

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-02/0030 vom 27. Februar 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Schwerlastanker SZ

Mechanischer Dübel zur Verankerung im Beton

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

20 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601

ETA-02/0030 vom 22. August 2017

Europäische Technische Bewertung ETA-02/0030

Seite 2 von 20 | 27. Februar 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-02/0030

Seite 3 von 20 | 27. Februar 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Schwerlastanker SZ ist ein Dübel aus galvanisch verzinktem Stahl oder nichtrostendem Stahl der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Er umfasst die folgenden Dübeltypen:

- Dübeltyp SZ-B mit Gewindebolzen,
- Dübeltyp SZ-S mit Sechskantschraube,
- Dübeltyp SZ-SK mit Senkscheibe und Senkschraube.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung		
Charakteristische Werte für statische und quasi statische Belastung	Siehe Anhang C1 bis C5		
Charakteristische Werte für seismische Einwirkungen Kategorie C1 und C2	Siehe Anhang C6 und C7		
Verschiebungen unter Zug- und Querlasten	Siehe Anhang C9 und C10		

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Siehe Anhang C8

Europäische Technische Bewertung ETA-02/0030

Seite 4 von 20 | 27. Februar 2018

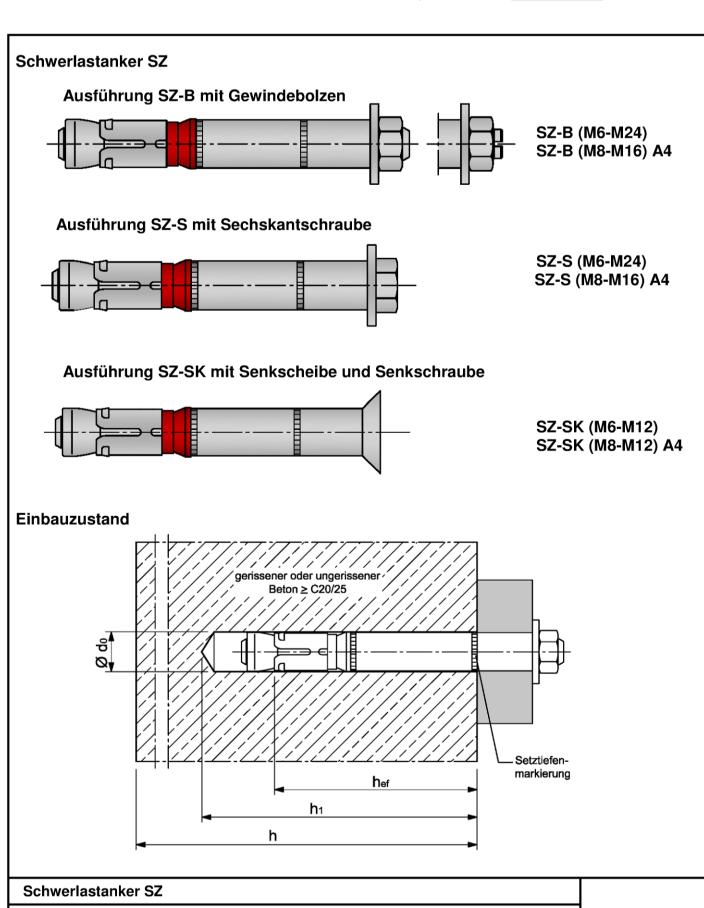
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

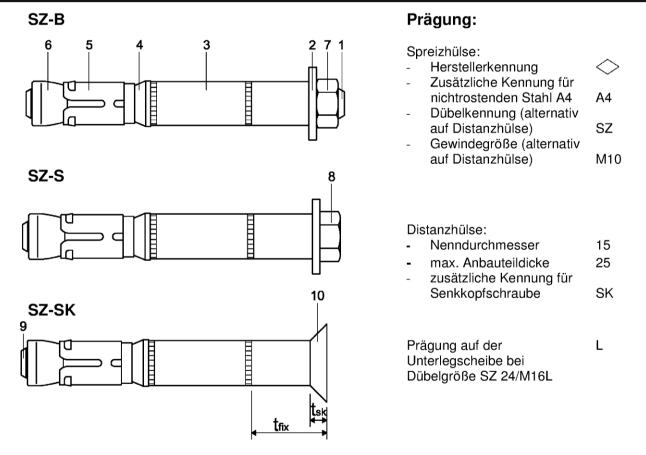
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 27. Februar 2018 vom Deutschen Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt i. V. Abteilungsleiter

Beglaubigt


Produktbeschreibung
Produkt und Einbauzustand

Anhang A1

Tabelle A1: Benennung und Werkstoffe

Teil	Benennung	Werkstoffe galvanisch verzinkt ≥ 5 μm, nach EN ISO 4042:1999	Nichtrostender Stahl A4
1	Gewindebolzen	Stahl, Festigkeitsklasse 8.8, EN ISO 898-1:2013	Nichtrostender Stahl, 1.4401, 1.4404 oder 1.4571, EN 10088:2014
2	Unterlegscheibe	Stahl, EN 10139:2016	Nichtrostender Stahl, EN 10088:2014
3	Distanzhülse	Stahlrohr EN 10305-2:2016; EN 10305-3:2016;	Stahlrohr nichtrostender Stahl, 1.4401, 1.4404 oder 1.4571, EN 10217-7:2014, EN 10216-5:2013
4	Pressring	Polyethylen	Polyethylen
5	Spreizhülse	Stahl, EN 10139:2016	Nichtrostender Stahl, 1.4401, 1.4404 oder 1.4571, EN 10088:2014
6	Spreizkonus	Stahl, EN 10083-2:2006	Nichtrostender Stahl, 1.4401, 1.4404 oder 1.4571, EN 10088:2014
7	Sechskantmutter	Stahl, Festigkeitsklasse 8, EN ISO 898-2:2012	Nichtrostender Stahl, Festigkeitsklasse 70, EN ISO 3506-2:2009,
8	Sechskantschraube	Stahl, Festigkeitsklasse 8.8, EN ISO 898-1:2013;	Nichtrostender Stahl, Festigkeitsklasse 70, EN ISO 3506-1:2009
9	Senkschraube	Stahl, Festigkeitsklasse 8.8, EN ISO 898-1:2013;	Nichtrostender Stahl, Festigkeitsklasse 70, EN ISO 3506-1:2009
10	Senkscheibe	Stahl, EN 10083-2:2006	Nichtrostender Stahl, 1.4401, 1.4404 oder 1.4571, EN 10088:2014, verzinkt

Schwerlastanker SZ	
Produktbeschreibung Prägung und Werkstoffe	Anhang A2

Spezifizierung des Verwendungszwecks Schwerlastanker SZ. 24/ 10/M6 12/M8 28/M20 15/M10 | 18/M12 | 24/M16 32/M24 Stahl verzinkt M16L Statische oder quasi-statische Einwirkung Seismische Einwirkung (SZ-B und SZ-S) C1 + C2Seismische Einwirkung (SZ-SK) C1 + C2Brandbeanspruchung R 30 ... R 120 Schwerlastanker SZ, 15/M10 | 18/M12 | 24/M16 12/M8 nichtrostender Stahl A4 Statische oder quasi-statische Einwirkung Seismische Einwirkung (SZ-B und SZ-S) C1 + C2C1 + C2Seismische Einwirkung (SZ-SK) R30 ... R120 Brandbeanspruchung

Verankerungsgrund:

- Gerissener und ungerissener Beton
- Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206-1:2000

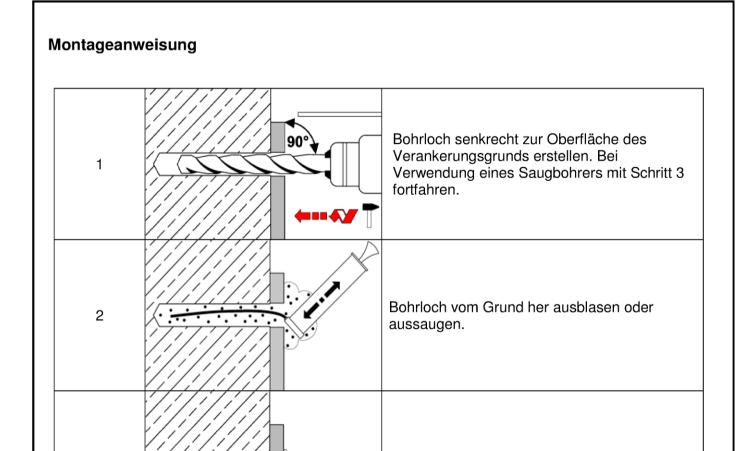
Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter Bedingungen trockener Innenräume (verzinkter Stahl oder nichtrostender Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl).

Anmerkung: Besonders aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung, bei seismischer Beanspruchung oder bei Brandbeanspruchung erfolgt nach FprEN 1992-4:2016 in Verbindung mit TR 055.


Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters.
- Bei Fehlbohrung: Anordnung eines neuen Bohrlochs im Abstand > 2 x Tiefe der Fehlbohrung oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Einhaltung der effektiven Verankerungstiefe. Diese Bedingung ist erfüllt, wenn die Setztiefenmarkierung des Dübels nicht über die Betonoberfläche hinausragt.
- Verwendung wie vom Hersteller geliefert, ohne Austausch einzelner Teile.
- Bohrlocherstellung nur durch Hammerbohren (Verwendung von Saugbohrern ist erlaubt)

Schwerlastanker SZ	
Verwendungszweck Spezifizierung des Verwendungszwecks	Anhang B1

3

Anker einschlagen.

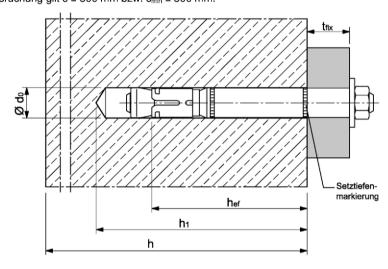

Schwerlastanker SZ	
Verwendungszweck Montageanweisung	Anhang B2

Tabelle B1: Montage- und Dübelkennwerte, Stahl verzinkt

Dübelgröße			10/M6	12/	15/	18/	24/	24/	28/	32/
Dubeigrobe			TO/IVIO	М8	M10	M12	M16	M16L	M20	M24
Gewinde		[-]	M6	M8	M10	M12	M16	M16	M20	M24
Verankerungstiefe	h _{ef}	[mm]	50	60	71	80	100	115	125	150
Bohrernenndurchmesser	$d_0 =$	[mm]	10	12	15	18	24	24	28	32
Bohrerschneidendurch- messer	d _{cut} ≤	[mm]	10,45	12,5	15,5	18,5	24,55	24,55	28,55	32,7
Bohrlochtiefe	h₁ ≥	[mm]	65	80	95	105	130	145	160	180
Durchgangsloch im anzuschließenden Bauteil	d₁≤	[mm]	12	14	17	20	26	26	31	35
Dicke der Senkscheibe SZ-SK	t _{sk}	[mm]	4	5	6	7	-	-	-	-
Mindestanbauteildicke SZ-SK	tfix min ²⁾	[mm]	8	10	14	18	-	-	-	-
Montage- T _{inst} (SZ	:-B, SZ-S)	[Nm]	15	30	50	80	160	160	280	280
drehmoment T _{inst}	(SZ-SK)	[Nm]	10	25	55	70	-	-	-	-
Mindestbauteildicke	h _{min}	[mm]	100	120	140	160	200	230	250	300
Minimaler Achsabstand 1) 3)	Smin	[mm]	50	50	60	70	100	100	125	150
gerissener Beton	für c ≥	[mm]	50	80	120	140	180	180	300	300
Minimaler Randabstand 1) 3)	Cmin	[mm]	50	55	60	70	100	100	180	150
gerissener Beton	für s ≥	[mm]	50	100	120	160	220	220	540	300
Minimaler Achsabstand 1) 3)	Smin	[mm]	50	60	60	70	100	100	125	150
ungerissener Beton	für c ≥	[mm]	80	100	120	140	180	180	300	300
Minimaler Randabstand 1) 3)	Cmin	[mm]	50	60	60	70	100	100	180	150
ungerissener Beton	für s ≥	[mm]	100	120	120	160	220	220	540	300

¹⁾ Zwischenwerte dürfen interpoliert werden

³⁾ Bei mehrseitiger Brandbeanspruchung gilt c ≥ 300 mm bzw. c_{min} ≥ 300 mm.

Schwerlastanker SZ Verwendungszweck Montage- und Dübelkennwerte, Stahl verzinkt Anhang B3

²⁾ Die Anbauteildicke darf, abhängig von der tatsächlich vorhandenen Querlast, bis auf die Dicke der Senkscheibe t_{sk} (siehe Anhang A2) reduziert werden. Es ist nachzuweisen, dass die Querlast vollständig in die Distanzhülse eingeleitet werden kann (Lochleibung).

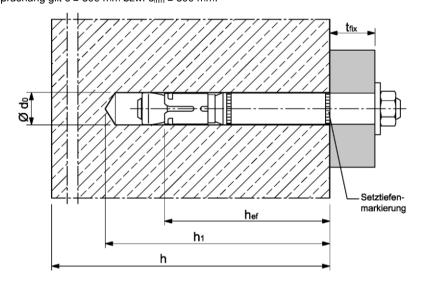


Tabelle B2: Montage- und Dübelkennwerte, nichtrostender Stahl A4

Dübelgröße	12/M8	15/M10	18/M12	24/M16		
Gewinde		[-]	M8	M10	M12	M16
Verankerungstiefe	h_{ef}	[mm]	60	71	80	100
Bohrernenndurchmesser	$d_0 =$	[mm]	12	15	18	24
Bohrerschneidendurchmesser	$d_{cut} \leq$	[mm]	12,5	15,5	18,5	24,55
Bohrlochtiefe	$h_1 \geq$	[mm]	80	95	105	130
Durchgangsloch im anzuschließenden Bauteil	$d_f\!\leq\!$	[mm]	14	17	20	26
Dicke der Senkscheibe SZ-SK	tsk	[mm]	5	6	7	-
Mindestanbauteildicke SZ-SK	t _{fix min} 2)	[mm]	10	14	18	-
	T _{inst} (SZ-B)	[Nm]	35	55	90	170
Montagedrehmoment	T _{inst} (SZ-S)	[Nm]	30	50	80	170
	T _{inst} (SZ-SK)	[Nm]	17,5	42,5	50	-
Mindestbauteildicke	h _{min}	[mm]	120	140	160	200
Minimaler Achsabstand 1) 3)	Smin	[mm]	50	60	70	80
gerissener Beton	für c ≥	[mm]	80	120	140	180
Minimaler Randabstand 1) 3)	Cmin	[mm]	50	60	70	80
gerissener Beton	für s ≥	[mm]	80	120	160	200
Minimaler Achsabstand 1) 3)	Smin	[mm]	50	60	70	80
ungerissener Beton	für c ≥	[mm]	80	120	140	180
Minimaler Randabstand 1) 3)	Cmin	[mm]	50	85	70	180
ungerissener Beton	für s ≥	[mm]	80	185	160	80

¹⁾ Zwischenwerte dürfen interpoliert werden

3) Bei mehrseitiger Brandbeanspruchung gilt $c \ge 300 \text{ mm}$ bzw. $c_{min} \ge 300 \text{ mm}$.

Verwendungszweck Montage- und Dübelkennwerte, nichtrostender Stahl A4 Anhang B4

²⁾ Die Anbauteildicke darf, abhängig von der tatsächlich vorhandenen Querlast, bis auf die Dicke der Senkscheibe t_{sk} (siehe Anhang A2) reduziert werden. Es ist nachzuweisen, dass die Querlast vollständig in die Distanzhülse eingeleitet werden kann (Lochleibung).

Tabelle C1: Charakteristische Werte bei **Zugbeanspruchung**, **gerissener Beton**, statische oder quasi-statische Belastung, **Stahl verzinkt**

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Montagesicherheitsbeiwert	γinst	[-]				1	,0			
Stahlversagen										
Charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282
Teilsicherheitsbeiwert	γMs	[-]	1,5							
Herausziehen										
Charakteristische Tragfähigkeit in gerissenem Beton C20/25	N _{Rk,p}	[kN]	5	12	16	1)	1)	1)	1)	1)
Erhöhungsfaktor für N _{Rk,p}	ψο	[-]	$\left(rac{\mathrm{f_{ck}}}{20} ight)^{0,5}$							
Betonausbruch										
Effektive Verankerungstiefe	h _{ef}	[mm]	50	60	71	80	100	115	125	150
Faktor k ₁ =	k _{cr,N}	[-]				7	,7			

¹⁾ Herausziehen ist nicht maßgebend

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung, gerissener Beton, statische oder quasi-statische Belastung, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16		
Montagesicherheitsbeiwert	γinst	[-]	1,0					
Stahlversagen								
SZ-B								
Charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	26	41	60	110		
Teilsicherheitsbeiwert	γMs	[-]		1	,5			
SZ-S und SZ-SK								
Charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	26	41	60	110		
Teilsicherheitsbeiwert	γMs	[-]		1,	87			
Herausziehen								
Charakteristische Tragfähigkeit in gerissenem Beton C20/25	$N_{Rk,p}$	[kN]	9	16	1)	1)		
Erhöhungsfaktor für N _{Rk,p}	ψο	[-]	$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0.5}$					
Betonausbruch								
Effektive Verankerungstiefe	h _{ef}	[mm]	60	71	80	100		
Faktor k ₁ =	k _{cr,N}	[-]		7	,7			

¹⁾ Herausziehen ist nicht maßgebend

Schwerlastanker SZ Leistung Charakteristische Werte bei Zugbeanspruchung, gerissener Beton, statische oder quasistatische Belastung Anhang C1

Tabelle C3: Charakteristische Werte bei **Zugbeanspruchung**, **ungerissener Beton**, statische oder quasi-statische Belastung, **Stahl verzinkt**

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Montagesicherheitsbeiwert	γ inst	[-]				1	,0			
Stahlversagen										
Charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282
Teilsicherheitsbeiwert	γMs	[-]				1	,5			
Herausziehen										
Charakteristische Tragfähigkeit in ungerissenem Beton 20/25	N _{Rk,p}	[kN]	1)	20	1)	1)	1)	1)	1)	1)
Erhöhungsfaktor für N _{Rk,p}	ψο	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,5			
Spalten (Es darf der höhere Wi	derstand	aus Fal	I 1 und Fa	ıll 2 anges	etzt werde	en)				
Fall 1										
Charakteristische Tragfähigkeit in ungerissenem Beton C20/25	N ⁰ Rk,sp	[kN]	12	16	25	30	40	70	50	70
Randabstand	C _{cr,sp}	[mm]				1,5	h _{ef}			
Erhöhungsfaktor für N ⁰ Rk,sp	ψο	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,5			
Fall 2										
Charakteristische Tragfähigkeit in ungerissenem Beton	N^0 Rk,sp	[kN]	min (<i>N</i> _{Rk,p} ; <i>N</i> ^o _{Rk,c})							
Randabstand	Ccr,sp	[mm]			$2,5\ h_{\text{ef}}$			1,5 h _{ef}	2,5 h _{ef}	$2\ h_{\text{ef}}$
Betonausbruch										
Effektive Verankerungstiefe	h _{ef}	[mm]	50	60	71	80	100	115	125	150
Randabstand	C cr,N	[mm]				1,5	h _{ef}			
Faktor $k_1 =$	k _{ucr,N}	[-]				11	1,0			

¹⁾ Herausziehen ist nicht maßgebend

Schwerlastanker SZ

Leistung

Charakteristische Werte bei **Zugbeanspruchung**, **ungerissener Beton**, statische oder quasi-statische Belastung, **Stahl verzinkt**

Anhang C2

Tabelle C4: Charakteristische Werte bei **Zugbeanspruchung, ungerissener Beton,** statische oder quasi-statische Belastung, **nichtrostender Stahl A4**

Dübelgröße			12/M8	15/M10	18/M12	24/M16	
Montagesicherheitsbeiwert	γinst	[-]	1,0				
Stahlversagen							
SZ-B							
Charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	26	41	60	110	
Teilsicherheitsbeiwert	γMs	[-]		1	,5		
SZ-S und SZ-SK							
Charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	26	41	60	110	
Teilsicherheitsbeiwert	γMs	[-]		1,	87		
Herausziehen							
Charakteristische Tragfähigkeit in ungerissenem Beton C20/25	$N_{Rk,p}$	[kN]	16	25	35	1)	
Erhöhungsfaktor für N _{Rk,p}	ψο	[-]		$\left(\frac{f_{ck}}{20}\right)$	0,5		
Spalten							
Randabstand	Ccr,sp	[mm]	180	235	265	300	
Betonausbruch							
Effektive Verankerungstiefe	h _{ef}	[mm]	60	71	80	100	
Randabstand	C _{cr} ,N	[mm]	1,5 h _{ef}				
Faktor k ₁ =	k _{ucr,N}	[-]		11	1,0		

¹⁾ Herausziehen ist nicht maßgebend.

Schwerlastanker SZ

Leistung

Charakteristische Werte bei **Zugbeanspruchung, ungerissener Beton,** statische oder quasi-statische Belastung, **nichtrostender Stahl A4**

Anhang C3

Tabelle C5: Charakteristische Werte bei **Querbeanspruchung,** statische oder quasi-statische Belastung, **Stahl verzinkt**

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Stahlversagen ohne h	lebelarr	n								
SZ-B										
Charakteristische Quertragfähigkeit	V^0 Rk,s	[kN]	16	25	36	63	91	91	122	200
Faktor	k ₇	[-]				1,	,0			
SZ-S und SZ-SK	-S und SZ-SK									
Charakteristische Quertragfähigkeit	V^0 Rk,s	[kN]	18	30	48	73	126	126	150	200
Faktor	k_7	[-]	1,0							
Teilsicherheitsbeiwert	γMs	[-]				1,	25			
Stahlversagen mit He	belarm								-	
Charakteristisches Biegemoment	M ⁰ Rk,s	[Nm]	12	30	60	105	266	266	519	898
Teilsicherheitsbeiwert	$\gamma_{\sf Ms}$	[-]				1,2	25			
Betonausbruch auf de	er lastal	gewan	dten Seit	е						
Faktor	k ₈	[-]	1,8				2,0			
Betonkantenbruch										
Wirksame Dübellänge bei Querlast	lf	[mm]	50	60	71	80	100	115	125	150
Wirksamer Außendurchmesser	d_{nom}	[mm]	10	12	15	18	24	24	28	32

Schwerlastanker SZ	
Leistung Charakteristische Werte bei Querbeanspruchung, statische oder quasi-statische Belastung, Stahl verzinkt	Anhang C4

Tabelle C6: Charakteristische Werte bei Querbeanspruchung, statische oder quasi-statische Belastung, nichtrostender Stahl A4

Dübelgröße		12/M8	15/M10	18/M12	24/M16				
Stahlversagen ohne Hebelarm									
Charakteristische Quertragfähigkeit	$V^0_{Rk,s}$	[kN]	24	37	62	92			
SZ-B									
Faktor	k ₇	[-]		1,	,0				
Teilsicherheitsbeiwert	$\gamma_{\sf Ms}$	[-]		1,	25				
SZ-S									
Faktor	k ₇	[-]		1,	,0				
Teilsicherheitsbeiwert	γ̃Ms	[-]		1,	36				
SZ-SK									
Faktor	k ₇	[-]		0,8		-			
Teilsicherheitsbeiwert	γMs	[-]		1,36		-			
Stahlversagen mit Hebelarm	·								
Charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]	26	52	92	232			
SZ-B									
Teilsicherheitsbeiwert	$\gamma_{\sf Ms}$	[-]		1,	25				
SZ-S und SZ-SK									
Teilsicherheitsbeiwert	$\gamma_{\sf Ms}$	[-]		1,	56				
Betonausbruch auf der lastabgewandte	n Seite								
Faktor	k ₈	[-]	2,0						
Betonkantenbruch									
Wirksame Dübellänge bei Querlast	lf	[mm]	60	71	80	100			
Wirksamer Außendurchmesser	d_{nom}	[mm]	12	15	18	24			

_	_	_		_	
C~	hwe	ω	ton	10 H	67
- O.C.	HVVE	เเลร	ıanı	ĸer	J

Leistung

Charakteristische Werte bei **Querbeanspruchung**, statische oder quasi-statische Belastung, **nichtrostender Stahl A4**

Anhang C5

Tabelle C7: Charakteristische Werte bei seismischer Beanspruchung, Kategorie C1 und C2, Stahl verzinkt

Dübelgröße			12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20	32/M24
Zugbeanspruchung									
Montagesicherheitsbeiwert	γinst	[-]				1,0			
Stahlversagen									
Charakteristische Zugtragfähigkeit, Kategorie C1	$N_{\text{Rk,s,eq,C1}}$	[kN]	29	46	67	126	126	196	280
Charakteristische Zugtrag- fähigkeit, Kategorie C2	N _{Rk,s,eq,C2}	[kN]	29	46	67	126	126	196	280
Teilsicherheitsbeiwert	γ_{Ms}	[-]				1,5			
Herausziehen									
Charakteristische Zugtrag- fähigkeit, Kategorie C1	$N_{\text{Rk,p,eq,C1}}$	[kN]	12	16	25	36	44,4	50,3	63,3
Charakteristische Zugtrag- fähigkeit, Kategorie C2	N _{Rk,p,eq,C2}	[kN]	5,4	16,4	22,6	29,0	41,2	43,6	63,3
Querbeanspruchung									
Stahlversagen ohne Hebe	larm								
SZ-B									
Charakteristische Quer- tragfähigkeit, Kategorie C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Charakteristische Quer- tragfähigkeit, Kategorie C2	$V_{\text{Rk,s,eq,C2}}$	[kN]	12,7	20,5	31,5	50,1	50,1	67,1	108,1
SZ-S									
Charakteristische Quer- tragfähigkeit, Kategorie C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Charakteristische Quer- tragfähigkeit, Kategorie C2	$V_{\text{Rk,s,eq,C2}}$	[kN]	12,7	20,5	31,5	69,3	69,3	67,1	108,1
SZ-SK									
Charakteristische Quer- tragfähigkeit, Kategorie C1	$V_{\text{Rk,s,eq,C1}}$	[kN]	25,2	36,5	50,4	-	-	-	-
Charakteristische Quer- tragfähigkeit, Kategorie C2	$V_{Rk,s,eq,C2}$	[kN]	19,2	29,3	39,4	-	-	-	-
Teilsicherheitsbeiwert	γ_{Ms}	[-]				1,25			

Schwerlastanker SZ	
Leistung Charakteristische Werte bei seismischer Beanspruchung, Stahl verzinkt	Anhang C6

Tabelle C8: Charakteristische Werte bei seismischer Beanspruchung, Kategorie C1 und C2, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16
Zugbeanspruchung						
Montagesicherheitsbeiwert	[-]		1,	,0		
Stahlversagen	·					
Charakteristische Zugtragfähigkeit, Kategorie C1	N _{Rk,s,eq,C1}	[kN]	26	41	60	110
Charakteristische Zugtragfähigkeit, Kategorie C2	N _{Rk,s,eq,C2}	[kN]	26	41	60	110
Teilsicherheitsbeiwert SZ-B	γ̃Ms	[-]		1,	5	
Teilsicherheitsbeiwert SZ-S und SZ-SK	γ _{Ms}	[-]		1,	87	
Herausziehen						
Charakteristische Zugtragfähigkeit, Kategorie C1	N _{Rk,p,eq,C1}	[kN]	9	16	26	36
Charakteristische Zugtragfähigkeit, Kategorie C2	N _{Rk,p,eq,C2}	[kN]	4,8	16,5	24,8	44,5
Querbeanspruchung						
Stahlversagen ohne Hebelarm						
SZ-B						
Charakteristische Quertragfähigkeit, Kategorie C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4
Charakteristische Quertragfähigkeit, Kategorie C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2
Teilsicherheitsbeiwert	γ_{Ms}	[-]	1,25			
SZ-S						Γ
Charakteristische Quertragfähigkeit, Kategorie C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4
Charakteristische Quertragfähigkeit, Kategorie C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2
Teilsicherheitsbeiwert	γ_{Ms}	[-]		1,	36	
SZ-SK						
Charakteristische Quertragfähigkeit, Kategorie C1	$V_{Rk,s,eq,C1}$	[kN]	11,5	23,3	31,6	-
Charakteristische Quertragfähigkeit, Kategorie C2	$V_{Rk,s,eq,C2}$	[kN]	10,8	17,4	15,4	-
Teilsicherheitsbeiwert	γMs	[-]		1,36		-

Schwerlastanker SZ	
Leistung Charakteristische Werte bei seismischer Beanspruchung, nichtrostender Stahl A4	Anhang C7

Tabelle C9: Charakteristische Werte unter **Brandeinwirkung** in gerissenem und ungerissenem Beton C20/25 bis C50/60

Dübelgröße				10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Zugbeanspruchu	ng	-								•	
Stahlversagen											
Stahl, verzinkt											
	R30			1,0	1,9	4,3	6,3	11,6		18,3	26,3
Charakteristische	R60	– – N., "	[kN]	0,8	1,5	3,2	4,6	8,	6	13,5	19,5
Tragfähigkeit	R90	- N _{Rk,s,fi}	[KIN]	0,6	1,0	2,1	3,0	5,	,0	7,7	12,6
	R120			0,4	0,8	1,5	2,0	3,	,1	4,9	9,2
Nichtrostender S	tahl A4										
	R30	_		-	6,1	10,2	15,7	29,2	-	-	-
Charakteristische	R60	- N _{Rk,s,fi}	[kN]	-	4,4	7,3	11,1	20,6	-	-	-
Tragfähigkeit	R90	R90	[KIN]	-	2,6	4,3	6,4	12,0	-	-	-
	R120			-	1,8	2,8	4,1	7,7	-	-	-
Querbeanspruch	ung	-			-						-
Stahlversagen of	nne Heb	elarm									
Stahl, verzinkt											
	R30			1,0	1,9	4,3	6,3	11	,6	18,3	26,3
Charakteristische	R60	-	riN.IZ	0,8	1,5	3,2	4,6	8,	6	13,5	19,5
Tragfähigkeit	R90	$ V_{Rk,s,fi}$	[kN]	0,6	1,0	2,1	3,0	5,0		7,7	12,6
	R120	_		0,4	0,8	1,5	2,0	3,1		4,9	9,2
Nichtrostender S	tahl A4										
	R30			-	14,3	22,7	32,8	61,0	-	-	-
Charakteristische	R60	_ \/	riNII	-	11,1	17,6	25,5	47,5	-	-	-
Tragfähigkeit	R90	$ V_{Rk,s,fi}$	[kN]	-	7,9	12,6	18,3	34,0	-	-	-
	R120	_		-	6,3	10,0	14,6	27,2	-	-	-
Stahlversagen m	it Hebe	larm									
Stahl, verzinkt											
	R30			0,8	2,0	5,6	9,7	24	.,8	42,4	83,6
Charakteristische	R60	- NAO	[[[]]	0,6	1,5	4,1	7,2	18	,3	29,8	61,9
Tragfähigkeit	R90	− M ⁰ Rk,s,fi	[mvi]	0,4	1,0	2,7	4,7	11		17,1	40,1
	R120	_		0,3	0,8	1,9	3,1	6,	6	10,7	29,2
Nichtrostender S	tahl A4										
	R30			-	6,2	13,2	24,4	61,8	-	-	-
Charakteristische	R60	- NAO	[[[]]	-	4,5	9,4	17,2	43,6	-	-	-
Tragfähigkeit	R90	− M ⁰ Rk,s,fi	[Nm]	-	2,7	5,6	10,0	25,3	-	-	-
	R120	-		-	1,8	3,6	6,4	16,2	-	-	-

Wenn Herausziehen nicht maßgebend ist, muss $N_{Rk,p}$ in Gleichung D.4 und D.5, FprEN1992-4:2016 durch $N^0_{Rk,c}$ ersetzt werden.

Schwerlastanker SZ	
Leistung Charakteristische Werte unter Brandeinwirkung	Anhang C8

Dübelgröße			10/ M6	12/ M8	15/ M10	18/ M12	24/ M16	24/ M16L	28/ M20	32/ M24
Zugbeanspruchung										
Zuglast im gerissenen Beton	N	[kN]	2,4	5,7	7,6	12,3	17,1	21,1	24	26,2
Verschiebung	δ _{N∞}	[mm]	0,5 2,0	0,5 2,0	0,5 1,3	0,7 1,3	0,8 1,3	0,7 1,3	0,9 1,4	1,4 1,9
Zuglast im ungerissenen Beton	N	[kN]	8,5	9,5	14,3	17,2	24	29,6	34	43
Verschiebung	δ_{No}	[mm]	0,8	1,0 ,4		1,1 1,7		1,3 2,3	0,3 1,4	0,7 0,7
Seismische Beanspruch	nung C2			-		-			-	
Verschiebung für DLS	δ _{N,eq (DLS)}	[mm]	-	3,3	3,0	5,0	3,0	3,0	4,0	5,3
Verschiebung für ULS	δ _{N,eq} (ULS)	[mm]	-	12,2	11,3	16,0	9,2	9,2	13,8	12,4
Querbeanspruchung										
SZ-B										
Querlast in gerissenem und ungerissenem Beton	٧	[kN]	9,1	14	20,7	35,1	52,1	52,1	77	86,6
Verschiebung	δν ₀	[mm]	2,5 3,8	2,1 3,1	2,7 4,1	3,0 4,5	5,1 7,6	5,1 7,6	4,3 6,5	10,5 15,8
Seismische Beanspruch	nung C2		· · · ·				-	-	-	
Verschiebung für DLS	δv,eq (DLS)	[mm]	-	2,3	3,1	3,0	2,6	2,6	1,6	6,1
Verschiebung für ULS	δv,eq (ULS)	[mm]	-	4,8	6,4	6,1	6,6	6,6	4,8	9,5
SZ-S										
Querlast in gerissenem und ungerissenem Beton	٧	[kN]	10,1	17,1	27,5	41,5	72	72	77	86,6
	$\delta_{ m V0}$	[mm]	2,9	2,5	3,6	3,5	7,0	7,0	4,3	10,5
Verschiebung	δν∞	[mm]	4,4	3,8	5,4	5,3	10,5	10,5	6,5	15,8
Seismische Beanspruch	nung C2									
Verschiebung für DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]	-	2,3	3,1	3,0	3,3	3,3	1,6	6,1
Verschiebung für ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	-	4,8	6,4	6,1	8,2	8,2	4,8	9,5
SZ-SK										
Querlast in gerissenem ungerissenem Beton	und V	[kN]	10,1	17,1	27,5	41,5	-	-	-	-
Verschiebung	δν ₀	[mm] [mm]	2,9 4,4	2,5 3,8	3,6 5,4	3,5 5,3	-	-	-	-
Seismische Beanspruch										
Verschiebung für DLS	δv,eq (DLS)	[mm]	-	3,1	3,9	3,9	-	-	-	-
Verschiebung für ULS	δv,eq (ULS)	[mm]	_	10,2	11,8	13,0	-	-	-	-

Schwerlastanker SZ

Leistung

Verschiebung unter Zug- und Querbeanspruchung, Stahl verzinkt

Anhang C9

Tabelle C11: Verschiebung unter Zug- und Querbeanspruchung, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16
			12/1018	15/10110	18/10112	24/IVI I 6
Zugbeanspruchung					l	1
Zuglast im gerissenen Beton	N	[kN]	4,3	7,6	12,1	17,0
Verschiebung -	δηο	[mm]	0,5	0,5	1,3	0,5
	$\delta_{N\infty}$	[mm]	1,2	1,6	1,8	1,6
Zuglast im ungerissenen Beton	N	[kN]	7,6	11,9	16,7	24,1
Verschiebung	δηο	[mm]	0,2	0,3	1,2	1,5
verscrilebung	$\delta_{N\infty}$	[mm]	1,1	1,1	1,1	1,1
Seismische Beanspruchung C2						
Verschiebung für DLS	$\delta_{\text{N,eq (DLS)}}$	[mm]	4,7	4,5	4,3	4,9
Verschiebung für ULS	$\delta_{\text{N,eq (ULS)}}$	[mm]	13,3	12,7	9,7	10,1
Querbeanspruchung						
Querlast in gerissenem und ungerissenem Beton	V	[kN]	13,9	21,1	34,7	50,8
Verschiebung -	δ vo	[mm]	3,4	4,9	4,8	6,7
verscriebung	$\delta_{V\infty}$	[mm]	5,1	7,4	7,1	10,1
Seismische Beanspruchung C2						
SZ-B, SZ-S						
Verschiebung für DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	2,8	3,1	2,6	3,3
Verschiebung für ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	5,6	5,8	5,0	6,9
SZ-SK						
Verschiebung für DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	2,5	2,8	2,9	-
Verschiebung für ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	5,8	5,9	6,9	-

Schwerlastanker SZ	
Leistung Verschiebung unter Zug- und Querbeanspruchung, nichtrostender Stahl A4	Anhang C10