

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/1058 of 8 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Q Injection system VMU plus für Beton

Injection system for use in concrete

Q-railing Europe GmbH & Co. KG Marie-Curie-Straße 8-14 46446 Emmerich am Rhein DEUTSCHLAND

Deutschland, Werk 1 und Werk 2

29 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/1058

Page 2 of 29 | 8 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 29 | 8 December 2017

Specific Part

1 Technical description of the product

The Q Injection system VMU plus for concrete is a bonded anchor consisting of a cartridge with injection mortar Q-VMU plus or Q-VMU plus Polar and a steel element. The steel element consist of a threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod Q-VMU-IG-M6 to Q-VMU-IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-17/1058

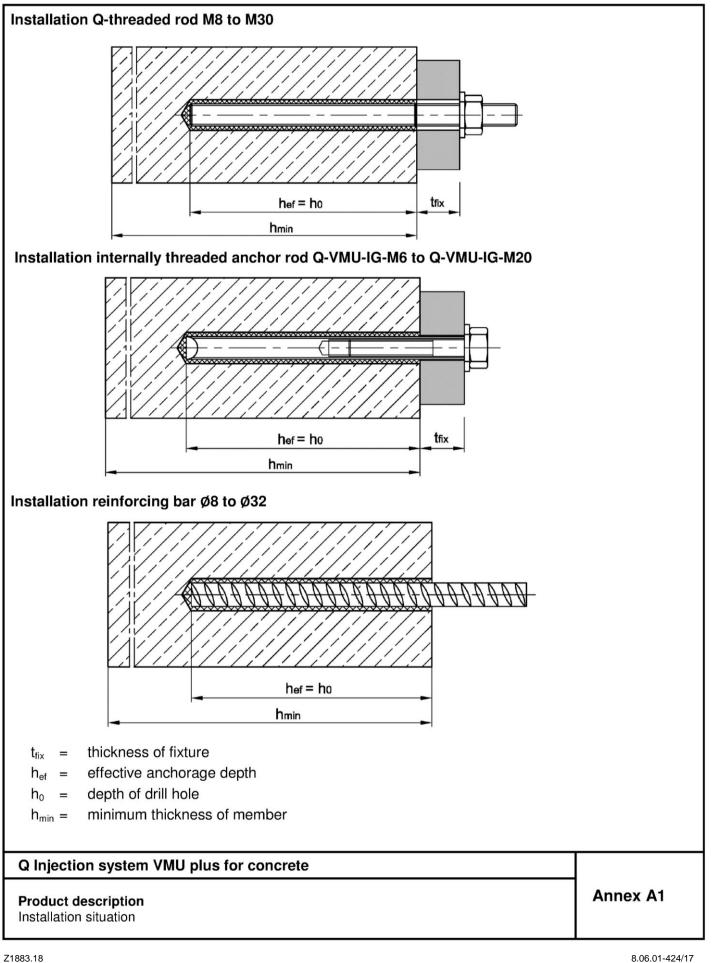
Page 4 of 29 | 8 December 2017

English translation prepared by DIBt

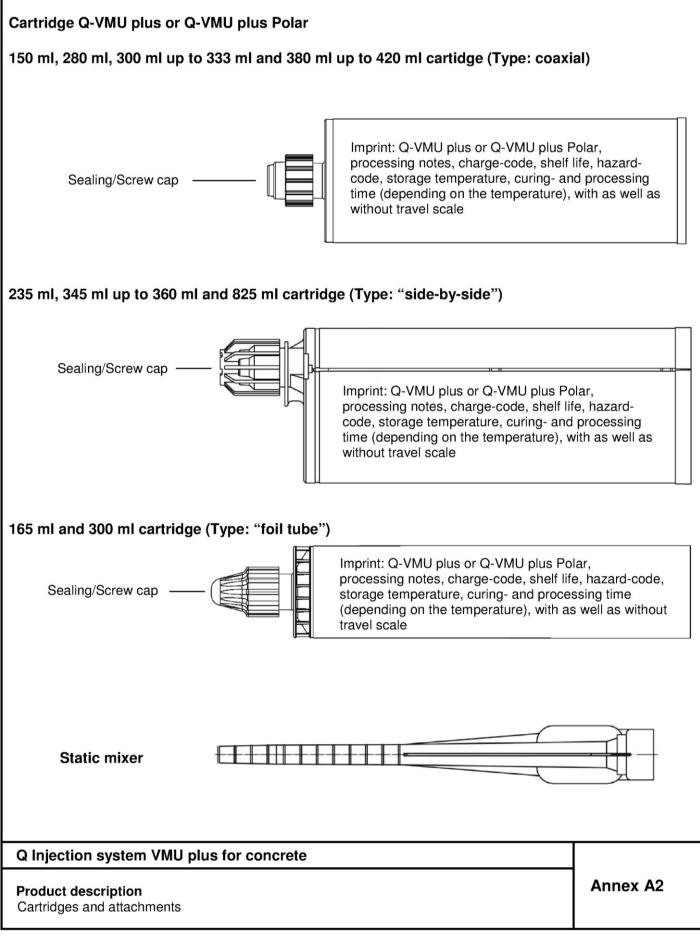
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 8 December 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

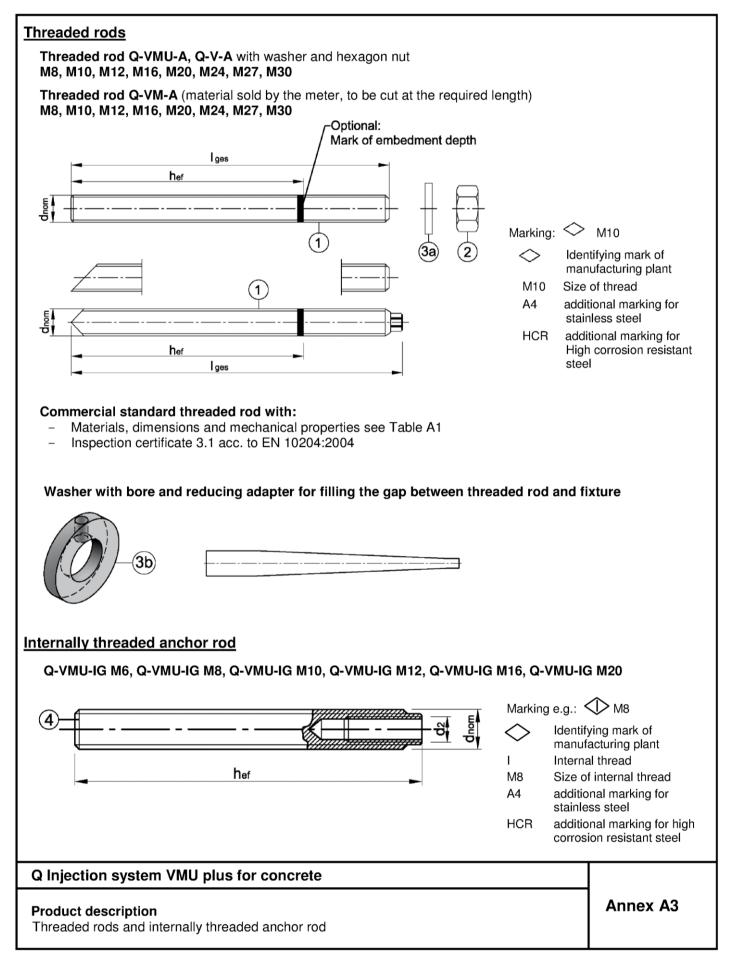


Table A1: Materials

Part	Designation	I	Material	
Steel,	zinc plated			
electro	oplated ≥ 5 µm	acc. to EN ISO 4042:	1999 or hot-dip galvanised \geq 40 μ m acc. to EN ISO 1461:2009,	,
EN IS	0 10684:2004+		zed ≥ 40µm acc. to EN ISO 17668:2016	
			$f_{uk} \ge 400 \text{ N/mm}^2$; $f_{yk} \ge 240 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation	EN 10087:1998,
	Threaded		$f_{uk} \ge 400 \text{ N/mm}^2$; $f_{yk} \ge 320 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation	EN 10263:2001;
1	rod	Property class 5.6	$f_{uk} \ge 500 \text{ N/mm}^2$; $f_{yk} \ge 300 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation	commercial standard
	100	Property class 5.8 f _{uk} ≥ 500 N/mm ² ; f _{yk} ≥ 400 N/mm ² ; A ₅ > 8 % fracture elongation		threaded rod:
		Property class 8.8		EN ISO 898-1:2013
2	Hexagon nut		Steel, zinc plated Property class 4 (for class 4.6 or 4.8 rod) Property class 5 (for class 5.6 or 5.8 rod) Property class 8 (for class 8.8 rod)	EN ISO 898-2:2012
За	Washer		Steel, zinc plated (e.g.: EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)	
3b	Washer with b	ore	Steel, zinc plated	
4	Internally thre	aded anchor rod	Steel, electroplated, $A_5 > 8$ % fracture elongation Property class 5.8 and 8.8	EN 10087:1998
Stainl	ess steel A4			
			Material 1.4401 / 1.4404 / 1.4571 / 1.4578 / 1.4362 / 1.4062	EN 10088-1:2014
	Threaded	Droporty close 50		LIN 10000-1.2014
1	rod Property class 50 Property class 70		$f_{1} = 700 \text{ N/mm}^2$; $f_{1} = 450 \text{ N/mm}^2$; $A_{1} > 8 \text{ %}$ fracture elegation	
2	Hexagon nut		exagon nut Property class 50 (for class 50 rod) Property class 70 (for class 70 rod; ≤ M24)	
За	Washer		Stainless Steel A4 (e.g.: EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)	EN 10088-1: 2014
Зb	Washer with b	ore	Material 1.4401 / 1.4404 / 1.4571 / 1.4362	
4	Internally thre	lly threaded anchor rod Property class 50 (IG-M20) Property class 50 (IG-M16)		
High o	corrosion resi	stant steel HCR		
			Material 1.4529 / 1.4565	EN 10088-1: 2014
4	Threaded	Property class 50	f_{uk} = 500 N/mm ² ; f_{yk} = 210 N/mm ² ; A_5 > 8 % fracture elongation	
1	rod	1000000000000000000000000000000000000		EN ISO 3506-1: 200
2	Hexagon nut		Material 1.4529 / 1.4565 Property class 50 ((for class 50 rod) Property class 70 (for class 70 rod; \leq M24)	EN 10088-1: 2014 EN ISO 3506-2:2009
3a	Washer		Material 1.4529 / 1.4565 (e.g.: EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)	EN 10088-1: 2014
Зb	Washer with b	ore	Material 1.4529 / 1.4565	
4	Internally thre	aded anchor rod	Material 1.4529 / 1.4565, $A_5 > 8$ % fracture elongation Property class 50 (IG-M20) Property class 70 (IG-M8 to IG-M16)	EN 10088-1: 2014

Q Injection system VMU plus for concrete

Product description

Materials threaded rods and internally threaded anchor rod

Annex A4

<u>Reinforcing bar</u> Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25, Ø 2	28, Ø 32
5 hef	-
 Minimum value of related rip are Rip height of the bar shall be in (d: Nominal diameter of the bar; 	
Table A2: Material rebar	
Part Designation	Material
Rebar	
Rebar	Bars and de-coiled rods class B or C

Part	Designation	Material
Reba	r	
5	-	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk}=f_{tk}=k{\boldsymbol \cdot} f_{yk}$

Q Injection system VMU plus for concrete

Product description

Product description and materials reinforcing bar

Anchor rod	Internally threaded anchor rod					
Q-VMU-A, Q-V-A, Q-VM-A, commercial standard threaded rod	Q-VMU-IG	rebar				
M8 - M30 (zinc plated, A4, HCR)	IG-M6 - IG-M20 (electroplated, A4, HCR)	Ø8 - Ø32				
M8 - M30 (zinc plated ¹⁾ , A4, HCR)	-	Ø8 - Ø32				
Reinforced or unreinforced	normal weight concrete a	acc. to EN 206-1:2000				
Strength classes acc. to EN 206-1:2000:C20/25 to C50/60						
Cracke	ed and uncracked concre	ete				
max long term temperature	+24 °C and max short ter	m temperature +40 °C				
max long term temperature +50 °C and max short term temperature +80 °C						
max long term temperature	+72 °C and max short ter	m temperature +120 °C				
	Q-VMU-A, Q-V-A, Q-VM-A, commercial standard threaded rod M8 - M30 (zinc plated, A4, HCR) M8 - M30 (zinc plated ¹¹ , A4, HCR) Reinforced or unreinforced Strength classes a Cracke max long term temperature max long term temperature	Anchor rodanchor rodQ-VMU-A, Q-V-A, Q-VM-A, commercial standard threaded rodQ-VMU-IGM8 - M30IG-M6 - IG-M20 (electroplated, A4, HCR)M8 - M30 (zinc plated ¹¹ , A4, HCR)-M8 - M30 (zinc plated ¹¹ , A4, HCR)-Strength classes acc. to EN 206-1:2000:C2 Cracked and uncracked concret max long term temperature +24 °C and max short ter				

" except hot-dip galvanised

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
- (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently
 damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular
 aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, IG-M6 to IG-M20, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, IG-M6 to IG-M10, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode or vacuum drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Q Injection system VMU plus for concrete

Intended Use

Specifications

Annex B1

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d ₀ =	[mm]	10	12	14	18	24	28	32	35
Effective encharge depth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective anchorage depth —	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Installation torque	T _{inst} ≤	[Nm]	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀							
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance		[mm]	40	50	60	80	100	120	135	150

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d_{nom} + 1mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor roc	I		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Inner diameter of threaded rod	$d_2 =$	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod ²⁾	d _{nom} =	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	18	24	28	35
Effective anchorage depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Ellective anchorage depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	l _{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member	\mathbf{h}_{\min}	[mm]		30 mm 0 mm	h _{ef} + 2d ₀			
Minimum spacing	S _{min}	[mm]	50	60	80	100	120	150
Minimum edge distance	C _{min}	[mm]	50	60	80	100	120	150
1) Far larger also reas hals and TB000 as								

¹⁾ For larger clearance hole see TR029 section 1.1

²⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	16	18	20	24	32	35	40
Effective anchorage depth —	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
Ellective anchorage depth —	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	\mathbf{h}_{\min}	[mm]		h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d	0			
Minimum spacing	S _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

Q Injection system VMU plus for concrete

Intended Use

Installation parameters

Annex B2

Table B4	Table B4: Parameter cleaning and setting tools										
Threaded rod	Internally threaded anchor rod	Rebar	Drill bit Ø	Brush Ø	min. Brush Ø			g washer			
8		<i>11111111111</i> 11	\sim	WWWWW	WW\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			ition direction and retaining washer			
[-]	[-]	Ø [mm]	d₀ [mm]	d₅ [mm]	d _{b,min} [mm]	[-]	₽	+	1		
M8			10	12	10,5						
M10	Q-VMU-IG M 6	8	12	14	12,5		rotoining y		urad		
M12	Q-VMU-IG M 8	10	14	16	14,5		retaining v	vasher requ	lileu		
		12	16	18	16,5						
M16	Q-VMU-IG M10	14	18	20	18,5	VM-IA 18					
		16	20	22	20,5	VM-IA 20					
M20	Q-VMU-IG M12	20	24	26	24,5	VM-IA 24					
M24	Q-VMU-IG M16		28	30	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all		
M27		25	32	34	32,5	VM-IA 32	2001111	20011111			
M30	Q-VMU-IG M20	28	35	37	35,5	VM-IA 35					
		32	40	41,5	40,5	VM-IA 40					

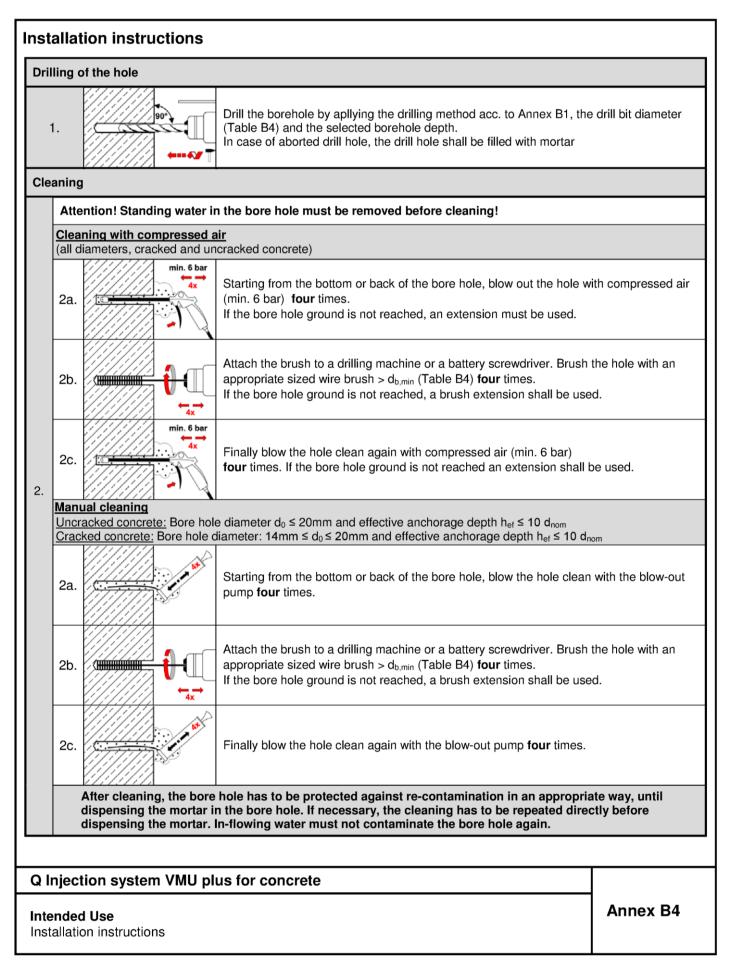


Blow-out pump (volume 750ml) Drill bit diameter (d₀): 10 mm to 20 mm Anchorage depth (h_{ef}): \leq 10 d_{nom} for uncracked concrete

Retaining washer for overhead or

Recommended compressed air tool (min 6 bar) All applications

Steel brush Drill bit diameter (d_0) : all diameters


Q Injection system VMU plus for concrete

Intended Use Cleaning and setting tools

horizontal installation Drill bit diameter (d₀): 18 mm to 40 mm

Annex B3

	Ilation instructions (continuation)	
Injec	tion Ay		
3.	I I I I I I I I I I I I I I I I I I I	Attach a supplied static-mixing nozzle to the cartridge and load the cartridge dispensing tool. For every working interruption longer than the recommended working time Table B6) as well as for new cartridges, a new static-mixer shall be used.	
4.	her	Before injecting the mortar, mark the required anchorage depth on the faste	ening element.
5.	min.3x	Prior to dispensing into the drill hole, squeeze out separately a minimum of and discard non-uniformly mixed adhesive components until the mortar sho grey colour. For tubular film cartridges dismiss a minimum of six full strokes	ws a consistent
6a.		Starting from the bottom or back of the cleaned drill hole fill the hole up to a two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hopockets. For embedment larger than 190mm an extension nozzle shall be u Observe the gel-/ working times given in Table B5 or Table B6.	le fills to avoid air
6b.		 Retaining washer and mixer nozzle extensions shall be used according to A following applications: Horizontal installation (horizontal direction) and ground installation downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment dept Overhead installation: Drill bit-Ø d₀ ≥ 18 mm 	(vertical
nser	ting the anchor		
7.		Push the threaded rod into the hole while turning slightly to ensure proper d adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.	istribution of the
8.		Make sure that the anchor is fully seated up to the full embedment depth ar mortar is visible at the top of the hole. If these requirements are not maintai rod immediately and start again with step 6. For overhead installation, the anchor should be fixed (e.g. by wedges).	
9.		Allow the adhesive to cure to the specified time prior to applying any load of move or load the anchor until it is fully cured (Table B5 or Table B6).	r torque. Do not
10.		Remove excess mortar.	
11.	Tinst	The fixture can be mounted after curing time. Apply installation torque Tinst Table B1or B2 by using a calibrated torque wrench. Optionally, the annular anchor rod and attachment can be filled with mortar. Therefor replace the re washer with bore and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.	gap between
Ql	njection system VM	U plus for concrete	
Inte	nded Use allation instructions (co	·	Annex B5

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾
-10°C to -6°C	90 min ²⁾	24 h ²⁾
-5°C to -1°C	90 min	14 h
0°C to +4°C	45 min	7 h
+5°C to +9°C	25 min	2 h
+10°C to +19°C	15 min	80 min
+20°C to +29°C	6 min	45 min
+30°C to +34°C	4 min	25 min
+35°C to +39°C	2 min	20 min
+ 40°C	1,5 min	15 min
Cartridge temperature	+ 5°C to	o + 40°C

 $^{1)}$ In wet concrete the curing time must be doubled. $^{2)}$ Cartridge temperature must be at min. + 15°C.

Maximum processing time and minimum curing time, Q-VMU plus Polar Table B6:

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾
- 20°C to -16°C	75 min	24 h
-15°C to -11°C	55 min	16 h
-10°C to -6°C	35 min	10 h
-5°C to -1°C	20 min	5 h
0°C to +4°C	10 min	2,5 h
+5°C to +9°C	6 min	80 min
+10°C	6 min	60 min
Cartridge temperature	- 20°C to	o + 10°C

¹⁾ In wet concrete the curing time must be doubled.

Q Injection system VMU plus for concrete

Intended Use

Processing time and curing time

Annex B6

electronic copy of the eta by dibt: eta-17/1058

Thread	ed rod			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 3
Steel fa	ilure										
Tensio	n load										
e	Steel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
stic tanc	Steel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
steri esis	Steel, Property class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resistance	Stainless steel A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	28 [.]
C	Stainless steel A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
	Steel, Property class 4.6	γMs,N	[-]				2	,0			
	Steel, Property class 4.8	γMs,N	[-]				1	,5			
tor	Steel, Property class 5.6	γMs,N	[-]				2	,0			
Partial factor	Steel, Property class 5.8	γMs,N	[-]				1	,5			
Irtia	Steel, Property class 8.8	γMs,N	[-]				1	,5			
Ра	Stainless steel A4 and HCR, Property class 50	γMs,N	[-]				2,	86			
	Stainless steel A4 and HCR, Property class 70	γMs,N	[-]			1,	87			-	-
Shear I	oad										
Steel fa	ilure <u>without</u> lever arm										
ø	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	11
stic anc	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	14
cteri	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	22
Characteristic shear resistance	Stainless steel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	14
sh O	Stainless steel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
Steel fa	nilure <u>with</u> lever arm										
It	Steel, Property class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	90
stic mer	Steel, Property class 5.6 and 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	112
teri mo	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	179
Characteristic bending moment	Stainless steel A4 and HCR, Property class 50	M _{Rk,s}	[Nm]	19	37	66	167	325	561	832	112
De De	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
	Steel, Property class 4.6	γMs,V	[-]				1,	67			
	Steel, Property class 4.8	γ̃Ms,V	[-]				1,	25			
tor	Steel, Property class 5.6	γMs,V	[-]				1,	67			
Partial factor	Steel, Property class 5.8	γMs,V	[-]				1,	25			
Irtia	Steel, Property class 8.8	γMs,V	[-]				1,	25			
Ра	Stainless steel A4 and HCR, Property class 50	γMs,V	[-]				2,	38			
	Stainless steel A4 and HCR, Property class 70	γms,v	[-]			1,	56			-	-

Performance

Characteristic steel resistances for threaded rods under tension and shear loads

	acteristic value ked concret e		eaded ro	ods u	nder t	ensio	n loac	ls in			
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel failure							1				
Characteristic tension res	sistance	N _{Rk,s}	[kN]				see ta	ble C1			
Combined pull-out and	concrete cone fa	ailure									
Characteristic bond resis	tance in cracked o	concrete C2	0/25								
Temperature range I:	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
40°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5	no pe	rforman (NF	ce deter PD)	mined
Temperature range II:	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
80°C/50°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0	no pe	rforman (NF		mined
Temperature range III:	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
120°C/72°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0	no performance dete (NPD)			mined
			C25/30				1,	02			
			C30/37				1,	04			
Increasing factor for $\tau_{Rk,cr}$			C35/45				1,	07			
Increasing factor for tRk,cr	ſ	Ψc	C40/50				1,	08			
			C45/55				1,	09			
			C50/60				1,	10			
Factor according to CEN	/TS 1992-4-5	k ₈	[-]				7	,2			
Concrete cone failure											
Factor according to CEN	/TS 1992-4-5	k _{cr}	[-]				7	,2			
Edge distance		C _{cr,N}	[mm]				1,5	5 h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0) h _{ef}			
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1,2			
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]		1	,4		no pe	rforman (NF	ce deter PD)	mined

Q Injection system VMU plus for concrete

Performance

Characteristic values for threaded rods under tension loads in cracked concrete

Threaded rod				M8	M10	M12	M16	M20	M24	M27	МЗО
Steel failure											
Characteristic tension re	esistance	N _{Rk,s}	[kN]				see ta	ble C1			
Combined pull-out and	d concrete cone	failure									
Characteristic bond resi	istance in uncrac	ked concrete	e C20/25								
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10	12	12	12	12	11	10	9
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	7,5	8,5	8,5	8,5	no pe	rforman (NI	ce deter PD)	mined
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	no pe	rforman (NI	ce deter PD)	mined
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
120°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	4,0 5,0 5,0 5,0 no performance determin (NPD)							
			C25/30				1,	02			
Increasing factor for -		C30/37				1,	04				
		C35/45	1,07								
Increasing factor for τ_{Rk}	,ucr	Ψc	C40/50	1,08							
			C45/55	1,09							
			C50/60	1,10							
Factor according to CEN	N/TS 1992-4-5	k ₈	[-]				10),1			
Concrete cone failure											
Factor according to CEN	N/TS 1992-4-5	k _{ucr}	[-]				10),1			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}			
Splitting failure		-	-	-							
Edge distance for		C _{cr,sp}	[mm]			1,0·h _{ef} ≤	s 2·h _{ef} (2	$(5-\frac{h}{h_{ef}})$	≤ 2,4·h _e	l	
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1,2			
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]		1	,4		no pe	rforman (NI	ce deter PD)	mineo

Q Injection system VMU plus for concrete

Performance

Characteristic values for threaded rods under tension loads in uncracked concrete

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm	_			•			-				
Characteristic shear resistance	$V_{Rk,s}$	[kN]				see ta	ble C1				
Ductility factor acc. to CEN/TS 1992-4-5	k ₂	[-]				0	,8				
Steel failure with lever arm		-	1								
Characteristic bending moment	${\sf M}^0{}_{\sf Rk,s}$	[Nm]				see ta	ble C1				
Concrete pry-out failure	-	_									
Factor k acc. to TR 029 or k_3 acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]				2	,0				
Concrete edge failure	-	•	-								
Effective length of anchor	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$									
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0				

Q Injection system VMU plus for concrete

Performance

Characteristic value for threaded rods under shear loads

	acteristic value gory C1	es for thı	readed r	r ods ເ	Inder s	seism	ic act	ion,			
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Tension load					<u>.</u>	<u>.</u>	<u> </u>		<u> </u>		
Steel failure											
Characteristic tension re	esistance	N _{Rk,s,seis}	[kN]			1,0 ·	N _{Rk,s}	(see ta	ble C1)		
Combined pull-out and	d concrete cone fa	ailure	1								
Characteristic bond resi	stance in concrete	C20/25 to 0	C50/60								
Temperature range I:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore hole	τ _{Rk,seis}	[N/mm²]	2,5	2,5	3,7	3,7	no pe	rformano (NF	ce deteri PD)	mined
Temperature range II:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	flooded bore hole	$\tau_{\text{Rk,seis}}$	[N/mm²]	1,6	1,9	2,7	2,7	no pe	rformand (NF	ce deteri PD)	mined
Temperature range III:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C	flooded bore hole	τ _{Rk,seis}	[N/mm ²]	1,3	1,6	2,0	2,0	no pe	rforman (NF	ce deteri PD)	mined
Increasing factor for $\tau_{\text{Rk},}$	seis	Ψc	[-]				1	,0			
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1,2			
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]		1,	4		no pe	rforman (NF	ce deteri PD)	mined
Shear load											
Steel failure without le	ever arm										
Characteristic shear res	istance	V _{Rk,s,seis}	[kN]			0,7 · \	/ _{Rk,s}	(see tat	ole C1)		
Steel failure with lever	arm		· · · · ·								
Characteristic bending r	noment	M ⁰ _{Rk,s,seis}	[Nm]		No	o Perfor	mance [Determir	ed (NPI	D)	
Q Injection system Performance Characteristic values									Ar	nnex C	\$5

electronic copy of the eta by dibt: eta-17/1058

Internally threaded and	chor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M20
Steel failure 1)					-				
Characteristic shear res Steel, strength class 5.8		N _{Rk,s}	[kN]	10	18	29	42	79	123
Partial factor		γмs,N	[-]			1	,5		
Characteristic shear res Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor		γ _{Ms,N}	[-]			1	,5		
Characteristic shear res Stainless steel A4 / HCF		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾
Partial factor		γмs,N	[-]			1,87			2,86
Combined pull-out and	d concrete cone failure	e							
Characteristic bond resi	stance in <u>cracked</u> conc	rete C20	/25						
Temperature range I:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm²]	5,0	5,5	5,5	5,5	5,5	6,5
40°C/24°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	4,0	5,5	5,5	no perfoi	rmance de (NPD)	termined
Temperature range II:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	3,5	4,0	4,0	4,0	4,0	4,5
80°C/50°C	0°C flooded bore hole		[N/mm ²]	3,0	4,0	4,0	no perfoi	rmance de (NPD)	termined
Temperature range III:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5
120°C/72°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	2,5	3,0	3,0	no perfoi	rmance de (NPD)	termined
			C25/30			,	02		
			C30/37				04		
Increasing factor for τ_{Rk}	cr	Ψc	C35/45				07		
0		10	C40/50				08		
			C45/55				09		
F		1.	C50/60				10		
Factor according to CEN	N/15 1992-4-5	k ₈	[-]			1	,2		
Factor according to CEN	V/TS 1992-4-5	k _{cr}	[-]			7	,2		
Edge distance	10 1002 4 0	C _{cr,N}	[mm]				h _{ef}		
Spacing		S _{cr,N}	[mm]			3,0			
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]				,2		
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]		1,4		no perfoi	rmance de (NPD)	termined

Q Injection system VMU plus for concrete

Performance

Characteristic values for internally threaded anchor rods under tension loads in cracked concrete

Table C7: Chara uncra	acteristic values of acked concrete	f tensi	on load	s for int	ernally	thread	ed ancl	nor rod	s in	
Internally threaded and	chor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure 1)					<u></u>	<u> </u>				
Characteristic shear res Steel, strength class 5.8		N _{Rk,s}	[kN]	10	18	29	42	79	123	
Partial factor		γмs,N	[-]			1	,5			
Characteristic shear res Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor		γ _{Ms,N}	[-]			1	,5			
Characteristic shear res Stainless steel A4 / HCF		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾	
Partial factor		γ _{Ms,N}	[-]			1,87			2,86	
Combined pull-out and	l concrete cone failure	e								
Characteristic bond resis	stance in <u>uncracked</u> co	oncrete C	20/25							
Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	12	12	12	12	11	9,0	
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,5	no perfo	mance de	termined	
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	9,0	9,0	9,0	9,0	8,5	6,5	
80°C/50°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	no perfoi	no performance dete		
Temperature range III:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	6,5	5,0		
120°C/72°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	5,0	5,0	5,0		mance de	termined	
			C25/30				02			
			C30/37 C35/45			,	04 07			
Increasing factor for $\tau_{Rk,i}$	ucr	ψ_{c}	C40/50			,	08			
			C45/55				09			
			C50/60			1,	10			
Factor according to CEN	I/TS 1992-4-5	k ₈	[-]			10),1			
Concrete cone failure										
Factor according to CEN	I/TS 1992-4-5	k _{ucr}	[-]			10),1			
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}			
Spacing		S _{cr,N}	[mm]			3,0	h _{ef}			
Splitting failure										
	h/h _{ef} ≥ 2,0					1,0	h _{ef}			
Edge distance	$2,0>h/h_{ef}>1,3$ $c_{cr,sp}$					2 * h _{ef} (2,	5 – h / h _{ef})			
	h/h _{ef} ≤ 1,3					2,4	h _{ef}			
Spacing	pacing s _{cr,sp}					2 c	cr,sp			
Installation factor (dry and wet concrete)	γ:	$_2 = \gamma_{inst}$	[-]			1	,2			
Installation factor (flooded bore hole)	γ:	$_2 = \gamma_{inst}$	[-]		1,4		no perfoi	rmance de	termined	

threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

²⁾ For IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Q Injection system VMU plus for concrete

Performance

Characteristic values for internally threaded anchor rods under tension loads in uncracked concrete

Table C8: Characteristic values for internally threaded anchor rods under shear loads in cracked and uncracked concrete

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure <u>without</u> lever arm ¹⁾								
Characteristic shear resistance Steel, strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	39	61
Partial factor	γ _{Ms,∨}	[-]			1,	,25		
Characteristic shear resistance Steel, strength class 8.8	$V_{Rk,s}$	[kN]	8	14	23	34	60	98
Partial factor	γ _{Ms,∨}	[-]			1,'	,25		
Characteristic shear resistance Stainless steel A4 / HCR, strength class 70	$V_{Rk,s}$	[kN]	7	13	20	30	55	62 ²⁾
Partial factor	γ _{Ms,∨}	[-]			1,56			2,38
Ductility factor according to CEN/TS 1992-4-5	k ₂	[-]			0),8		
Steel failure <u>with</u> lever arm ¹⁾								
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial factor	γ _{Ms,∨}	[-]			1,	,25		
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor	γ _{Ms,∨}	[-]			1,	,25		
Characteristic bending moment, Stainless steel A4 / HCR, strength class 70	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾
Partial factor	γ _{Ms,∨}	[-]			1,56			2,38
Concrete pry-out failure								
Factor k acc. to TR 029 or k_3 acc. to CEN/TS 1992-4-5	$k_{(3)}$	[-]			2	2,0		
Concrete edge failure								
Effective length of anchor	l _f	[mm]			I _f = min(h	n _{ef} ; 8 d _{nom})		
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must compley with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

²⁾ For IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Q Injection system VMU plus for concrete

Performance

Characteristic values for internally threaded anchor rods under shear loads

Rebar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure									•			
Characteristic tension re	esistance	N _{Rk,s}	[kN]					$A_{s} \cdot f_{uk}^{1}$)			
Combined pull-out and	d concrete cor	e failure										
Characteristic bond resi	stance in crack	ed concre	te C20/25									
Temperature range I:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
40°C/24°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm²]	4,0	4,0	5,5	5,5	5,5	no per	formanc (NF		mined
Temperature range II:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
80°C/50°C	flooded bore hole TRk,cl		[N/mm²]	2,5	3,0	4,0	4,0	4,0	no per	formanc (NF		mined
Temperature range III:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
120°C/72°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm²]	2,0	2,5	3,0	3,0	3,0	no per	formanc (NF		mined
			C25/30					1,02				
			C30/37					1,04				
Increasing factors for τ_{RI}	k or	Ψc	C35/45					1,07				
	K, Cr	Ψ¢	C40/50					1,08				
			C45/55					1,09				
			C50/60					1,10				
Factor acc. to CEN/TS 1	992-4-5	k ₈	[-]					7,2				
Concrete cone failure												
Factor acc. to CEN/TS 1	992-4-5	k_{cr}	[-]					7,2				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1	,2			
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]			1,4			no perf	ormanc (NP		mined

 $^{1)} \mathbf{f}_{uk} = \mathbf{f}_{tk} = \mathbf{k} \cdot \mathbf{f}_{yk}$

Q Injection system VMU plus for concrete

Performance

Characteristic values for rebar under tension loads in cracked concrete

Rebar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 3	
Steel failure													
Characteristic tension re	sistance	N _{Rk,s}	[kN]					A _s ∙ f _{uk})				
Combined pull-out and	concrete cone	failure											
Characteristic bond resis	stance in uncrack	ked concre	ete C20/25										
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10	12	12	12	12	12	11	10	8,5	
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5	8,5		no perfe etermin			
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0	
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5		no perfe etermin			
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5	
120°C/72°C	flooded bore hole	flooded bore hole ^{τ_{Rk,ucr} [N/mm}		4,0	5,0	5,0	5,0	5,0		no perfe etermin			
			C25/30	1,02									
ncreasing factors for $\tau_{Bk,ucr}$		C30/37					1,04						
	Ψc	C35/45					1,07						
	ucr	Ψc	C40/50	1,08									
			C45/55	1,09									
			C50/60					1,10					
Factor acc. to CEN/TS 1	992-4-5	k ₈	[-]					10,1					
Concrete cone failure													
Factor acc. to CEN/TS 1	992-4-5	k _{ucr}	[-]					10,1					
Edge distance		C _{cr,N}	[mm]					1,5 h _{ei}					
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}					
Splitting failure													
Edge distance for		C _{cr,sp}	[mm]			1,0∙h	_{ef} ≤ 2·h	ef(2,5-	<u>h</u> h _{ef})≤2	2,4·h _{ef}			
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}					
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1	,2				
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]			1,4				no perfe etermin	ormanc ed (NP		

Q Injection system VMU plus for concrete

Performance

Characteristic values for rebar under tension loads in uncracked concrete

Rebar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Steel failure without lever arm				-								
Characteristic shear resistance	V _{Rk,s}	[kN]	0,50 · A _s · f _{uk} ¹⁾									
Ductility factor according to CEN/TS 1992-4-5	k ₂	[-]	0,8									
Steel failure with lever arm		_										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1,2	. ∙ W _{el} • 1	1) uk				
Concrete pry-out failure		•										
Factor k acc. to TR 029 or k_3 acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]	2,0									
Concrete edge failure												
Effective length of anchor	lf	[mm]				$I_{f} = m$	nin(h _{ef} ; 8	d _{nom})				
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32	
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0									

Q Injection system VMU plus for concrete

Performance

Characteristic values for rebar under shear loads in cracked and uncracked concrete

	acteristic val jory C1	ues for r	ebar un	der s	eismi	ic acti	ion,						
Rebar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Tension load										-	-		
Steel failure													
Characteristic tension re	[kN]					A _s ∙ f _{uk} ¹)						
Combined pull-out and concrete cone failure													
Characteristic bond resis	stance in concre	te C20/25 t	o C50/60										
Temperature range I:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
40°C/24°C	flooded bore hole	τ _{Rk,seis}	[N/mm²]	2,5	2,5	3,7	3,7	3,7			ormance ed (NPI		
Temperature range II:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
80°C/50°C	flooded bore hole	τ _{Rk,seis}	[N/mm²]	1,6	1,9	2,7	2,7	2,7		no performance determined (NPD)			
Temperature range III:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
120°C/72°C	flooded bore hole	τ _{Rk,seis}	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	no performance determined (NPD)				
Increasing factor for $\tau_{\text{Rk},s}$	seis	Ψc	[-]	1,0									
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0	1,0 1,2								
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]	1,4 no pe				no per	erformance determined (NPD)				
Shear load													
Steel failure without le	ver arm												
Characteristic shear resi	istance	V _{Rk,s,seis}	[kN]	0,35 • A _s • f _{uk} ¹⁾									
Steel failure with lever	arm												
Characteristic bending moment $M^{0}_{Rk,s,seis}$ [Nm] no performance determined (I								(NPD)					
$^{1)} f_{uk} = f_{tk} = k \cdot f_{yk}$													
Q Injection system	n VMU plus f	or concr	ete										
Performance Characteristic values for rebar under seismic action , category C1										An	nex C	:12	

Table C13: Displation (thread		s under tens i nd internally f			or rod))							
Threaded rod			M8	M10 IG-M6	M12 IG-M8	M16 IG- M10	M20 IG-M12	M24 IG-M16	M27	M30 IG-M20			
Uncracked concrete Ca	20/25							<u> </u>					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049			
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071			
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119			
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119			
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172			
Cracked concrete C20/	25				-	-	-			-			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,0)90	0,070								
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,1	05	0,105								
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219	0,170								
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,2	255	0,245								
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219	0,170								
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,2	255	0,245								

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; τ : acting bond stress for tension load

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Table C14: Displacements under shear load1)
(threaded rod and internally threaded anchor rod)

Threaded rod			M8	M10 IG-M6	M12 IG-M8	M16 IG- M10	M20 IG-M12	M24 IG-M16	M27	M30 IG-M20		
Uncracked concrete C20/25												
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03		
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05		
Cracked concrete C20/25												
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07		
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10		

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} \text{-factor} \quad V; \qquad \qquad V: \text{ acting shear load}$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor $\cdot V$;

Q Injection system VMU plus for concrete

Performance

Displacements (threaded rod and internally threaded anchor rod)

Rebar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C	20/25				-	-					
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete C20	/25	-			-	-					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,0	90				0,070			
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,1	05	0,105						
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219	0,170						
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255	0,245						
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219				0,170			
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255				0,245			

¹⁾ Calculation of the displacement

 $\begin{array}{ll} \delta_{N0}=\delta_{N0}\text{-}\text{Faktor} \ \cdot \ \tau; & \tau: \text{ acting bond stress for tension load} \\ \delta_{N\infty}=\delta_{N\infty}\text{-}\text{Faktor} \ \cdot \ \tau; & \end{array}$

Table C16: Displacements under shear load¹⁾ (rebar)

•				``	,							
Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Uncracked concrete C20/25												
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	
	$\delta_{V\infty}\text{-factor}$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04	
Cracked concrete C20/25												
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06	
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} \text{-factor} \quad \cdot \text{ V}; \qquad \qquad \text{V: acting shear load}$

 $\delta_{V\infty} = \delta_{V\infty} \text{-factor} \cdot V;$

Q Injection system VMU plus for concrete

Performance

Displacements (rebar)