[mm/(N/mm²)]	0,032	0,037	0,043	0,049	0,055	0,067
60°Ċ / 43°C	$\delta_{N\infty}$ - factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ_{N0} - factor	[mm/(N/mm ²)]	0,032	0,037	0,043	0,049	0,055	0,067
72°Ċ / 43°C	$\delta_{N\infty}$ - factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot \tau;$

Table C11: Displacements under shear load¹⁾ (internally threaded anchor rod)

Internally threaded anchor rod			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Uncracked and cracked concrete C20/25 under static and quasi-static action											
All temperature ranges	δ_{V0} - factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04			
	$\delta_{V\infty}$ - factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06			
¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$; V: action shear load $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;											
Injection System FME for concrete								Annov CO			
Performance Displacements (internally threaded anchor rod)								Annex C9			

Reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C20/25 under static and quasi-static action											
Temperature range I: 40°C / 24°C	δ_{N0} - factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
	$\delta_{N\infty}$ - factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range II: 60°C / 43°C	δ_{N0} - factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
	$\delta_{N\infty}$ - factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature range III: 72°C / 43°C	δ_{N0} - factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
	$\delta_{N\infty}$ - factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked concrete C20/	25 under sta	tic and quasi-s	tatic act	ion							
Temperature range I: 40°C / 24°C	δ_{N0} - factor	[mm/(N/mm²)]	0,032	0,032	0,032	0,035	0,037	0,042	0,049	0,055	0,06-
	δ_{N_∞} - factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II: 60°C / 43°C	δ_{N0} - factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
	$\delta_{N\infty}$ - factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III: 72°C / 43°C	δ_{N0} - factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
	$\delta_{N\infty}$ - factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} \text{-factor} \quad \cdot \ \tau; \qquad \qquad \tau: \text{ action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \ \cdot \tau;$

Table C13: Displacements under shear load¹⁾ (rebar)

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
For concrete C20/25 under static and quasi-static action											
All temperature ranges	δ_{V0} - factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ - factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

 $\stackrel{\text{1)}}{\overset{\text{Calculation of the displacement}}{\overset{\text{Calculation of the displacement}}{\overset{\text{Calculation of the displacement}}} \cdot V;$

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty} \text{-factor } \cdot V;$

Injection System FME for concrete

Performance Displacements (rebar)