

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0030 of 10 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Highload Anchor SZ

Mechanical anchor for use in concrete

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-02/0030 issued on 27 February 2018

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-02/0030

Page 2 of 22 | 10 July 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 22 | 10 July 2018

European Technical Assessment ETA-02/0030 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Highload Anchor SZ is an anchor made of galvanised steel or made of stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type SZ-B with threaded bolt,
- Anchor type SZ-S with hexagon head screw,
- Anchor type SZ-SK with countersunk washer and countersunk screw.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for static and quasi-static loading	See Annex C1 to C6
Characteristic values for seismic performance category C1 and C2	See Annex C7 to C8
Displacements	See Annex C10 to C11

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C9

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

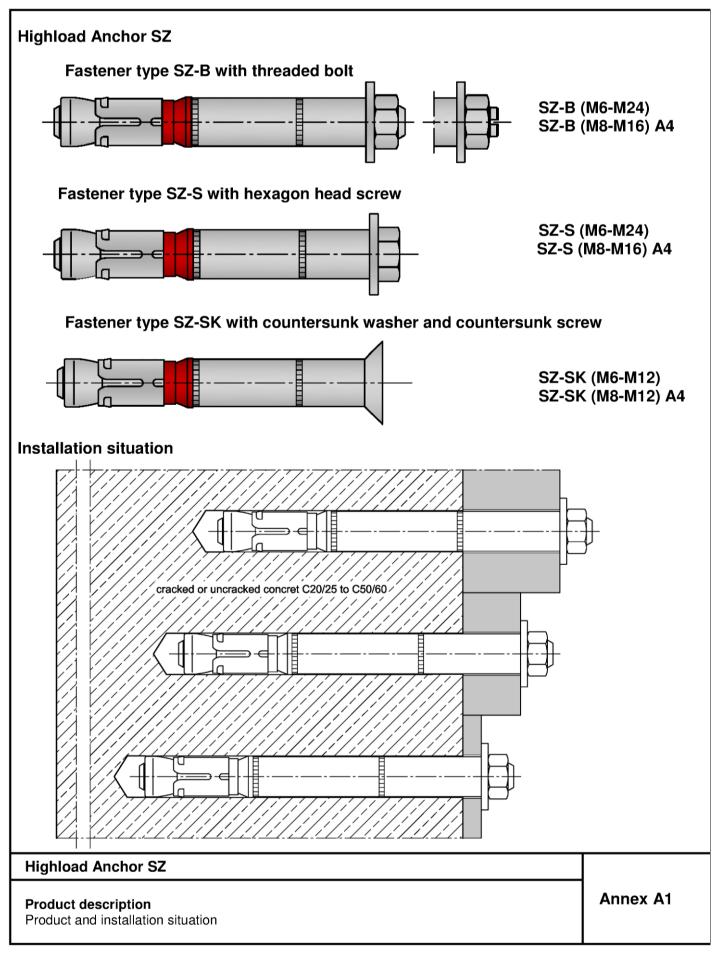
In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

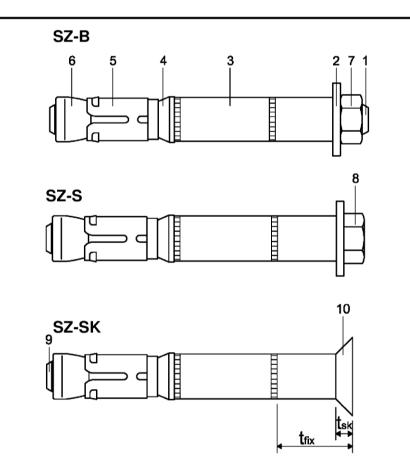
European Technical Assessment ETA-02/0030

Page 4 of 22 | 10 July 2018

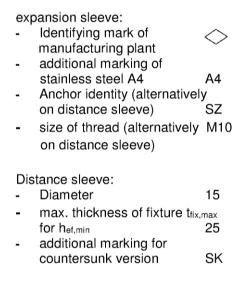
English translation prepared by DIBt


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 10 July 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange



Marking:

marking on the washer of L anchor size SZ 24/M16L

Table A1: Designation of fastener parts and materials

Part	Designation	Materials galvanized $\ge 5 \ \mu m$, acc. to EN ISO 4042:1999	Stainless steel A4
1	Threaded bolt	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
2	Washer	Steel, EN 10139:2016	Stainless steel, EN 10088:2014
3	Distance sleeve	Steel tube EN 10305-2:2016, EN 10305-3:2016;	Steel tube stainless steel, 1.4401, 1.4404 or 1.4571; EN 10217-7:2014, EN 10216-5:2013
4	Ring	Polyethylene	Polyethylene
5	Expansion sleeve	Steel, EN 10139:2016	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
6	Threaded cone	Steel EN 10083-2:2006	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
7	Hexagon nut	Steel, Strength class 8, EN ISO 898-2:2012	Stainless steel, strength class 70, EN ISO 3506-2:2009
8	Hexagon head screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, strength class 70, EN ISO 3506-1:2009
9	Countersunk screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, strength class 70, EN ISO 3506-1:2009
10	Countersunk washer	Steel, EN 10083-2:2006	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014, zinc plated

Highload Anchor SZ

Product description Marking and materials Annex A2

Specification of intended use								
Highload Anchor SZ, steel zinc plated	10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Static or quasi-static action					/			
Seismic action (SZ-B and SZ-S)	-	C1 + C2						
Seismic action (SZ-SK)	-		C1 + C2				-	
Fire exposure	R 30 R 120							
Highload Anchor SZ, stainless steel A4		12/M8	15/M10	18/M12	24/M16			
Static or quasi-static action			v	/				
Seismic action (SZ-B and SZ-S)			C1 -	+ C2				
Seismic action (SZ-SK)		C1 + C2 -						
Fire exposure			R30	. R120				

Base materials:

- Cracked and uncracked concrete
- Compacted, reinforced or unreinforced normal weight concrete (without fibers) according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel).

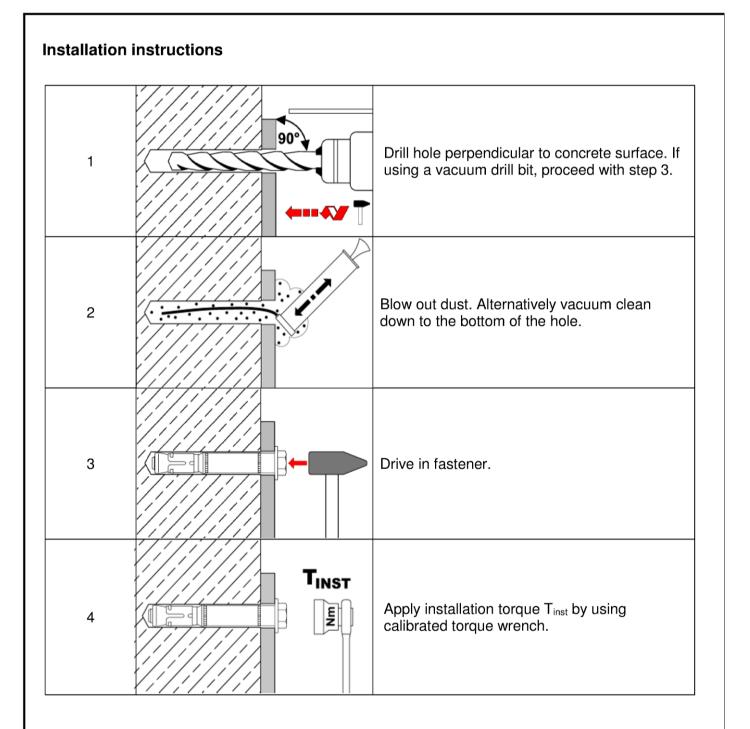
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions, seismic actions and under fire exposure are designed in accordance with FprEN 1992-4:2016 and TR 055.

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Compliance with the effective anchorage depth. For fastenings with anchorage depths $h_{ef} > h_{ef,min}$ the usable thickness of fixture is reduced by $h_{ef} h_{ef,min}$.
- Use as supplied by the manufacturer without replacing individual parts.
- Drilling of hole only by hammer drilling (use of vacuum drill bits is admissible)


Highload Anchor SZ

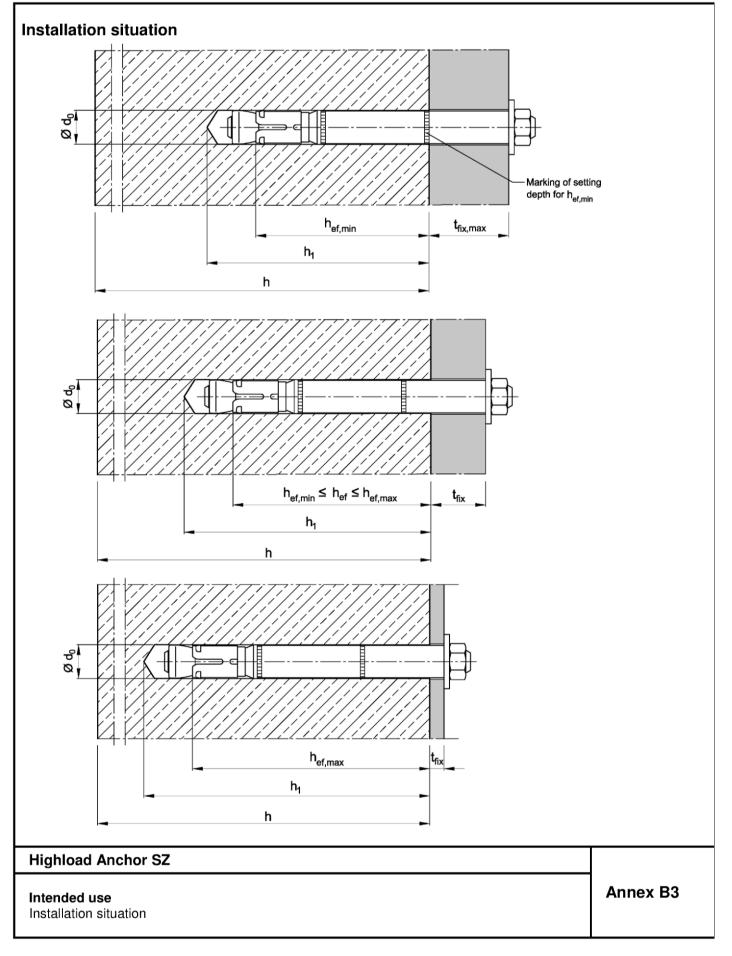
Intended use

Specification of intended use

Annex B1

Highload Anchor SZ

Intended use


Installation instructions

Annex B2

Page 9 of European Technical Assessment ETA-02/0030 of 10 July 2018

English translation prepared by DIBt

Table B1: Installation	- paran		, 0.001					24/		
Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Size of thread		[-]	M6	M8	M10	M12	M16	M16	M20	M24
Minimum effective anchorage depth	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210
Nominal diameter of drill bit	$d_0 =$	[mm]	10	12	15	18	24	24	28	32
$\begin{array}{ll} \mbox{Cutting diameter of drill} \\ \mbox{bit} & \mbox{d}_{\mbox{cut}} \leq \end{array}$		[mm]	10,45	12,5	15,5	18,5	24,55	24,55	28,55	32,7
Depth of drill hole	$h_1 \geq$	[mm]	h_{ef} + 15	h _{ef} + 20	h _{ef} + 25	h _{ef} + 25	h _{ef} + 30	h _{ef} + 30	h _{ef} + 35	h _{ef} + 30
Diameter of clearance hole in the fixture	d _f ≤	[mm]	12	14	17	20	26	26	31	35
Thickness of countersunk washer SZ-SK	t _{sk}	[mm]	4	5	6	7	-	-	-	-
Minimum thickness of fixture SZ-SK	t _{fix min²⁾}	[mm]	8	10	14	18	-	-	-	-
Installation T _{inst} (SZ	Z-B, SZ-S)	[Nm]	15	30	50	80	160	160	280	280
torque T _{inst}	(SZ-SK)	[Nm]	10	25	55	70	-	-	-	-
Minimum thickness of member	\mathbf{h}_{\min}	[mm]	h _{ef} + 50	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100	h _{ef} + 115	h _{ef} + 125	h _{ef} + 150
Minimum spacing ^{1) 3)}	Smin	[mm]	50	50	60	70	100	100	125	150
cracked concrete	for $c \ge$	[mm]	50	80	120	140	180	180	300	300
Minimum edge distance ^{1) 3)}	Cmin	[mm]	50	55	60	70	100	100	180	150
cracked concrete	for $s \ge$	[mm]	50	100	120	160	220	220	540	300
Minimum spacing ^{1) 3)}	Smin	[mm]	50	60	60	70	100	100	125	150
uncracked concrete	for $c \ge$	[mm]	80	100	120	140	180	180	300	300
Minimum edge distance ^{1) 3)}	Cmin	[mm]	50	60	60	70	100	100	180	150
uncracked concrete	for $s \ge$	[mm]	100	120	120	160	220	220	540	300

¹⁾ Intermediate values by linear interpolation ²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole).

³⁾ For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

Highload Anchor SZ

Deutsches Institut DIBt für Bautechnik

Table B2: Installation parameters, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16
Size of thread		[-]	M8	M10	M12	M16
Minimum effective anchorage depth	h _{ef,min}	[mm]	60	71	80	100
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150
Nominal diameter of drill bit	d0 =	[mm]	12	15	18	24
Cutting diameter of drill bit	d _{cut} ≤	[mm]	12,5	15,5	18,5	24,55
Depth of drill hole	h₁ ≥	[mm]	h _{ef} + 20	h _{ef} + 25	h _{ef} + 25	h _{ef} + 30
Diameter of clearance hole in the fixtu	re d _f ≤	[mm]	14	17	20	26
Thickness of countersunk washer SZ-	SK t _{sk}	[mm]	5	6	7	-
Minimum thickness of fixture SZ-SK	t _{fix min} 2)	[mm]	10	14	18	-
	T _{inst} (SZ-B)	[Nm]	35	55	90	170
Installation torque	T _{inst} (SZ-S)	[Nm]	30	50	80	170
	T _{inst} (SZ-SK)	[Nm]	17,5	42,5	50	-
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100
Minimum spacing ^{1) 3)}	Smin	[mm]	50	60	70	80
cracked concrete	for $c \ge$	[mm]	80	120	140	180
Minimum edge distance ^{1) 3)}	Cmin	[mm]	50	60	70	80
cracked concrete	for s \geq	[mm]	80	120	160	200
Minimum spacing 1) 3)	Smin	[mm]	50	60	70	80
uncracked concrete	for $c \ge$	[mm]	80	120	140	180
Minimum edge distance ^{1) 3)}	Cmin	[mm]	50	85	70	180
uncracked concrete	for s ≥	[mm]	80	185	160	80

¹⁾ Intermediate values by linear interpolation

²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex

A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole). ³⁾ For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

Highload Anchor SZ

Intended use

Annex B5

Installation parameters, stainless steel A4

Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M2 4
Installation factor	γinst	[-]				1	,0			
Steel failure										
Characteristic resistance	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282
Partial factor	γMs	[-]				1	,5			
Pull-out failure										
Characteristic resistance in cracked concrete C20/25	ר N _{Rk,p}	[kN]	5	12	16	25	36	44	50	65
Increasing factor for $N_{Rk,p}$	ψc	[-]				$\left(\frac{f_{ck}}{20}\right)$				
Concrete cone failure										
Minimum effective anchorage depth	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210
Factor for cracked k	$k_1 = k_{cr,N}$	[-]				7	,7			

Highload Anchor SZ

Performance

Characteristic values for tension load, cracked concrete, static or quasi-static action, steel zinc plated

Table C2:Characteristic values for tension load, cracked concrete,
static or quasi-static action, stainless steel A4

Fastener size	-		12/M8	15/M10	18/M12	24/M16
Installation factor	γinst	[-]		1	,0	-
Steel failure	-					-
SZ-B						
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110
Partial factor	γMs	[-]		1	,5	
SZ-S and SZ-SK						
Characteristic resistance	N _{Rk,s}	[kN]	26	41	60	110
Partial factor	γMs	[-]		1,	87	1
Pull-out failure				-		
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	25	36
Increasing factor for $N_{Rk,p}$	ψο	[-]		$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{2}\right)^{0,5}$	
Concrete cone failure				-	-	
Minimum effective anchorage depth	h _{ef,min}	[mm]	60	71	80	100
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150
Factor for cracked concrete	$k_1 = k_{\text{cr},\text{N}}$	[-]		7	,7	

Highload Anchor SZ

Performance

Characteristic values for tension load, cracked concrete, static or quasi-static action, stainless steel A4

Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/	28/M20	32/M24
					15/1110			M16L	20/ WI20	52/10124
Installation factor	γinst	[-]				1	,0			
Steel failure										
Characteristic resistance	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282
Partial factor	γMs	[-]				1	,5			
Pull-out failure	-									
Characteristic resistance in uncracked concrete C20/25	NRk,p	[kN]	17	20	30	36	50	1)	70	1)
Increasing factor for $N_{Rk,p}$	Ψc	[-]			$\left(\frac{f_{ck}}{20}\right)^{0,5}$			-	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	-
Splitting failure (The higher	resistance	of case	1 and ca	se 2 may	be applied)				
Case 1										
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	12	16	25	30	40	70	50	70
Edge distance	C _{cr,sp}	[mm]				1,5	h _{ef}			
Increasing factor for $N^{0}_{Rk,sp}$	ψc	[-]				$\left(\frac{f_{ck}}{20}\right)$	-) ^{0,5}			
Case 2										
Characteristic resistance in uncracked concrete	$N^{0}_{Rk,sp}$	[kN]				min (<i>N</i> _{Rk}	.p; N ⁰ Rk,c)			
Edge distance	Ccr,sp	[mm]			2,5 h _{ef}			1,5 h _{ef}	2,5 h _{ef}	2 h _{ef}
Concrete cone failure										
Minimum effective anchorage depth	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210
Edge distance	C cr,N	[mm]				1,5	h _{ef}			
Factor for uncracked	$k_1 = k_{ucr,N}$	[-]				11	,0			

 $^{\scriptscriptstyle 1)}$ $N_{\text{Rk},p}$ = $N^0_{\text{Rk},c}$ calculated with $h_{\text{ef},\text{min}}$

Highload Anchor SZ

Performance

Characteristic values for **tension load**, **uncracked concrete**, static or quasi-static action, **steel zinc plated**

Table C4: Characteristic values for tension load, uncracked concrete, static or quasi-static action, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16	
Installation factor	γinst	[-]		- 1	,0	-	
Steel failure				-	-		
SZ-B							
Characteristic resistance	N _{Rk,s}	[kN]	26	41	60	110	
Partial factor	γMs	[-]		1	,5		
SZ-S and SZ-SK							
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110	
Partial factor	γMs	[-]	1,87				
Pull-out failure							
Characteristic resistance in	N _{Rk,p}	[kN]	16	25	35	50	
uncracked concrete C20/25					05		
Increasing factor for $N_{Rk,p}$	ψο	[-]		$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{1}\right)^{0,5}$		
Splitting failure					-		
Edge distance	Ccr,sp	[mm]	180	235	265	300	
Concrete cone failure				-	-	-	
Minimum effective anchorage depth	h _{ef,min}	[mm]	60	71	80	100	
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150	
Edge distance	Ccr,N	[mm]		1,5	h _{ef}	•	
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]		11	,0		

Highload Anchor SZ

Performance

Characteristic values for tension loads, uncracked concrete, static or quasi-static action, stainless steel A4

	acteristic zinc pla		s of she	ar load	, static c	or quasi-	static ac	tion,		
Fastener size	•		10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Steel failure without	lever arn	า			-				-	
SZ-B										
Characteristic resistance	$V^{0}_{Rk,s}$	[kN]	16	25	36	63	91	91	122	200
Ductility factor	k 7	[-]				1	,0			
SZ-S and SZ-SK										
Characteristic resistance	$V^{0}_{Rk,s}$	[kN]	18	30	48	73	126	126	150	200
Ductility factor	k 7	[-]				1	,0			
Partial factor	γ_{Ms}	[-]	1,25							
Steel failure with lev	er arm		<u>.</u>						-	
Characteristic resistance	M ⁰ Rk,s	[Nm]	12	30	60	105	266	266	519	898
Partial factor	γ_{Ms}	[-]				1,2	25			
Concrete pry-out fail	lure		-			-	-	-		
Pry-out factor	k ₈	[-]	1,8 ¹⁾				2,0			
Concrete edge failur	e									
Effective length of fastener in shear loading	۱ _f	[mm]	h _{ef}							
Outside diameter of fastener	d _{nom}	[mm]	10	12	15	18	24	24	28	32

¹⁾ $k_8 = 2,0$ for $h_{ef} ≥ 60$ mm

Highload Anchor SZ

Characteristic values for **shear load**, static or quasi-static action, **steel zinc plated**

Deutsches Institut für Bautechnik

Fastener size			12/M8	15/M10	18/M12	24/M16		
Steel failure without lever arm								
Characteristic resistance	$V^0_{Rk,s}$	[kN]	24	37	62	92		
SZ-B								
Ductility factor	k 7	[-]		1	1,0			
Partial factor	$\gamma_{\sf Ms}$	[-]	1,25					
SZ-S								
Ductility factor	k 7	[-]	1,0					
Partial factor	$\gamma_{\sf Ms}$	[-]		1,	36			
SZ-SK								
Ductility factor	k 7	[-]		0,8		-		
Partial factor	$\gamma_{\sf Ms}$	[-]	1,36					
Steel failure with lever arm								
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	232		
SZ-B								
Partial factor	γ_{Ms}	[-]		1,	25			
SZ-S and SZ-SK								
Partial factor	γ_{Ms}	[-]		1,	56			
Concrete pry-out failure				-				
Pry-out factor	k ₈	[-]		2	,0			
Concrete edge failure								
Effective length of fastener in shear loading	lf	[mm]		h	ef			
Outside diameter of fastener	d _{nom}	[mm]	12	15	18	24		

Highload Anchor SZ

Performance

Characteristic values for shear load, static or quasi-static action, stainless steel $\ensuremath{\text{A4}}$

Fastener size			12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20	32/M24
Tension load			•						
Installation factor	γinst	[-]				1,0			
Steel failure				_					
Characteristic resistance category C1	$N_{\mathrm{Rk},\mathrm{s},\mathrm{eq},\mathrm{C1}}$	[kN]	29	46	67	126	126	196	280
Characteristic resistance category C2	$N_{Rk,s,eq,C2}$	[kN]	29	46	67	126	126	196	280
Partial factor	γ_{Ms}	[-]				1,5			
Pull-out failure									
Characteristic resistance category C1	$N_{Rk,p,eq,C1}$	[kN]	12	16	25	36	44,4	50,3	63,3
Characteristic resistance category C2	$N_{Rk,p,eq,C2}$	[kN]	5,4	16,4	22,6	29,0	41,2	43,6	63,3
Shear load									-
Steel failure without lever	arm								
SZ-B									
Characteristic resistance category C1	V _{Rk,s,eq,C1}	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Characteristic resistance category C2	V _{Rk,s,eq,C2}	[kN]	12,7	20,5	31,5	50,1	50,1	67,1	108,1
SZ-S									
Characteristic resistance category C1	V _{Rk,s,eq,C1}	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Characteristic resistance category C2	V _{Rk,s,eq,C2}	[kN]	12,7	20,5	31,5	69,3	69,3	67,1	108,1
SZ-SK									
Characteristic resistance category C1	V _{Rk,s,eq,C1}	[kN]	25,2	36,5	50,4	-	-	-	-
Characteristic resistance category C2	$V_{Rk,s,eq,C2}$	[kN]	19,2	29,3	39,4	-	-	-	-
Factor for annular gap	$lpha_{ ext{gap}}$	[-]				0,5			-
Partial factor	γMs	[-]				1,25			

Highload Anchor SZ

Performance

Characteristic values for seismic action, steel zinc plated

Table C8:Characteristic values for sstainless steel A4	eismic action	, Cate	gory C1	and C2,			
Fastener size			12/M8	15/M10	18/M12	24/M16	
Tension load			-	-	-		
Installation factor	[-]	1,0					
Steel failure							
Characteristic resistance, category C1	N _{Rk,s,eq,C1}	[kN]	26	41	60	110	
Characteristic resistance, category C2	[kN]	26	41	60	110		
Partial factor SZ-B	[-]	1,5					
Partial factor SZ-S and SZ-SK	[-]		1,	87			
Pull-out failure							
Characteristic resistance, category C1	NRk,p,eq,C1	[kN]	9	16	26	36	
Characteristic resistance, category C2	N _{Rk,p,eq,C2}	[kN]	4,8	16,5	24,8	44,5	
Shear load							
Steel failure without lever arm							
SZ-B							
Characteristic resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4	
Characteristic resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2	
Partial factor	γ_{Ms}	[-]	1,25				
SZ-S							
Characteristic resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4	
Characteristic resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2	
Partial factor	γ_{Ms}	[-]	1,36				
SZ-SK							
Characteristic resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	11,5	23,3	31,6	-	
Characteristic resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	10,8	17,4	15,4	-	
Partial factor	γмs	[-]		1,36		-	

Highload Anchor SZ

Performance

 $Characteristic \ values \ for \ seismic \ action, \ stainless \ steel \ A4$

Fastener size				10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Tension load									WITCE		
Steel failure											
Steel zinc plate	d										
	R30	-		1,0	1,9	4,3	6,3	11	,6	18,3	26,3
Characteristic	R60			0,8	1,5	3,2	4,6	8,	6	13,5	19,5
resistance	R90	- N _{Rk,s,fi}	[kN]	0,6	1,0	2,1	3,0	5,	0	7,7	12,6
	R120	_		0,4	0,8	1,5	2,0	3,	3,1		9,2
Stainless steel	A 4										
	R30			-	6,1	10,2	15,7	29,2	-	-	-
Characteristic	R60	-	[kN]	-	4,4	7,3	11,1	20,6	-	-	-
resistance	R90	– N _{Rk,s,fi} –		-	2,6	4,3	6,4	12,0	-	-	-
	R120			-	1,8	2,8	4,1	7,7	-	-	-
Shear load	-	-									
Steel failure wit	hout leve	er arm									
Steel zinc plate	d										
•	R30			1,0	1,9	4,3	6,3	11	,6	18,3	26,3
Characteristic resistance	R60	-	[kN]	0,8	1,5	3,2	4,6		8,6		19,5
	R90	- V _{Rk,s,fi}		0,6	1,0	2,1	3,0		5,0		12,6
	R120	_		0,4	0,8	1,5	2,0	3,		7,7 4,9	9,2
Stainless steel	A 4			,	,		,				
	R30			-	14,3	22,7	32,8	61,0	-	-	-
	R60	-		-	11,1	17,6	25,5	47,5	-	-	-
resistance	R90	- V _{Rk,s,fi}	[kN]	-	7,9	12,6	18,3	34,0	-	-	-
	R120	-		-	6,3	10,0	14,6	27,2	-	-	-
Steel failure wit	h lever a	rm									
Steel zinc plate	d										
	R30			0,8	2,0	5,6	9,7	24	,8	42,4	83,6
Characteristic	R60	-		0,6	1,5	4,1	7,2	18,3		29,8	61,9
bending	R90	− M ⁰ Rk,s,fi	ն [Nm]	0,4	1,0	2,7	4,7	11		17,1	40,1
resistance	R120	-		0,3	0,8	1,9	3,1	6,		10,7	29,2
Stainless steel				-				- ,			, , , , , , , , , , , , , , , , , , ,
	R30			-	6,2	13,2	24,4	61,8	-	-	-
Characteristic	R60	-		-	4,5	9,4	17,2	43,6	-	-	-
bending	R90	− M ⁰ Rk,s,fi	[Nm]	-	2,7	5,6	10,0	25,3	-	-	-
resistance	R120	-			1,8	3,6	6,4	16,2			

If pull-out is not decisive in equation D.4 and D.5, FprEN 1992-4:2016 $N_{\text{Rk},\rho}$ must be replaced by $N^0_{\text{Rk},c}.$

Highload Anchor SZ

Performance Characteristic values under fire exposure

Fastener size			10/ M6	12/ M8	15/ M10	18/ M12	24/ M16	24 /M16L	28/ M20	32/ M24
Tension load				<u></u>	<u>.</u>			· ·		
Tension load in cracked concrete	N	[kN]	2,4	5,7	7,6	12,3	17,1	21,1	24	26,2
Displacement	<u>δ</u> νο δν∞	[mm] [mm]	0,5 2,0	0,5 2,0	0,5 1,3	0,7 1,3	0,8 1,3	0,7 1,3	0,9 1,4	1,4 1,9
Tension load in uncracked concrete	N	[kN]	8,5	9,5	14,3	17,2	24	29,6	34	43
Displacement	$\frac{\delta_{N0}}{\delta_{N^{\infty}}}$	[mm] [mm]	0,8	1,0 ,4		1,1 1,7		1,3 2,3	0,3 1,4	0,7 0,7
Seismic action C2	01100	[]		, .		_,0	.,.	0,7		
Displacement for DLS	$\delta_{\text{N,eq (DLS)}}$	[mm]	-	3,3	3,0	5,0	3,0	3,0	4,0	5,3
Displacement for ULS	$\delta_{ m N,eq}$ (ULS)	[mm]	-	12,2	11,3	16,0	9,2	9,2	13,8	12,4
Shear load										
SZ-B								,		
Shear load in cracked and uncracked concrete	v	[kN]	9,1	14	20,7	35,1	52,1	52,1	77	86,6
Displacement	<u>δ</u> ν₀ δν∞	[mm] [mm]	2,5 3,8	2,1 3,1	2,7 4,1	3,0 4,5	5,1 7,6	5,1 7,6	4,3 6,5	10,5 15,8
Seismic action C2	0,00	[]	0,0	0,1	-,-	.,0	.,e	.,.	0,0	,.
Displacement for DLS	δ V,eq (DLS)	[mm]	-	2,3	3,1	3,0	2,6	2,6	1,6	6,1
Displacement for ULS	$\delta_{V,eq}$ (ULS)	[mm]	-	4,8	6,4	6,1	6,6	6,6	4,8	9,5
SZ-S										
Shear load in cracked and uncracked concrete	v	[kN]	10,1	17,1	27,5	41,5	72	72	77	86,6
	δνο	[mm]	2,9	2,5	3,6	3,5	7,0	7,0	4,3	10,5
Displacement	δv∞	[mm]	4,4	3,8	5,4	5,3	10,5	10,5	6,5	15,8
Seismic action C2										
Displacement for DLS	δ V,eq (DLS)	[mm]	-	2,3	3,1	3,0	3,3	3,3	1,6	6,1
Displacement for ULS	$\delta_{\text{V,eq}}(\text{ULS})$	[mm]	-	4,8	6,4	6,1	8,2	8,2	4,8	9,5
SZ-SK										
Shear load in cracked a uncracked concrete	nd V	[kN]	10,1	17,1	27,5	41,5	-	-	-	-
Displacement	δν₀ δν∞	[mm] [mm]	2,9 4,4	2,5 3,8	3,6 5,4	3,5 5,3	-	-	-	-
Seismic action C2	Οv∞	[]	т, г	0,0	0,1	5,5	I			
Displacement for DLS	$\delta_{V,eq}$ (DLS)	[mm]	-	3,1	3,9	3,9	-	-	-	-
Displacement for ULS	δv,eq (ULS)	[mm]	-	10,2	11,8	13,0	-	-	-	-

Highload Anchor SZ

Performance

Displacements under tension and shear load, steel zinc plated

Fastener size			12/M8	15/M10	18/M12	24/M16
Tension load				-		
Tension load in cracked concrete	N	[kN]	4,3	7,6	12,1	17,0
Displacement	δηο	[mm]	0,5	0,5	1,3	0,5
Displacement	δ _{N∞}	[mm]	1,2	1,6	1,8	1,6
Tension load in uncracked concrete	N	[kN]	7,6	11,9	16,7	24,1
Displacement	δ _{NO}	[mm]	0,2	0,3	1,2	1,5
Displacement	δ _{N∞}	[mm]	1,1	1,1	1,1	1,1
Seismic action C2						
Displacement for DLS	$\delta_{\text{N,eq}}$ (DLS)	[mm]	4,7	4,5	4,3	4,9
Displacement for ULS	$\delta_{N,eq}$ (ULS)	[mm]	13,3	12,7	9,7	10,1
Shear load				-		
Shear load in cracked concrete	V	[kN]	13,9	21,1	34,7	50,8
Displacement	δνο	[mm]	3,4	4,9	4,8	6,7
Displacement	δv∞	[mm]	5,1	7,4	7,1	10,1
Seismic action C2						
SZ-B, SZ-S						
Displacement for DLS	$\delta_{\text{V,eq}}(\text{DLS})$	[mm]	2,8	3,1	2,6	3,3
Displacement for ULS	δ V,eq (ULS)	[mm]	5,6	5,8	5,0	6,9
SZ-SK						
Displacement for DLS	δ V,eq (DLS)	[mm]	2,5	2,8	2,9	-
Displacement for ULS	$\delta_{V,eq}$ (ULS)	[mm]	5,8	5,9	6,9	-

Highload Anchor SZ

Performance Displacements under tension and shear load, stainless steel A4 Annex C11

electronic copy of the eta by dibt: eta-02/0030