

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0202 of 4 September 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

BBV-Internal Bonded Strand Post-tensioning System, type i

PAC 16, Post-Tensioning kits (internal bonded for strands)

BBV Systems GmbH Industriestraße 98 67240 Bobenheim-Roxheim DEUTSCHLAND

BBV Systems GmbH Industriestraße 98 67240 Bobenheim-Roxheim DEUTSCHLAND

27 pages including 20 annexes which form an integral part of this assessment

EAD 160004-00-0301

ETA-05/0202 issued on 26 August 2016

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-05/0202

Page 2 of 27 | 4 September 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-05/0202 English translation prepared by DIBt

Page 3 of 27 | 4 September 2018

Specific part

1 Technical description of the product

1.1 Definition of the construction product

The present European Technical Assessment applies to the post-tensioning kit for prestressing of structures with the trade name:

BBV-Internal Bonded Strand Post-Tensioning System, type i

consisting of 3 to 31 strands with a nominal tensile strength 1770 N/mm² or 1860 N/mm² (Y1770 S7 or Y1860 S7 in according with prEN 10138-3:2009, table 4), nominal diameter 15.3 mm (0.6" - 140 mm²) or 15.7 mm (0.62" - 150 mm²) which are used in normal-weight concrete with the following anchors (stressing and fixed anchors and couplers):

- 1. Stressing (active) anchor type S and fixed (passive) anchor type F and Fe with bearing plate and anchor head for tendons of 3, 4, 5, 7 and 9 strands,
- 2. Stressing (active) anchor type S and fixed (passive) anchor type F and Fe with cast-iron anchor body and anchor head for tendons of 12, 15, 19, 22, 27 and 31 strands,
- 3. Coupler ÜK (fixed (FÜK) and movable (BÜK)) for tendons of 3, 4, 5, 7, 9, 12, 15, 19, 22, 27 and 31 strands,
- 4. Single strand coupler EÜK (movable) for tendons of 3, 4, 5, 7, 9, 12, 15, 19, 22, 27 and 31 strands

Additional components of the present Post-tensioning system are:

- Bursting reinforcement (helixes and stirrups),
- Sheathing (ducts),
- Corrosion protection.

The anchorage of the strands in anchor heads and couplers is done by means of wedges.

The components and the system setup of the product are given in Annex A.

1.2 Strands

The tensioning system shall only use with 7-wire prestressing steel strands which comply with the national regulations and the properties given in Table 1:

Designation	Symbol	Unit	Value
Tensile strength	R _m	MPa	1770 or 1860

Table 1:Dimensions and properties of 7-wire strands

Strand

Nominal diameter	D	mm	15.3	15.7
Nominal cross section	Ap	mm²	140	150
Nominal mass	М	g/m	1093	1172

Individual wires

External wire diameter	d	mm	$5.0~\pm~0.04$	$5.2~\pm~0.04$
Core wire diameter	d'	mm	1.02 to 1.04 d	1.02 to 1.04 d

To avoid confusions only strands with one nominal diameter shall be installed on one site. If the use of the strands with $R_m = 1860$ MPa is intended on site, these shall solely be used there. Only strands stranded in the same direction shall be used in a tendon. Further characteristic values of the strands see Annex A7.

European Technical Assessment

ETA-05/0202

Page 4 of 27 | 4 September 2018

English translation prepared by DIBt

1.3 Wedges

The determined performance of the tensioning system applies only to smooth or knurled type 30 wedges (see Annex A3). The knurled wedges shall only be used for pre-wedged (pre-locked) ones at fixed anchors. The segments of the wedges for strands \emptyset 15.7 mm shall be marked with "0.62".

1.4 Anchor heads and couplers

The conical drills of the anchor heads and couplers shall be clean and free of rust and provided with a corrosion protection agent.

1.5 Bearing plates

For tendons of 3 to 9 strands rectangular bearing plates shall be used. The long side of the bearing plates shall be installed parallel to the biggest centre or edge distance (see Annex A2 page 1 and 3 and Annex A4).

1.6 Cast-iron anchor bodies

For the anchorage of tendons with 12 to 31 strands multi-surfaced cast-iron anchor bodies shall be used (see Annex A4).

1.7 Helixes and stirrups

The steel grades and dimensions of the helixes and of the stirrups shall comply with the values given in the Annexes. The central position in the structural concrete member on site shall be ensured according to Annex B, section 3.1.3.

1.8 Ducts, tubes and trumpets

Ducts shall be used according to EN 523:2003. For tendons BBV L3 and BBV L4 use may also be made of oval ducts. For these ducts EN 523:2003 applies accordingly. The dimensions of the ducts shall comply with the values given in Annex A2. The trumpets at stressing and fixed anchors (see Annexes A3, A4) are manufactured from 3.5 mm thick PE material (BBV L3 to L31).

Only for the steel transition pipes FÜK L3 to L7 PE pipes with a wall thickness of at least 4 mm and a length of 120 mm shall be installed in the deflection area in order to avoid contact between the strand and the steel. The PE pipes shall be fixed reliably in the right position to avoid moving during tensioning.

When using trumpets made of plastic with a minimum thickness of 3.5 mm, it is not necessary to install a PE pipe. It shall be made sure that at anchors and couplers for 3 to 22 and 31 strands (1.part, Annex A6) the maximum deflection angle of the strand is 2.6° (at the end of the wedge and at the deviation point between trumpet and duct). For 27 strands the maximum deflection angle is 2,1°, only for bearing plate type 2 with a maximum of 2,6°.

The deflection at couplers (Annex A6) is 7° (at the deviation point between trumpet and duct). At the end of the wedge normally there is no deflection.

For single strand coupling the max deviation angle is 2.2°. At the end of wedge there is no deviation angel.

Also plastic ducts which meet the requirements according to EAD 160004-00-0301 clause 2.2.10 and in accordance with regulations valid at the place of use can be used. For plastic ducts and the accompanying boundary conditions are no performance assessed in ETA-05/0202.

1.9 Grout

Grout shall be used according to EN 447:2007

Page 5 of 27 | 4 September 2018

European Technical Assessment

ETA-05/0202

English translation prepared by DIBt

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the PT-System is used in compliance with the specifications and conditions given in Annex B.

2.1 Specification

Specific details for installation and use are given in Annex B1.

2.2 working life

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the PT-System of at least 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

No.	Essential characteristic	Performance
1	Resistance to static load	The acceptance criterion to EAD 160004- 00-03-01 clause 2.2.1 is fulfilled, see Annex B1
2	Resistance to fatigue	The acceptance criterion to EAD 160004- 00-03-01 clause 2.2.2 is fulfilled, see Annex B1
3	Load transfer to structure	The acceptance criterion to EAD 160004- 00-03-01 clause 2.2.3 is fulfilled, see Annex B1
4	Friction coefficient	The acceptance criterion to EAD 160004- 00-03-01 clause 2.2.4 is fulfilled, see Annex C
5	Deviation/ deflection (limits) for internal bonded and internal unbonded tendon	The acceptance criterion to EAD 160004- 00-03-01 clause 2.2.5 is fulfilled, see Annex B1
6	Deviation/ deflection (limits) for external tendon	No performance assessed
7	Assessment of assembly	The acceptance criterion to EAD 160004- 00-03-01 clause 2.2.7 is fulfilled
8	Resistance to static load under cryogenic conditions for applications with anchorage/coupling outside the possible cryogenic zone	No performance assessed
9	Resistance to static load under cryogenic conditions for applications with anchorage/coupling inside the possible cryogenic zone	No performance assessed
10	Material properties, component performance, system performance of plastic duct	No performance assessed

European Technical Assessment ETA-05/0202

Page 6 of 27 | 4 September 2018

English translation prepared by DIBt

11	Material properties, component performance, system performance of plastic duct to provide an encapsulated tendon	No performance assessed
12	Material properties, component performance, system performance of plastic duct to provide an electrically isolated tendon	No performance assessed
13	Corrosion protection	No performance assessed
Mono	strand, sheating base material	
14	Melt index	No performance assessed
15	Density	No performance assessed
16	Carbon black	No performance assessed
17	Tensile strenght	No performance assessed
18	Elongation	No performance assessed
19	Thermal stability	No performance assessed
Mono	strand, manufactured sheating	
20	Tensile strenght	No performance assessed
21	Elongation	No performance assessed
22	Surface of sheating	No performance assessed
23	Environtal stress cracking	No performance assessed
24	Temperatur resistance	No performance assessed
25	Resistance to externally applied agents (mineral oil, acid, base, solvents and salt water)	No performance assessed
26	Sheating minimum thickness	No performance assessed
Mono	strand, manufactured monostrand	
27	External diameter of sheating	No performance assessed
28	Mass of sheating per metre	No performance assessed
29	Mass of filling material per metre	No performance assessed
30	Alteration of dropping point caused by monostrand manufacturing	No performance assessed
31	Alteration of oil separation caused by monostrand facturing	No performance assessed
32	Impact resistance	No performance assessed
33	Friction between shealting and strand	No performance assessed
34	Leak tightness	No performance assessed

European Technical Assessment ETA-05/0202

Page 7 of 27 | 4 September 2018

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

No.	Essential characteristic	Performance
35	Reaction to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

No.	Essential characteristic	Performance
36	Content, emmission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance AVCP) system applied, with reference to its legal base

In accordance with the European assessment document EAD 160004-00-0301 the applicable European legal act is: [98/456/EC].

The system to be applied is: 1+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 4 September 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Ascher

TECHNICAL DETAILS BBV L 3 – BBV L 9	
Steel Grade Y1770 and Y1860 Anchors (S), (F), (Fe), Coupler (FÜK), (BÜK), (EÜK)	
	1

Tendon Type		BBV L 3	BBV L 4	BBV L 5	BBV L 7	BBV L 9
Strand Pattern						
Number of strands	n	3	4	5	7	9
150mm ² : Nominal Cross Section Ap	mm²	450	600	750	1050	1350
150mm ² : Nominal mass M	kg/m	3.52	4.69	5.86	8.20	10.55
150mm² : F _{pk} (f _{pk} =1770N/mm²)	kN	797	1062	1328	1859	2390
150mm² : F _{pk} (f _{pk} =1860N/mm²)	kN	837	1116	1395	1953	2511
140mm ² : Nominal Cross Section Ap	mm²	420	560	700	980	1260
140mm ² : Nominal mass M	kg/m	3.28	4.37	5.47	7.65	9.84
140mm² : F _{pk} (f _{pk} =1770N/mm²)	kN	743	991	1239	1735	2230
140mm² : F _{pk} (f _{pk} =1860N/mm²)	kN	781	1042	1302	1823	2344
Wobble Coefficient k	⁰/m	0.4	0.3	0.3	0.3	0.3
at max. Support Distance	m	1.80	1.80	1.80	1.80	1.80
Friction Coefficient µ		0.21	0.20 / 0.19 / 0.19	0.20 / 0.19 / 0.20	0.20 / 0.20 / 0.19	0.20 / 0.20 / 0.19
Friction Losses						
Active Anchor $\Delta P_{\mu}S$	%	1.2	1.2	1.2	1.1	1.0
Coupling (BÜK) ΔP_{μ} ÜK	%	1.2	1.2	1.2	1.1	1.2
Ducts						
Inner Diameter	mm	40***	45/50/55***	50/55/60	55/60/65	65/70/75
Outer Diameter	mm	46	51/56/62	56/61/67	61/67/72	72/77/82
Eccentricity, 150mm ²	mm	5.4	6.3/9.7/12.6	7.5/10.7/13.8	5.7/9.0/12.1	8.4/12.1/15.4
Eccentricity, 140mm ²	mm	6.1	6.9/10.1/13.1	8.8/11.9/15.0	7.2/10.4/14.2	10.5/13.9/17.1
Strand Protrusion **	cm	21.5	21.5	70	71	82
Anchors (S), (F), (Fe), Coupl	ers (Fl	ĴK), (BÜK), (EÜ	К)			
Min. Centre Distance * ****						
f _{cmj,cube} = 30 N/mm²	mm	215 x 190	245 x 220	275 x 245	325 x 285	370 x 325
f _{cmj,cube} = 34 N/mm²	mm	200 x 175	230 x 205	260 x 230	305 x 270	345 x 305
$f_{cmj,cube} = 40 \text{ N/mm}^2$	mm	185 x 160	215 x 185	235 x 210	280 x 245	320 x 275
$f_{cmj,cube} = 45 \text{ N/mm}^2$	mm	170 x 150	200 x 175	225 x 195	260 x 230	295 x 265

Distances can be reduced to 85 % of the given values in one direction, if increased correspondingly * in the other direction

*	Distance from anchor head for placing of jack Oval ducts allowed to use for: (inner dimensions)	BBV L 3 (6) BBV L 4 (8)	0 x 21mm) 0 x 21mm)
	Wobble coefficient k to be considered for oval ducts is:	k = 0.8 °/m	
	Friction coefficient μ to be considered is: Bending round the stiff axis: Bending round the weak axis:	BBV L 3 μ = 0.23 μ = 0.15	BBV L 4 μ = 0.26 μ = 0.15

**** Min. edge distance : min. centre distance/2+20 mm

⁸BBV-Internal Bonded Strand Post-tensioning System, type i

Description of the product Technical Details BBV L3 - BBV L9 Steel Grade Y1770 and 1860

Annex A2 Page 1 of 2

TECHNICAL DETAILS Grade Y1770 and Y1860 Anchors (S), (F), (Fe), C	BBV L) couple	. 12 – BBV L r (FÜK), (BÜ	31 K), (EÜK)				
Tendon type		BBV L 12	BBV L 15	BBV L 19	BBV L 22	BBV L 27	BBV L 31
Strand Pattern							00 00000 000000 000000 000000 000000 0000
Number of strands	n	12	15	19	22	27	31
150mm ² : Nominal Cross Section A _p	mm²	1800	2250	2850	3300	4050	4650
150mm ² : Nominal Mass M	kg/m	14.06	17.58	22.27	25.78	31.64	36.58
150mm² : F _{pk} (f _{pk} =1770N/mm²)	kN	3186	3983	5045	5841	7169	8231
150mm² : F _{pk} (f _{pk} =1860N/mm²)	kN	3348	4185	5301	6138	7533	8649
140mm ² : Nominal Cross Section Ap	mm²	1680	2100	2660	3080	3780	4340
140mm ² : Nominal Mass M	kg/m	13,12	16,40	20,77	24,05	29,51	34,07
140mm² : F _{pk} (f _{pk} =1770N/mm²)		2974	3717	4708	5452	6691	7682
140mm² : F _{pk} (f _{pk} =1860N/mm²)	kN	3125	3906	4948	5729	7031	8072
Wobble Coefficient k	⁰/m	0.3	0.3	0.3	0.3	0.3	0.3
at max. Support Distance	m	1.80	1.80	1.80	1.80	1.80	1.80
Friction Coefficient µ	-	0.19/0.19/0.19	0.20/0.20 / 0.19	0.21 / 0.20	0.21/0.20 / 0.19	0.20 / 0.20	0.20 / 0.20
Friction Losses							
Active Anchor $\Delta P_{\mu}S$	%	0.8	0.8	0.8	0.6	0.8	0.8
Coupler (BÜK) ΔP_{μ} ÜK	%	1.2	1.1	1.0	1.2	1.2	1.2
Ducts							
Inner Diameter	mm	75/80/90	80/85/90	90/95	95/100/110	110/115	115/125
Outer Diameter	mm	82/87/97	87/92/97	97/102	102/107/117	11//125	122/135
Eccentricity, 130mm ²		10.3/13.9/20,2	9.0/12.4/15.8	9.9/13.1	9,7/13.3/20.1	14.1/17.3	12.1/19.0
Strond Protrucion **		11.7/14.9/21.1	10.1/14.0/17.7	110.2/15.0	11.9/15.9/22.1	10.7/19.0	14.2/21.3
Strand Protrusion		00	80	110	110	120	120
Anchors (S), (F), (Fe), Couplers (F	UK), (Bl	JK), (EUK)					
Min. Centre / Edge Distance *							
$f_{cmj,cube} = 28 \text{ N/mm}^2$	mm	405/225	450/245	505/275	545/295	605/325	645/345
$f_{cmj,cube} = 34 \text{ N/mm}^2$	mm	370/205	415/230	465/255	500/270	550/295	595/320
$f_{cmj,cube} = 40 \text{ N/mm}^2$	mm	340/190	380/210	430/235	460/250	510/275	545/295
f _{cmj,cube} = 45 N/mm²	mm	325/185	360/200	405/225	435/240	485/265	520/280

* and ** see Annex A2 page 1

Strand Pattern BBV L 12; 19; 22; 27; 31 Conical borings are in line, lines result in a grid

BBV L 3; 4; 5; 7; 9; 15 All conical borings are aligned on one or two circles e1 and e 2). See Annex A4

Example: BBV L15

⁸BBV-Internal Bonded Strand Post-tensioning System, type i

Description of the product Technical Details BBV L12 – BBV L31 Steel Grade Y1770 and Y1860 Annex A2 Page 2 of 2

Description of Wedge Anchorages

Active Anchors (S) Passive Anchors (F), (Fe)

Active anchors (S) with bearing plate and anchor head Accessible passive anchor (F) with bearing plate and anchor head

For embedded Passive Anchor (Fe) the anchor head is installed to the bearing plate, the wedges are sealed and secured in their cones by a retainer plate. The area around the wedges of embedded passive anchors is to be filled with corrosion protection mass and filled sealing caps are to be applied.

L 3 – L 9

Tendon Type BBV L 3 – L9: active anchor and passive anchor with rectangular bearing plate $a \times b$ and anchor head.

L 12 – L 31

Tendon Type BBV L 12 – L 31: active anchor with cast-iron anchor body of diameter *d* and anchor head.

Tendon Type			L3	L4	L5	L7	L9	L12	L15	L19	L22	L27	L31
Bearing Plate													
Side length	а	mm	160	180	195	215	250						
Side length	b	mm	140	160	170	190	220						
Thickness		mm	25	25	30	35	35						
Hole diameter		mm	72	81	83	93	113						
Cast-iron Anchor													
Diameter	D	mm						240	270	300	327	360	382
Height	Н	mm						182	203	227	248	272	294
Thickness 1 st plane	Т	mm						22	23	27	28	32	34
Hole - dia. top	Lo	mm						131	150	163	183	199	208
Hole - dia. bottom	Lu	mm						123	139	148	165	176	182
Anchor Head													
Diameter	D	mm	104	104	115	132	160	180	200	220	245	265	280
Thickness	Т	mm	65	65	70	75	75	80	82	92	105	120	125
centering flange	А	mm	68	77	81	89	109	129	146	161	179	197	204
Diameter (type 2)	D	mm	104	114	120	133	160	180	194**	220	245	265	280
Thickness (type 2)	Т	mm	45	50	50	50	50	61	60	77	77	91	87
centering flange (type 2)	А	mm	70	79	81	91	111	129	148	161	181	197	206
Diameter circle	e1	mm	45	54	56	66	86	grid 1)	56	grid 1)	grid 1)	grid 1)	grid ¹⁾
Diameter circle	e2	mm							120				
Trumpet													
Length (see annex 3)	L	mm	≥430	≥414	≥414	≥455	≥615	≥420	≥551	≥572	≥685	≥732 ³⁾	≥575

Bearing Plate see Annex A3

Cast-iron Anchor Body

Anchor Head

BBV-Internal Bonded Strand Post-tensioning System, type i

Description of the product Dimensions of Anchor Components

Deutsches Institut für Bautechnik

HELIX AND ADDITIONAL REINFORCEMENT (STIRRUPS)

Tendon Type		L3	L4	L5	L7	L9	L12	L15	L19	L22	L27	L31
Helix												
Bar Diameter												
f _{cmj,cube} =28/30 N/mm²	mm	14	14	14	14	14	14	14	16	16	16	16
f _{cmj,cube} =34 N/mm²	mm	14	14	14	14	14	14	16	16	16	16	16
f _{cmj,cube} =40 N/mm²	mm	14	14	14	14	14	14	14	16	16	16	<mark>16</mark>
f _{cmj,cube} =45 N/mm²	mm	14	14	14	14	14	14	14	16	16	16	<mark>16</mark>
Outer Diameter												
f _{cmj,cube} =28/30 N/mm²	mm	140	160	180	200	240	300	345	390	430	490	520
f _{cmj,cube} =34 N/mm²	mm	135	150	170	190	230	300	340	380	410	450	480
f _{cmj,cube} =40 N/mm²	mm	130	135	160	190	225	285	320	360	380	430	460
f _{cmj,cube} =45 N/mm²	mm	120	120	140	180	220	270	315	340	365	410	430
Min. Length												
f _{cmj,cube} =28/30 N/mm²	mm	200	230	250	300	350	350	400	450	450	550	550
f _{cmj,cube} =34 N/mm²	mm	180	210	240	270	310	300	350	400	450	470	470
f _{cmj,cube} =40 N/mm²	mm	170	200	220	250	290	300	300	350	350	450	450
f _{cmj,cube} =45 N/mm²	mm	160	180	200	250	275	250	250	300	300	350	350
Pitch												
f _{cmj,cube} =28/30 N/mm²	mm	40	40	40	50	50	50	50	50	50	50	50
f _{cmj,cube} =34 N/mm²	mm	40	40	40	50	50	50	50	50	50	50	50
f _{cmj,cube} =40 N/mm²	mm	40	40	40	50	50	50	50	50	50	50	50
f _{cmj,cube} =45 N/mm²	mm	40	40	40	50	50	50	50	50	50	50	50
Helix Turns												
f _{cmj,cube} =28/30 N/mm²	n	6	7	7.5	7	8	8	9	10	10	12	12
f _{cmj,cube} =34 N/mm²	n	5.5	6.5	7	6.5	7	7	8	9	10	10.5	10.5
f _{cmj,cube} =40 N/mm²	n	5.5	6	6.5	6	7	7	7	8	8	10	10
f _{cmj,cube} =45 N/mm²	n	5.0	5.5	7	6	6.5	6	6	7	7	8	8
Stirrup reinforcement		Nos x dia.										
f _{cmj,cube} =28/30 N/mm ²	mm	4x Ø10	4x Ø12	4x Ø14	4x Ø14	5x Ø14	6x Ø12	5x Ø14	6x Ø16	7x Ø16	11x Ø16	12x Ø16
f _{cmj,cube} =34 N/mm ²	mm	4x Ø10	5x Ø10	5x Ø12	5x Ø12	5x Ø14	6x Ø14	8x Ø14	7x Ø16	8x Ø16	9x Ø20	10x Ø20
f _{cmj,cube} =40 N/mm ²	mm	4x Ø8	4x Ø12	5x Ø12	5x Ø12	5x Ø14	5x Ø16	6x Ø16	7x Ø16	6x Ø20	8x Ø20	10x Ø20
f _{cmj,cube} =45 N/mm ²	mm	4x Ø8	4x Ø10	4x Ø12	4x Ø12	6x Ø12	5x Ø16	6x Ø16	8x Ø16	8x Ø16	8x Ø20	9x Ø20
Position behind Bearing pla	te or											
Cast-iron anchor body		A/B										
f _{cmj,cube} =28/30 N/mm ²	mm	45 / 60	45 / 70	50 / 75	55 / 95	55 / 80	50 / 70	50 / 95	50 / 90	50 / 80	60 / 60	60 / 55
f _{cmj,cube} =34 N/mm²	mm	45 / 55	45 / 50	50 / 55	55 / 65	55 / 75	50 / 65	50 / 55	50 / 70	50 / 65	60 / 65	60 / 55
f _{cmj,cube} =40 N/mm²	mm	45 / 55	45 / 60	50 / 50	55 / 60	55 / 70	50 / 70	50 / 65	50 / 60	50 / 75	60 / 65	60 / 55
f _{cmj,cube} =45 N/mm ²	mm	45 / 50	45 / 55	50 / 60	55 / 75	55 / 50	50 / 65	50 / 60	50 / 55	50 / 50	60 / 60	60 / 55

L12 – L31

BBV-Internal Bonded Strand Post-tensioning System, type i

L3 – L9

Description of the product Helix and Additional Reinforcement

Page 14 of European Technical Assessment ETA-05/0202 of 4 September 2018

English translation prepared by DIBt

Tendon type			L3	L4	L5	L7	L9	L12	L15	L19	L22	L27	L31
Coupler Plate													
Diameter	Øa	mm	194	194	205	222	245	270	290	310	335	380	405
Thickness	k	mm	85	85	85	85	85	85	90	98	110	120	130
Diameter bearing area	b	mm	104	104	115	132	160	180	200	220	245	265	280
Coupler Trumpet													
Length*	Ρ	mm	≥440	≥420	≥440	≥490	≥545	≥605	≥640	≥710	≥765	≥875	≥920
Diameter fixed coupler	g	mm	197	197	208	225	248	273	293	313	338	383	408
Diameter movable coupler	С	mm	214	214	225	242	265	290	310	330	355	400	425

* The lengths and diameters of the coupler duct shall be designed so that a strand angle of 7° is ensured. Anchor plate, trumpet, helix and reinforcement see Annexes A4 and A5

⁸BBV-Internal Bonded Strand Post-tensioning System, type i

Description of the product Coupling (ÜK)

Dimensions of spare parts

Tendon type		Einh.	L3	L4	L5	L7	L9	L12	L15	L19	L22	L27	L31
Spacer													
Outside diameter	А	mm	62	71	73	83	103	118	127	139	158	173	177
Thickness	T _A	mm	30	30	30	50	50	40	50	70	70	70	70
Hole pattern (outside)	e2	mm	45	54	56	66	86	*Grid	120	*Grid	*Grid	*Grid	*Grid
Hole pattern (inside)	e1	mm	-	-	-	-	-	-	56	-	-	-	-
Coupling duct													
Coupling length	К	mm	1830	1540	1830	1870	1870	1850	1870	1910	1910	1910	1910
Inside diameter	di	mm	96.8	110.2	110.2	147.6	147.6	184.6	184.6	184.6	230.8	230.8	230.8
Outside diameter	da	mm	110	125	125	160	160	200	200	200	250	250	250
Trumpet +													
PE-Connection tube													
Transition length	W	mm	450	520	480	550	680	680	1030	1010	1140	1130	1300
Outside diameter	da	mm	90	110	110	140	140	180	180	180	225	225	225
Inside diameter	di	mm	79.2	96.8	96.8	129.2	129.2	166.2	166.2	166.2	207.8	207.8	207.8
Steel strip sheats (E	N <u>523)</u>												
Inside diameter	di	mm	55	55	60	65	75	80	90	95	110	115	125
Outside diameter	da	mm	61	61	67	72	82	87	97	102	117	125	135
Slide sleeve													
Inside diameter	di	mm	70	70	75	75	90	90	110	110	130	130	130
Outside diameter	d_a	mm	77	77	82	82	97	97	117	117	139	139	158

⁸BBV-Internal Bonded Strand Post-tensioning System, type i

Description of the product Single strand coupling (EÜK)

Dimensions and Properties of 7-Wire Strands

(After Table 4 of prEN 10138-3: 2009)

Designation	Symbol	Unit	Value		
Tensile strength	R _m /F _{pk}	MPa	1770 or 1860		
Strand					
Nominal diameter	D	mm	15.3	15.7	
Nominal cross section	Ap	mm²	140	150	
Nominal mass	М	g/m	1093	1172	
Surface configuration	-	-	plain		
Strength at 0,1%	f _{p0,1k}	MPa	1560 or 1640*		
Strength at 0,2%	f _{p0,2}	MPa	1570 or 1660		
Modulus of elasticity	E	MPa	≈ 195,000		
Individual wires					
External wire diameter	d	mm	5.0 ± 0.04	5.2 ± 0.04	
Core wire diameter	ď	mm	1.02 to 1.04 d	1.02 to 1.04 d	

* The indicated values are maximum values. The actual values are at the place of use applicable standards and regulations.

As long as prEN 10138-3: 2009 has not been introduced, 7-wire prestressing steel strands according to the national regulations and the characteristic values in the table above should be used.

⁸BBV-Internal Bonded Strand Post-tensioning System, type i

Description of the product Dimensions and properties of strands

Technical boundary conditions

1 Intended use

The Post-Tensioning System is assumed to be used for internal bonded tendons for normal-weight concrete structures or elements.

No optional use category is intended. The structural members used to be designed in accordance with national regulations.

2 Methods of verification

2.1 General

The structural members prestressed by means of the BBV-Internal Bonded Strand Post-Tensioning System type I have to be designed in accordance with national regulations.

2.2 Tendons

Prestressing and overtensioning forces are specified in the respective national provisions.

The maximum force P_{max} applied to a tendon shall not exceed the force $P_{max} = 0.9 A_p f_{p0,1k}$ (see Table B 1 (140 mm²) or Table B 2 (150 mm²) for $f_{p0,1k} = 1560 \text{ N/mm}^2$ or 1640 N/mm²).

The value of the prestressing initial prestress force $P_{m0}(x)$ applied to the concrete after tensioning and anchoring shall not exceed the force $P_{m0}(x) = 0.85 \text{ A}_p \text{ f}_{p0,1k}$ (see Table B 1 (140 mm²) or Table B 2 (150 mm²) for $f_{p0,1k} = 1560 \text{ N/mm}^2$ or 1640 N/mm²).

Table B 1: Maximal prestressing forces¹ for tendons with A_p = 140 mm²

Tendon Designation	Number of	Cross section A _n	Prestressir Y1770 f _{p0,1k} = 1560	n g force S7 N/mm²	Prestressing force		
200.9	strands	[mm²]	P _{m0} (x)[kN]	P_{max}^{2} [kN]	P _{m0} (x)[kN]	P _{max} ² [kN]	
BBV L3	3	420	557	590	585	620	
BBV L4	4	560	743	786	781	827	
BBV L5	5	700	928	983	976	1033	
BBV L7	7	980	1299	1376	1366	1446	
BBV L9	9	1260	1671	1769	1756	1860	
BBV L12	12	1680	2228	2359	2342	2480	
BBV L15	15	2100	2785	2948	2927	3100	
BBV L19	19	2660	3527	3735	3708	3926	
BBV L22	22	3080	4084	4324	4294	4546	
BBV L27	27	3780	5012	5307	5269	5579	
BBV L31	31	4340	5755	6093	6050	6406	

¹ The indicated values are maximum values. The actual values are at the place of use applicable standards and regulations. Compliance with the stabilisation and crack width criteria in the load transfer test was verified to a load level of 0,80*Fpk.

² Over-tensioning is allowed according to EN 1992-1-1, if the force of the clamping press can be measured with an accuracy of \pm 5% of the final value of the prestressing force and this is allowed according to the national requirements

BBV-Internal Bonded Strand Post-tensioning System, type i

Intended Use
technical boundary conditions

Annex B1 Page 1 of 6

Table	B 2: Maximal p	prestressing	forces ¹ for	tendons with A _p	= 150 mm ²			
	Tendon Of		Number of Section		ng force S7 N/mm²	Prestressing force Y1860 S7 f _{p0.1k} = 1640 N/mm ²		
		strands	A ^b []	P _{m0} (x)[kN]	P _{max²} [kN]	P _{m0} (x) [kN]	P _{max²} [kN]	
	BBV L3	3	450	597	632	627	664	
	BBV L4	4	600	796	842	836	886	
	BBV L5	5	750	995	1053	1046	1107	
	BBV L7	7	1050	1392	1474	1464	1550	
	BBV L9	9	1350	1790	1895	1882	1993	
	BBV L12	12	1800	2387	2527	2509	2657	
	BBV L15	15	2250	2984	3159	3137	3321	
	BBV L19	19	2850	3779	4001	3973	4207	
	BBV L22	22	3300	4376	4633	4600	4871	
	BBV L27	27	4050	5370	5686	5646	5978	
	BBV L31	31	4650	6166	6529	6482	6863	

The number of strands in a tendon may be reduced by leaving out strands lying radial-symmetrically in the anchor head (not more than four strands). The assessment for tendons with anchors (basic types) completely filled also applies to tendons with anchor heads only partly filled under following requirements. Into the free drills in the anchor head the short pieces of strands with wedges have to be pressed to prevent slipping out. The prestressing forces from Tables B1 and B2 are reduced per strand left out as shown in Table B 3.

Table B 3: Reduction of the prestressing force¹ when leaving out a strand

A _p	Y177	70 S7	Y1860 S7		
	$\Delta P_{m0}(x) [kN]$	ΔP_{max} [kN]	$\Delta P_{m0}(x) [kN]$	$\Delta \mathbf{P}_{max}$ [kN]	
140 mm²	186	197	195	207	
150 mm²	199	211	209	221	

Further characteristic values of the tendons (mass per meter, ultimate stressing force F_{pk}) see Annex A2.

^{1, 2} see previous page

BBV-Internal Bonded Strand Post-tensioning System, type i

Intended Use technical boundary conditions

Annex B1 Page 2 from 6

2.3 Radius of curvature of the tendons in the structure

According to EAD 160004-00-0301 clause 2.2.5 the following radii of curvature are indicated as performance (at the place of use it must be checked, if national regulations are fulfilled):

$$R_{min} = \frac{2 \cdot F_{pm0} \cdot d_{strand}}{p_{R,max} \cdot d_{duct,i}} \ge 2,50 \text{ m}$$
(1)

with:

R_minminimum allowable radius of curvature [m]F_pm0initial prestressing force of the tendon in [kN]d_stranddiameter of strand in [mm]p_R,maxrecommended maximum allowable pressure under critical strand in the absence of
national regulations [kN/m] (= 130, 150 oder 230 kN/m)d_duct.iinternal diameter of circular duct [mm]

The minimum allowable radius of curvature must be specified with an accuracy of 0,1m (round up every time).

2.4 Concrete strength

The performance was determined with concrete according EN 206-1:2001, EN 206-1/A1:2004 and EN 206-1/A2:2005. At the time of transmission of the full prestressing force the mean concrete strength of the normal weight concrete in the anchor zone shall be at least $f_{cmj,cube}$ or $f_{cmj,cyl}$ according to Table B 4. The mean concrete strength shall be verified by means of at least three specimens (cylinder or cube with the edge length of 150 mm), which shall to be stored under the same conditions as the concrete member, with the individual values of specimen not differ more than 5 %.

f _{cmj,cube} [N/mm²]	f _{cmj,cyl} [N/mm²]
28 ^{*)} /30 ^{**)}	23 ^{*)} /25 ^{**)}
34	28
40	32
45	35

Table B 4: Necessary mean concrete strength fcmj of the specimens at time of prestressing

*) 12 to 31 strands

**) 3 to 9 strands

For partial prestressing with 30 % of the full prestressing the minimum value of the concrete compressive strength to be available of 0.5 $f_{cmj,cube}$ or 0.5 $f_{cmj,cyl}$; intermediate values can be interpolated lineally.

2.5 Centre and edge distances of the tendon anchorages, concrete cover

The minimum of centre and edge distances of the tendon anchorages must not be smaller than the values given in the Annexe A2 depending on the minimum concrete strength. In case of anchorages BBV L3 to BBV L9 the large side of the bearing plate (side length a according to Annex A4) shall be installed parallel to the large concrete side (the maximum spacing of concrete axis).

The minimum values of the centre or edge distances of the anchors given in the Annexes may be reduced in one direction up to 15 %, however, not to a smaller value than the external dimensions of the additional reinforcement (stirrups or the outer diameter of the helix, Annex A5). In this case the Minimum of centre and the edge distances in the other direction shall be increased for keeping the same concrete area in the anchor zone.

All centre and edge distances have only been specified with a view to load transfer to the structure; therefore, the concrete cover given in national standards and provisions shall be taken into account additionally.

BBV-Internal Bonded Strand Post-tensioning System, type i	
Intended Use	Annex B1
technical boundary conditions	Fage 5 01 0

Under no circumstances should the concrete cover be less than 20 mm or not less than the concrete cover of the reinforcement installed in the same section. The concrete cover of the anchorage must be at least 20 mm. The locally applicable standards and regulations regarding concrete cover must be taken into account.

2.6 Reinforcement in the anchorage zone

The anchorages (including reinforcement) for the transfer of the prestressing forces to the structural concrete are verified by means of tests.

The resistance to the forces occurring in the structural concrete in the anchorage zone outside (behind) the helix shall be verified. An adequate transverse reinforcement shall be provided here in particular for the occurring transverse tension forces (not shown in the attached drawings).

Basis for this assessment is the reinforcement of steel B 500 B according DIN 488-1. It can be assumed that the use of equivalent or better reinforcing steels in accordance with the rules at the place of use does not have a lasting effect on the function of the anchoring.

The dimensions of the additional reinforcement (stirrups) shall follow the values given in the Annexes. This reinforcement must not be taken into account as part of the statically required reinforcement. However, existing reinforcement in a corresponding position more than the statically required reinforcement may be taken into account for the additional reinforcement. The given reinforcement consists of closed stirrups (stirrups closed by means of bends or hooks or an equivalent method). The stirrup locks (bends or hooks) shall be placed staggered.

In the anchorage zone vertically led gaps for concreting shall be provided for concreting properly. If in exceptional case³ - due to an increased amount of reinforcement - the helix or the concrete cannot be properly placed, the helix can be replaced by different equivalent reinforcement.

2.7 Slip at the anchorages

The slip at the anchorages shall be taken into account in the static calculation and the determination of the tendon elongation.

2.8 Resistance to fatigue of the anchorages and couplers

With the fatigue tests carried out in accordance with EAD 160004-00-0301 the stress range of 80 N/mm² of the strands at the maximum stress of 0.65 f_{pk} at 2×10⁶ load cycles was demonstrated.

2.9 Increased tension losses at couplers

For verification of crack control and stress ranges increased tension losses of prestressing forces shall be taken into account at the couplers due to creep and shrinkage of the concrete. The losses in prestressing force of the tendons, determined without the influence of the couplers, shall be multiplied in the coupling zone by the factor 1.5. No increase need be taken into account for the movable couplers.

2.10 Couplers

The couplers shall only be used if the calculated stressing force at the coupler is at least 0.7 $P_{m0}(x)$. Couplers shall be positioned in straight tendon sections with straight length of at least 1.0 m to each side. For movable couplers the position and length of the coupler duct shall ensure that a movement is possible over the length of at least 1.15 $\Delta \ell$ + 45 mm, where $\Delta \ell$ is the maximum elongation length at the time of prestressing and at the place of coupling.

For movable couplers BÜK it shall be ensured that the final position of the coupler plate after prestressing corresponds to that shown in the lower figure of Annex A6. The single-strand coupling shall be ensured that the final position of parts corresponds to figure of annex A7.

The prestressing force in the 2nd construction stage of fixed couplers shall be lower than in the 1st construction stage.

This requires the approval for individual case according to the national regulations and administrative provisions.

BBV-Internal Bonded Strand Post-tensioning System, type i

Intended Use technical boundary conditions

3

Annex B1 Page 4 of 6

3 Installation

3.1 General

The assembly of the tendons can be done on site or in the factory (prefabricated tendons). Assembly and installation of the tendons shall only be performed by qualified post-tensioning specialist companies which have the required technical skills and experiences with this BBV-Post-tensioning System.

The company's site manager shall have a certificate of the manufacturer certifying that he is instructed by the manufacturer and has the required knowledge and experience with this post-tensioning system. Standards and regulations valid on site shall be considered.

The manufacturer is responsible to inform anyone concerned about the use of this BBV-Post-tensioning System. Additional information shall be distributed from manufacturer.

The tendons and the components shall be handled carefully.

3.2 Welding

Welding at the anchorages is only possible at the following points:

- a) Welding of the end of the helix to a closed ring.
- b) For ensuring of the central position the helix may be attached to the bearing plate by tack-welding.

If, after installing the prestressing steel strands in the ducts, welding work is carried out elsewhere, the stated performance is at risk.

3.3 Installation of the tendon

The central position of the helix or stirrups shall be ensured by tack-welding to the bearing plate or the cast-iron anchor or by means of mounting brackets. The bearing plate or cast-iron anchor and the anchor head shall be in direction vertical to the axis of the tendon.

The tendon shall be placed straightforward the first meter at the anchorage.

PE pipes shall be fixed in the right position and the length of the trumpets shall ensure the right deflection angle of the strands.

The connection between trumpet and duct and all joints shall be sealed carefully by tape in order to prevent the penetrating of concrete. Diameter tolerances must be balanced so that the cladding coaxial run into each other and no kinks can occur.

3.4 Coupler

The outer strands shall be colour-marked for showing the necessary depth of putting in.

3.5 Wedging force, slip at anchorages, wedge securing and corrosion protection mass

If the calculated prestressing force is less than 0.7 $P_{m0}(x)$ or if knurled wedges type 30 are used, the wedges of fixed anchorages shall be pre-wedged with 1.1 $P_{m0}(x)$.

The knurled wedges of movable couplers in the parallel drills shall be pre-wedged with 1.1 $P_{m0}(x)$ (see Annex B1, section 2.2).

Without pre-wedging the slip within the anchorage to be taken into account for the determination of the elongations is 4 mm at the fixed anchorages and 8 mm at the movable couplers. In the case of hydraulic pre-wedging with 1.1 $P_{m0}(x)$ no slip shall be taken into account for the determination of the elongations, except for couplers (4 mm).

The wedges of all anchorages (fixed anchors and couplers) which are no more accessible during tensioning shall be secured by means of securing plates and bolts. The wedging area of fixed anchors to be cast in concrete and of inner part of movable couplers shall be filled with corrosion protection mass (Denso-Jet, Vaseline FC 284 or Nontribos MP-2) and provided with a sealing cap filled with corrosion protection mass.The anticorrosion compound must comply with EAD 160027-00-0301.

Compositions of the different types of these masses have been deposited with the Deutsches Institut für Bautechnik by the manufacturer. In the case of couplers the voids of the outer coupler tendon shall be filled with corrosion protection mass.

BBV-Internal Bonded Strand Post-tensioning System, type i

Intended Use

technical boundary conditions

Annex B1 page 5 from 6

The wedges of the stressing anchors shall be wedged after tensioning with at least 0.1 $P_{m0}(x)$. In this case the slip is 3 mm. If the wedges are not compressed, the slip shall be about 6 mm (a reset plate shall be used to fix the wedges).

3.6 Tensioning and tensioning protocol

3.6.1 Tensioning

Before tensioning the minimum mean concrete strength shall comply with the recommended values.

It is admissible to restress the tendons by releasing and re-using the wedges. After restressing and anchoring, wedge marks on the strands resulting from first stressing shall be moved to the outside by at least 15 mm.

All strands of a tendon shall be stressed simultaneously. This can be done by centrally controlled individual jacks or by a bundle jack.

3.6.2 tensioning protocoll

All actions during the clamping process are to be recorded for each tendon. As a rule, the required preload force must be achieved. The measured tension travel must be compared with the calculated value.

If, during pre-stressing, there is a difference between the measured and calculated tension travel or the preload force of more than 5% for the sum of all tendons or 10% for a single tendon, the tensioning engineer shall be informed and the causes identified. National regulations must be observed.

3.7 Grouting

The grouting procedure is to be carried out in accordance with EN 446. As a rule, the tendons should not be rinsed with water. The insertion speed must be in the range between 3 m/min and 12 m/min.

The length of a press-in section must not exceed 120 m. If this tendon length is exceeded, additional injection openings are provided.

Vents are provided at both ends of the cladding and points where air or water may accumulate. In the case of cladding tubes of considerable length, injection and ventilation openings may be required at intermediate points. A monitoring according to EN 446 is to be carried out.

National regulations must be observed.

3.7.1 Press-in sections and re-pressing

The length of a pressfit section must not exceed 120 m for BBV L3 to L22, 80 m for BBV L27 and 80 m for BBV L31. If these tendon lengths are exceeded, additional injection openings are provided. For prestressing tendons with pronounced high points, repressions must be made to avoid defects. For the re-pressing measures are required, which must be taken into account already in the planning.

4 Packaging, transport and storage

The components and the tendons shall be protected against moisture and staining. The tendons shall be kept away from areas where welding procedures are performed. The accessories and tendons must be protected from moisture and dirt. The tendons shall be kept away from areas where welding is carried out. The tendons without casing shall be transported in such a way that the details of the approvals of the prestressing steel strands used are fully complied with. The tendons with cladding tube are to be transported in such a way that the permissible bend diameters according to DIN EN 523 Table 1 for the cladding tubes are maintained. Whereby also the specifications of the approvals of the used prestressing steel strands are to be considered.

BBV-Internal Bonded Strand Post-tensioning System, type i

Intended Use technical boundary conditions Annex B1 Page 6 of 6

Description of BBV Post-Tensioning System

1 Tendons

The tendons consist of 7-wire strands with a nominal diameter of 0.60" (15,3 mm) and a nominal cross section of 140 mm² or with a nominal diameter of 0.62" (15,7 mm) and a nominal cross section of 150 mm². Steel grades Y1770S7 or Y1860S7 are allowed. Anchorages depending on the tendon sizes are identically for both steel grades.

The number of strands in a tendon can be reduced by omitting single strands always maintaining

a symmetrical pattern, see Annex B1, section 2.2, Table B3

The strands of tendons are combined in a duct without spacer. They are stressed simultaneously and anchored individually in the anchor head by means of wedges.

Round or oval profiled corrugated ducts are used according to EN 523:2003-11 and connected by threaded couplers. For tendons BBV L 3 and BBV L 4 oval ducts can also be used. All duct connections are sealed carefully by PVC sealing tape.

2 Anchor and coupling devices

The anchoring with anchor plate or castiron anchor (cast anchor body) and anchor head is usually used as a active anchor or accessible fixed anchor. But it can also be used with attached to the anchor plate / multi-surface anchor perforated disc and sealing as a cast-anchor anchor. In the anchoring area, a diameter-enlarging transition pipe (PE or steel) is connected to the cladding tube.

If a steel transition pipe is used, it must be made with a 4mm PE insert tube. This is followed by the anchor plate / multi-surface anchor and the perforated disc with depending on the tendon size 3 to 31 conical holes in which the strands are anchored with a three-piece round wedge. To anchor strands with a diameter of 0.62 ", wedges with an imprint "0.62" on the top must be used, and the wedges of cast-in fixed anchors are sealed and held in place with a lock washer.

The splitting tensile forces, which are caused by the transfer of the clamping force to the concrete, are absorbed by the filament made of ribbed steel. In addition, an additional reinforcement of straight bars or ironing is required.

The tendons can be coupled by means of fixed or movable coupling. The coupling consists of a coupling plate in which the strands of the incoming tendon are held in conical bores, as in the tension anchor. The stranded ends of the outgoing tendon are anchored in radially arranged conical bores with three-piece wedges. These wedges are held by a spring and a spring retaining plate in the cone. The coupling is preassembled and consists of the coupling plate, the spring retaining plate and the cap of the cone opening, which is removed only immediately prior to installation of the tendon to be coupled. The cones are filled with corrosion proteczing grease

Proper seating of the strands in the coupling is controlled by a mark on the strand.

3 preparation

The strand tendons can be manufactured in the factory or on the construction site. The prestressing steel strand is generally delivered to the construction site by prestressing steel manufacturers in long lengths as disembodied coils. Here they are cut to the required length and inserted into the cladding tube. The prestressing steel strand can also be cut and delivered to the required length at the factory.

4 ducts

Steel ducts according to EN 523: 2003 or corrugated plastic pipes meeting the requirements of EAD 16004-00-0301 Section 2.2.10 and conforming to the applicable regulations at the point of use are used as the cladding. Plastic sheaths and the associated boundary conditions are not regulated by this ETA. All connections and joints are carefully sealed with sealing tape.

5 Stressing

BBV-Internal Bonded Strand Post-tensioning System, type i

Intended Use Description of the Post-Tensioning System

Annex B2 Page 1 of 2

A hydraulic pump unit and a special jack are used for the stressing of tendons. All strands of a tendon are stressed simultaneously. Stressing in load steps and resetting of the jacks is possible. After stressing, the round wedges are power seated by means of a seating device within the jack. A wedge slip of approx. 3 mm remains after the wedge seating procedure.

Straight tendons strands can be stressed individually by mono jacks.

The tensionforce is read from the respective clamping device taking into account the calibration. The values must be entered in the clamping report and compared with the calculated values.

6 grouting

To produce the internal subsequently bond and to protect the prestressing steel strands against corrosion, the duct is pressed out with grout after prestressing. The pressing is done by a special injecting inlet or cap.

The venting of the tendons takes place at the ends by attached vent pipes or special injecting inlets. For long tendons intermediate vents are required. At couplings always vents are arranged. The injecting work must be carried out in accordance with the applicable regulations and standards.

The grout is injected through the injection openings until it emerges again at the other end of the bundle in the same consistency. Decisive for the injection of cement mortar in chip channels are EN 445: 2007, EN 446: 2007 and EN 447: 2007. The injection results are recorded in the injection protocol.

Intended Use Description of the Post-Tensioning System Annex B2 Page 2 of 2

Time-independent clamping force losses

Tensioning force losses due to friction and unintentional deflection

The force losses due to friction and unintentional deflection in the static calculation may be determined using the friction coefficients μ and unwanted deflection angles k given in Appendix A2. The values μ and k apply to the specified cladding diameter and support distances of the tendons.

The values given for k only apply if the prestressing steel strands are already in the ducts at the time of concreting.

If the prestressing steel strands are installed only after concreting, the given values for μ apply only if the stiffening of the ducts during concreting, e. q. as by PE - pipes or when using reinforced ducts in conjunction with smaller distances between the tendon supports.

When determining the clamping paths and the clamping force present in the tendon, the displacement obstruction $\Delta P_{\mu S}$ in the area of the clamping anchor and $\Delta P_{\mu UK}$ in the area of the movable overlap coupling must be taken into account (see Appendix A2).

Performance features Time independent clamping force losses Annex C

Codes and References prEN 10138-3: 2009	Prestressing Steels - Part 3: Strand
EAD 160004-00-0301: 2016	Post-tensioning kits for prestressing of structures
EAD 160027-00-0301: 2016	Special filling products for post-tensioning kits
EN 10025-2: 2005	Holt Rolled Products of Structural Steels – Part 2: Technical Delivery Conditions for Non-Alloy Structural Steels
EN 10083-1: 2006	Quenched and Tempered Steels – Part 1: Delivery Conditions for unalloyed steel
EN 10083-2: 2006	Quenched and Tempered Steels – Part 2: Technical Delivery Conditions for unalloyed steel
EN 10204: 2005	Metallic Products – Types of Inspection Documents
EN 10277-2: 2008	Bright steel products –Technical delivery conditions –Part 2: Steels for general engineering purposes
EN 1563: 2011	Founding – Spheroidal graphite cast irons
EN 445: 2007	Grout for Prestressing Tendons – test procedures
EN 446: 2007	Grout for Prestressing Tendons – Grouting procedures
EN 447: 2007	Grout for Prestressing Tendons – Basic Requirements
DIN 488-1: 2009	Reinforcing steels – Part 1: Grades, properties, marking
EN 523: 2003	Steel Strip Sheaths for Prestressing tendons
EN ISO 17855-1: 2014	Plastics – Polyethylene (PE) moulding and extrusion materials – Part 1: Designation system and basis for specifications
EN 206-1: 2001	Concrete – Part 1: Specification, Performance, Production an Conformity
EN 206-1/A1: 2004	Concrete – Part 1: Specification, Performance, Production an Conformity; German Version EN 206-1: 2001/A1: 2004
EN 206-1/A2: 2005	Concrete – Part 1: Specification, Performance, Production an Conformity; German Version EN 206-1:2001/A2 :2005

BBV-Internal Bonded Strand Post-tensioning System, type i

Codes and references

Annex D