



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



## European Technical Assessment

## ETA-05/0231 of 29 May 2018

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

This European Technical Assessment

This European Technical Assessment is issued in accordance with Regulation (EU)

No 305/2011, on the basis of

Manufacturer

contains

Manufacturing plant

Deutsches Institut für Bautechnik

Chemical Anchor V

Bonded fastener for use in concrete

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

MKT Herstellwerk 1 MKT Herstellwerk 3

12 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



## European Technical Assessment ETA-05/0231

Page 2 of 12 | 29 May 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 12 | 29 May 2018

European Technical Assessment ETA-05/0231 English translation prepared by DIBt

#### Specific Part

#### 1 Technical description of the product

The Chemical Anchor V is a bonded anchor consisting of a glass capsule V-P and a threaded anchor rod with hexagon nut and washer. The anchor rod (including nut and washer) is made of zinc-plated steel, hot-dip galvanised steel, stainless steel or made of high corrosion resistant steel.

The glass capsule is placed into the hole and the anchor rod is driven by machine with simultaneous hammering and turning. The anchor rod is anchored via the bond between anchor rod, chemical mortar and concrete.

The product description is given in Annex A.

#### 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                 | Performance             |
|------------------------------------------------------------------------------------------|-------------------------|
| Characteristic resistance to tension load                                                | See Annex               |
| (static and quasi-static loading)                                                        | C 1                     |
| Characteristic resistance to shear load                                                  | See Annex               |
| (static and quasi-static loading)                                                        | C 2                     |
| Displacements                                                                            | See Annex               |
| (static and quasi-static loading)                                                        | C 1 and C 2             |
| Characteristic resistance and displacements for seismic performance categories C1 and C2 | No performance assessed |

#### 3.2 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |

# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

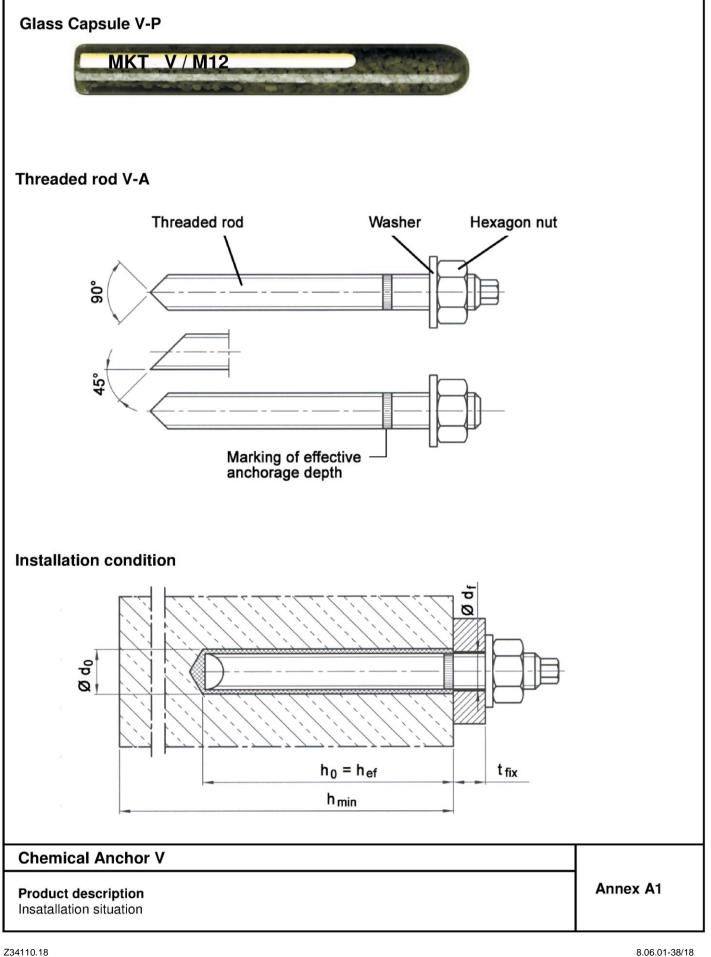
The system to be applied is: 1



#### European Technical Assessment ETA-05/0231 English translation prepared by DIBt

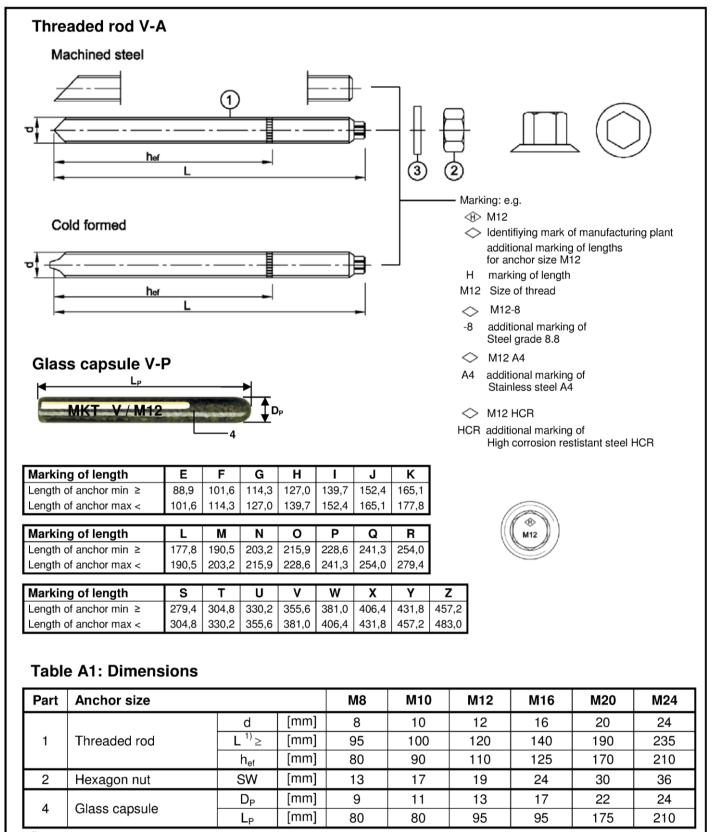
5

#### Page 4 of 12 | 29 May 2018


# Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 29 May 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider





8.06.01-38/18





<sup>1)</sup> other lengths on demand

### Chemical Anchor V

| Product description    |
|------------------------|
| Marking and dimensions |

dimensions in mm

Annex A2



| Part   | Designation                   | Materials                                                                                                                                                            |
|--------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | zinc plated                   |                                                                                                                                                                      |
|        |                               | dip galvanised acc. to EN ISO 10684:2004+AC:2009                                                                                                                     |
| 1      | Anchor rod                    | Steel, property class 5.8; 8.8, $A_5 > 8$ % fracture elongation                                                                                                      |
| 2      | Hexagon nut                   | Steel,<br>Property class 5 (for anchor rods class 5.8)<br>Property class 8 (for anchor rods class 8.8)<br>acc. to EN ISO 898-2:2013                                  |
| 3      | Washer                        | Steel, zinc plated                                                                                                                                                   |
| Stainl | ess steel A4                  |                                                                                                                                                                      |
| 1      | Anchor rod                    | Material 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578<br>acc. to EN 10088-3:2014<br>Property class 70 and property class 80<br>A <sub>5</sub> > 8% fracture elongation |
| 2      | Hexagon nut                   | Stainless steel A4<br>Property class 70 (for anchor rods class 70),<br>Property class 80 (for anchor rods class 80)<br>acc. to EN ISO 3506-2:2009                    |
| 3      | Washer                        | Stainless steel A4<br>acc. to EN ISO 3506-1:2009                                                                                                                     |
| High c | corrosion resistant steel HCR |                                                                                                                                                                      |
| 1      | Anchor rod                    | Material 1.4529 / 1.4565 acc. to EN 10088-3:2014<br>Property class 70<br>$A_5 > 8\%$ fracture elongation                                                             |
| 2      | Hexagon nut                   | Material 1.4529 / 1.4565 acc. to EN 10088-3:2014<br>Property class 70, acc. EN ISO 3506-2:2009                                                                       |
| 3      | Washer                        | Material 1.4529 / 1.4565 acc. to EN 10088-3:2014                                                                                                                     |
| Glass  | capsule                       |                                                                                                                                                                      |
| 4      | Glass capsule                 | Glass, Quartz, Resin, Hardener                                                                                                                                       |
|        |                               |                                                                                                                                                                      |
|        |                               |                                                                                                                                                                      |
|        |                               |                                                                                                                                                                      |
| Cha    | mical Anchor V                |                                                                                                                                                                      |

Produktbeschreibung Materials Annex A3

electronic copy of the eta by dibt: eta-05/0231



| Chemical Ancho          | r \/           |                                                                                         | Anchor rod V-A |           |            |     |     |  |  |  |  |
|-------------------------|----------------|-----------------------------------------------------------------------------------------|----------------|-----------|------------|-----|-----|--|--|--|--|
| Chemical Ancho          | rv             | M8                                                                                      | M10            | M12       | M16        | M20 | M24 |  |  |  |  |
| Static or quasi-sta     | tic action     |                                                                                         |                |           | /          |     |     |  |  |  |  |
|                         |                | reinforced or unreinforced normal weight concrete without fibres acc. to<br>EN 206:2013 |                |           |            |     |     |  |  |  |  |
| Base materials          |                | strength classes C20/25 to C50/60, acc. to EN 206:2013                                  |                |           |            |     |     |  |  |  |  |
|                         |                |                                                                                         |                | uncracked | d concrete |     |     |  |  |  |  |
| Temperature<br>Range I  | -40°C to +40°C | max long term temperature +24°C and max short term temperature +40°C                    |                |           |            |     |     |  |  |  |  |
| Temperature<br>Range II | -40°C to +80°C | max long term temperature +50°C and max short term temperature +80°C                    |                |           |            |     |     |  |  |  |  |

#### Use conditions (environmental conditions):

- · Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
  permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high
  corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

#### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with FprEN 1992-4:2016 and TR 055

## Chemical Anchor V

Intended use Specifications Annex B1

#### Deutsches Institut für Bautechnik

| Anchor size                                  |                    |      | M8   | M10  | M12  | M16  | M20  | M24  |
|----------------------------------------------|--------------------|------|------|------|------|------|------|------|
| Nominal diameter of drill hole               | d <sub>0</sub>     | [mm] | 10   | 12   | 14   | 18   | 25   | 28   |
| Cutting diameter of drill hole               | d <sub>cut</sub> ≤ | [mm] | 10,5 | 12,5 | 14,5 | 18,5 | 25,5 | 28,5 |
| Depth of drill hole                          | h <sub>0</sub>     | [mm] | 80   | 90   | 110  | 125  | 170  | 210  |
| Effective anchorage depth                    | h <sub>ef</sub>    | [mm] | 80   | 90   | 110  | 125  | 170  | 210  |
| Diameter of clearance hole<br>in the fixture | d <sub>f</sub>     | [mm] | 9    | 12   | 14   | 18   | 22   | 26   |
| Diameter of steel brush                      | d <sub>b</sub>     | [mm] | 11   | 13   | 16   | 20   | 27   | 30   |
| Maximum installation torque                  | T <sub>inst</sub>  | [Nm] | 10   | 20   | 40   | 80   | 120  | 180  |

Steelbrush

## 

## Table B2: Minimum member thickness, edge distance and spacing

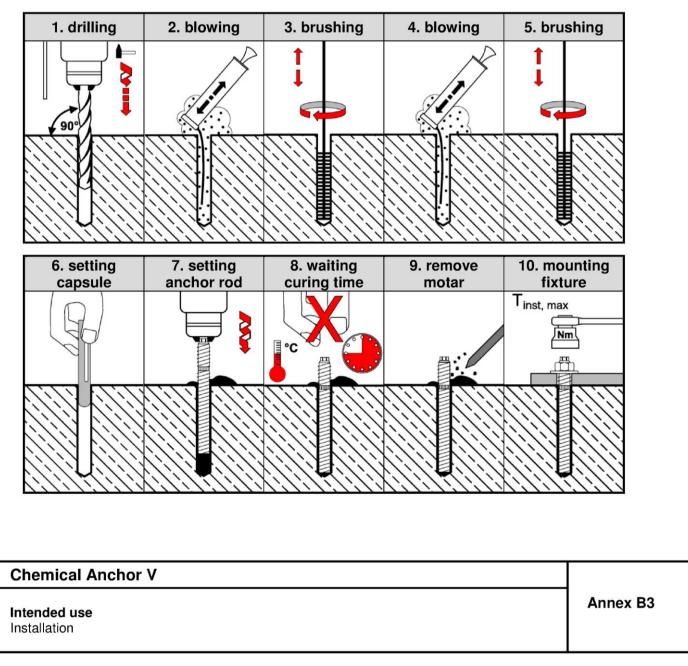
| Anchor size              |                    |      |     | M10 | M12 | M16 | M20 | M24 |
|--------------------------|--------------------|------|-----|-----|-----|-----|-----|-----|
| Minimum member thickness | $\mathbf{h}_{min}$ | [mm] | 110 | 120 | 140 | 160 | 220 | 260 |
| Minimum edge distance    | C <sub>min</sub>   | [mm] | 40  | 45  | 55  | 65  | 85  | 105 |
| Minimum spacing          | S <sub>min</sub>   | [mm] | 40  | 45  | 55  | 65  | 85  | 105 |

## Table B3: Minimum curing time

| Temperature in the drill hole | Minimum      | curing time  |
|-------------------------------|--------------|--------------|
| remperature in the drift hole | dry concrete | wet concrete |
| $\geq$ 0°C                    | 5 h          | 10 h         |
| $\geq$ + 5°C                  | 1 h          | 2 h          |
| $\ge$ +20°C                   | 20 min       | 40 min       |
| $\ge$ +30°C                   | 10 min       | 20 min       |

## **Chemical Anchor V**

Intended use Installation parameters / Curing Time Annex B2




### Installation

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person
  responsible for technical matters of the site
- Dry or wet concrete, all sizes
- Hole drilling by hammer drilling
- Cleaning the drill hole:

Removing possibly existing water in the drill hole completely and cleaning the drill hole by at least one blowing operation, by at least 1 x blowing / 1 x brushing / 1 x blowing / 1 x brushing operation by using the steel brush supplied by the manufacturer; before brushing cleaning the brush and checking whether the brush diameter according to Annex B2, Table B1 is still sufficient. The steel brush shall produce natural resistance as it enters the anchor hole. If this is not the case a new brush or a brush with a larger diameter must be used.

- · Curing time must be observed pior to loading the anchor.
- · Observe expiration date





| Anch                      | nor size                                 |                              |            | M8                  | M10 | M12                               | M16                                               | M20 | M24 |
|---------------------------|------------------------------------------|------------------------------|------------|---------------------|-----|-----------------------------------|---------------------------------------------------|-----|-----|
| Steel                     | failure                                  |                              |            |                     |     |                                   |                                                   |     |     |
| ее                        | Steel, zinc plated property class 5.8    | N <sub>Rk,s</sub>            | [kN]       | 18                  | 29  | 42                                | 78                                                | 123 | 177 |
| sistan                    | Steel, zinc plated<br>property class 8.8 | N <sub>Rk,s</sub>            | [kN]       | 29                  | 46  | 67                                | 126                                               | 196 | 282 |
| Characteristic resistance | Stainless steel A4<br>property class 70  | N <sub>Rk,s</sub>            | [kN]       | 26                  | 40  | 59                                | 110                                               | 172 | 247 |
|                           | Stainless steel A4<br>property class 80  | N <sub>Rk,s</sub>            | [kN]       | 29                  | 46  | 67                                | 126                                               | 196 | 282 |
|                           | High corrosion resistant steel<br>HCR    | N <sub>Rk,s</sub>            | [kN]       | 26                  | 40  | 59                                | 110                                               | 172 | 247 |
| Comb                      | pined pull-out and concrete failure      |                              |            |                     |     |                                   |                                                   |     |     |
| Chara                     | acteristic resistance in uncracked con   | crete C20                    | )/25 to C5 | 0/60                |     |                                   |                                                   |     |     |
| Temp                      | erature range I                          | $\tau_{\rm Rk}$              | [N/mm²]    | 10                  | 11  | 9,5                               | 9,5                                               | 8,5 | 7,5 |
| Temp                      | erature range II                         | $\tau_{\rm Rk}$              | [N/mm²]    | 10                  | 11  | 9,5                               | 8,0                                               | 7,0 | 5,5 |
| Conc                      | rete cone failure                        |                              |            |                     |     |                                   |                                                   |     |     |
| Facto                     | r for k <sub>1</sub>                     | $\mathbf{k}_{ucr,N}$         | [-]        |                     |     | 11                                | ,0                                                |     |     |
| Edge                      | distance                                 | $\mathbf{C}_{cr,N}$          | [mm]       |                     |     | 1,5                               | h <sub>ef</sub>                                   |     |     |
| Spaci                     | ng                                       | $\mathbf{s}_{\mathrm{cr,N}}$ | [mm]       |                     |     | 3                                 | h <sub>ef</sub>                                   |     |     |
| Splitt                    | ing                                      |                              |            |                     |     |                                   |                                                   |     |     |
| Chara                     | acteristic resistance                    | $N^0_{Rk,sp}$                | [kN]       |                     |     | min [N <sup>0</sup> <sub>Rk</sub> | <sub>k,p</sub> ; N <sup>0</sup> <sub>Rk,c</sub> ] |     |     |
| Edge                      | distance                                 | $C_{cr,sp}$                  | [mm]       | 1,5 h <sub>ef</sub> |     |                                   | 1 h <sub>ef</sub>                                 |     |     |
| Spaci                     | ng                                       | $s_{\rm cr,sp}$              | [mm]       | 3 h <sub>ef</sub>   |     |                                   | 2 h <sub>ef</sub>                                 |     |     |
| Install                   | ation factor                             | Yinst                        | [-]        |                     |     | 1.                                | ,2                                                |     |     |

## Table C2: Displacements under tension load

| Anchor size  |                 |      | M8  | M10                     | M12 | M16 | M20 | M24 |
|--------------|-----------------|------|-----|-------------------------|-----|-----|-----|-----|
| Tension load | N               | [kN] | 8   | 12                      | 16  | 20  | 30  | 38  |
| Displacement | δ <sub>N0</sub> | [mm] | 0,1 | 0,1 0,2 0,2 0,2 0,5 0,4 |     |     |     |     |
| Displacement | δ <sub>N∞</sub> | [mm] |     |                         | 0   | ,5  |     |     |

## Chemical Anchor V

### Performance

Characteristic values and displacements under tension load

Annex C1

#### Deutsches Institut für Bautechnik

| Anch                                | or size                                  |                                |      | M8  | M10 | M12 | M16      | M20 | M24 |  |  |
|-------------------------------------|------------------------------------------|--------------------------------|------|-----|-----|-----|----------|-----|-----|--|--|
| Steel                               | failure without lever arm                |                                |      |     |     |     |          |     |     |  |  |
| 2                                   | Steel, zinc plated property class 5.8    | $V^0_{\ Rk,s}$                 | [kN] | 9   | 14  | 21  | 39       | 61  | 88  |  |  |
| shea<br>ce                          | Steel, zinc plated<br>property class 8.8 | $V^0_{Rk,s}$                   | [kN] | 15  | 23  | 33  | 63       | 98  | 141 |  |  |
| Characteristic shear<br>resistance  | Stainless steel A4<br>property class 70  | $V^0_{Rk,s}$                   | [kN] | 13  | 20  | 29  | 55       | 86  | 124 |  |  |
|                                     | Stainless steel A4<br>property class 80  | $V^0_{Rk,s}$                   | [kN] | 15  | 23  | 33  | 62       | 98  | 141 |  |  |
| 0                                   | High corrosion resistant steel<br>HCR    | $V^0_{\ Rk,s}$                 | [kN] | 13  | 20  | 29  | 55       | 86  | 124 |  |  |
| Ductility factor k <sub>7</sub> [-] |                                          |                                |      | 0,8 |     |     |          |     |     |  |  |
| Steel                               | failure with lever arm                   |                                |      |     |     |     |          |     |     |  |  |
| би                                  | Steel, zinc plated property class 5.8    | ${\sf M}^0_{{\sf Rk},{\sf s}}$ | [Nm] | 19  | 37  | 65  | 166      | 325 | 561 |  |  |
| bendii<br>t                         | Steel, zinc plated<br>property class 8.8 | ${\sf M}^0_{\sf Rk,s}$         | [Nm] | 30  | 60  | 105 | 266      | 519 | 898 |  |  |
| teristic b<br>moment                | Stainless steel A4<br>property class 70  | ${\sf M}^0_{\sf Rk,s}$         | [Nm] | 26  | 52  | 92  | 233      | 454 | 785 |  |  |
| Characteristic bending<br>moment    | Stainless steel A4<br>property class 80  | M <sup>0</sup> <sub>Rk,s</sub> | [Nm] | 30  | 60  | 105 | 266      | 519 | 898 |  |  |
| ch                                  | High corrosion resistant steel<br>HCR    | M <sup>0</sup> <sub>Rk,s</sub> | [Nm] | 26  | 52  | 92  | 233      | 454 | 785 |  |  |
| Pry-ou                              | ut failure                               |                                |      |     |     |     | <u>.</u> |     |     |  |  |
| Factor                              |                                          | k <sub>8</sub>                 | [-]  |     |     | 2   | ,0       |     |     |  |  |
| Concr                               | rete edge failure                        |                                |      |     |     |     |          |     |     |  |  |
| Effecti                             | ive length of anchor                     | ۱ <sub>f</sub>                 | [mm] | 80  | 90  | 110 | 125      | 170 | 210 |  |  |
| Effecti                             | ive diameter of anchor                   | $d_{nom}$                      | [mm] | 10  | 12  | 14  | 18       | 25  | 28  |  |  |
| Installa                            | ation factor                             | γinst                          | [-]  |     |     | 1   | ,0       |     |     |  |  |

## Table C4: Displacements under shear load

| Anchor size  | Anchor size         |      |   | M10 | M12 | M16 | M20 | M24 |
|--------------|---------------------|------|---|-----|-----|-----|-----|-----|
| Shear load   | V                   | [kN] | 5 | 8   | 12  | 22  | 35  | 50  |
| Disalasanat  | $\delta_{V0}$       | [mm] | 2 | 3   | 3   | 4   | 5   | 5   |
| Displacement | $\delta_{V^\infty}$ | [mm] | 4 | 5   | 5   | 6   | 7   | 7   |

## **Chemical Anchor V**

### Performance

Characteristic values and displacements under shear load

Annex C2