

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-06/0100 vom 29. Mai 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von Deutsches Institut für Bautechnik

GFS Verbundanker VA

Verbunddübel zur Verankerung im Beton

DBN BV Munterij 8 4762 AH ZEVENBERGEN NIEDERLANDE

DBN BV Plant 1

14 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-00-0601

Europäische Technische Bewertung ETA-06/0100

Seite 2 von 14 | 29. Mai 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z33983.18 8.06.01-111/18

Europäische Technische Bewertung ETA-06/0100

Seite 3 von 14 | 29. Mai 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Der GFS Verbundanker VA ist ein Verbunddübel, der aus einer Glaspatrone GFS VA und einer Ankerstange mit Sechskantmutter besteht. Die Ankerstange (einschließlich Mutter und Unterlegscheibe) besteht aus galvanisch verzinktem Stahl, feuerverzinktem Stahl, aus nichtrostendem Stahl oder aus hochkorrosionsbeständigem Stahl.

Die Glaspatrone wird in ein Bohrloch gesetzt und die Ankerstange durch gleichzeitiges Schlagen und Drehen eingetrieben. Der Dübel wird durch Ausnutzung des Verbundes zwischen Ankerstange, Mörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung		
Charakteristischer Widerstand unter Zugbeanspruchung	Siehe Anhang		
(statische und quasi-statische Einwirkungen)	C 1		
Charakteristischer Widerstand unter Querbeanspruchung	Siehe Anhang		
(statische und quasi-statische Einwirkungen)	C 2		
Verschiebungen	Siehe Anhang		
(statische und quasi-statische Einwirkungen)	C 1 und C 2		
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Keine Leistung bestimmt		

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Keine Leistung bestimmt

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Z33983.18 8.06.01-111/18

Europäische Technische Bewertung ETA-06/0100

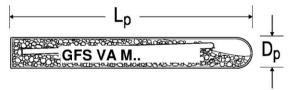
Seite 4 von 14 | 29. Mai 2018

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

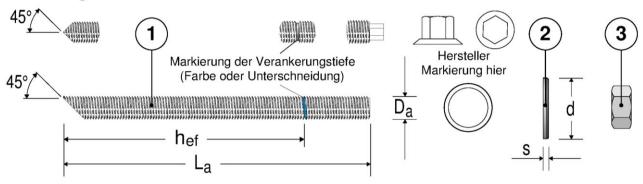
Ausgestellt in Berlin am 29. Mai 2018 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter


Beglaubigt:

Z33983.18 8.06.01-111/18

Produkt und Einbauzustand


Mörtelpatrone GFS VA:

Aufdruck Patrone

Hersteller:	GFS
Mörtelpatrone:	VA
Größe:	M


Ankerstange

Markierung Ankerstange

z.B.	B 1	6A
------	------------	----

Hersteller	В			
Größe	8, 10, 12, 16, 20, 24			
Werkstoff				
Stahl galvanisch	verzinkt, Festigkeitsklasse 5.8	Α	nichtrostender Stahl 1.4401, Festigkeitsklasse 70	С
Stahl galvanisch	verzinkt, Festigkeitsklasse 8.8	В	nichtrostender Stahl 1.4404, Festigkeitsklasse 70	K
Stahl feuerverzink		Н	nichtrostender Stahl 1.4529, Festigkeitsklasse 70	E
Stahl feuerverzink	kt, Festigkeitsklasse 8.8	1	nichtrostender Stahl 1.4565, Festigkeitsklasse 70	R
			nichtrostender Stahl 1.4571, Festigkeitsklasse 70	D
			nichtrostender Stahl 1.4401, Festigkeitsklasse 80	M
			nichtrostender Stahl 1.4404, Festigkeitsklasse 80	P
			nichtrostender Stahl 1.4571, Festigkeitsklasse 80	0

GFS Verbundanker VA

Produktbeschreibung

Produkt und Einbauzustand

Anhang A 1

Tabelle A1: Werkstoffe

Teil	Bezeichnung	Werkstoff						
1	Ankerstange	Festigkeit	Stahl skl. 5.8 bis 8.8 898-1:2013	Nichtrostender Stahl 1.4401, 1.4404	Nichtrostender Stahl 1.4529 oder			
		galvanisch verzinkt	l l		1.4565			
		≥5µm gemäß EN ISO	10684:2004+AC:2009 A ₅ > 8%	EN ISO	Festigkeitskl. 70			
		4042:1999 A ₅ > 8%	Bruchdehnung	3506-1:2009 A ₅ > 8%	EN ISO 3506-1:2009			
		Bruchdehnung		Bruchdehnung	A ₅ > 8% Bruchdehnung			
2	Unterlegscheibe		Stahl	Nichtrostender	Nichtrostender			
		galvanisch verzinkt	feuerverzinkt	Stahl 1.4401, 1.4404	Stahl 1.4529 oder			
		≥ 5µm gemäß EN ISO 4042:1999	EN ISO 10684:2004+AC:2009	oder 1.4571	1.4565			
		EN ISO 88	37:2006 oder EN ISO 70	089:2000 bis EN ISO 7094:2000				
3	Mutter	Festigke	Stahl eitskl. 5 bis 8 898-2:2012	Nichtrostender Stahl 1.4401, 1.4404	Nichtrostender Stahl 1.4529 oder			
		galvanisch verzinkt	feuerverzinkt	oder 1.4571 Festigkeitskl. A4-	1.4565			
		≥5µm gemäß EN ISO	EN ISO 10684:2004+AC:2009	1	Festigkeitskl. 70			
		4042:1999		3506-2:2009	EN ISO 3506-2:2009			
<u> </u>			EN ISO 4032:2012 ode	er EN ISO 4034:2012	2			
4	Mörtelpatrone	Glas Quarz Harz						
		Härter						

Tabelle A2: Abmessungen

Teil	Bezeichnung			M8	M10	M12	M16	M20	M24
\Box	Ankerstange	Da	[mm]	M8	M10	M12	M16	M20	M24
	Alikerstatige	$L_a \ge$		95	100	120	140	190	235
2	Unterlegscheibe	S	[mm]	1,6	2,1	2,5	3,0	3,0	4,0
-	Unterlegischeibe	d		16	21	24	30	37	44
3	Mutter	SW	[mm]	13	17	19	24	30	36
4	Mörtelpatrone	Dp	[]	9	11	13	17	22	24
	Morteipatrone	$L_p^{'}$	[mm]	80	80	95	95	175	210

GFS Verbundanker VA	
Produktbeschreibung	Anhang A 2
Werkstoffe	
Abmessungen	

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

Statische und quasi-statische Lasten: alle Größen.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013.
- Ungerissener Beton: alle Größen.

Temperaturbereich:

- I: 40 °C bis +40 °C (max. Langzeit-Temperatur +24 °C und max. Kurzzeit-Temperatur +40 °C)
- II: 40 °C bis +80 °C (max. Langzeit-Temperatur +50 °C und max. Kurzzeit-Temperatur +80 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume
- (verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Bemessung von Verankerungen erfolgt nach FprEN 1992-4:2016 in Verbindung mit TR 055.

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters.
- Trockener oder nasser Beton: alle Größen.
- · Bohrlochherstellung durch Hammerbohren.
- Bohrlochlochreinigung:
 - vollständiges Entfernen von im Bohrloch eventuell vorhandenem Wasser und Reinigung des Bohrlochs durch mindestens 1x Blasen / 1x Bürsten / 1x Blasen / 1x Bürsten; Reinigen mit dem vom Hersteller gelieferten Reinigungsgeräten; vor dem Ausbürsten Säubern der Bürste und Überprüfung, ob der Bürstendurchmesser nach Anhang B 2, Tabelle B3 eingehalten ist. Beim Einführen der Stahlbürste in das Bohrloch muss ein deutlicher Widerstand spürbar sein. Andernfalls ist eine neue Stahlbürste oder eine mit größerem Durchmesser zu verwenden.

GFS Verbundanker VA

Verwendungszweck
Spezifikationen

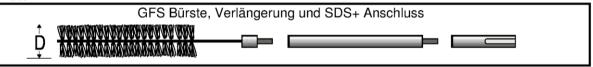

Anhang B 1

Tabelle B1: Montagekennwerte

Dübelgröße			М8	M10	M12	M16	M20	M24
Bohrernenndurchmesser	d_0	[mm]	10	12	14	18	25	28
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	10,5	12,5	14,5	18,5	25,5	28,5
Bohrlochtiefe	h ₀	[mm]	80	90	110	125	170	210
Effektive Verankerungstiefe	h _{ef}	[mm]	80	90	110	125	170	210
Durchgangsloch im anzuschließenden Bauteil	d _f	[mm]	9	12	14	18	22	26
Stahlbürstendurchmesser	D	[mm]	11	13	16	20	27	30
Maximales Montagedrehmoment	T _{inst}	[Nm]	10	20	40	80	120	180

Stahlbürste

Montageanleitung

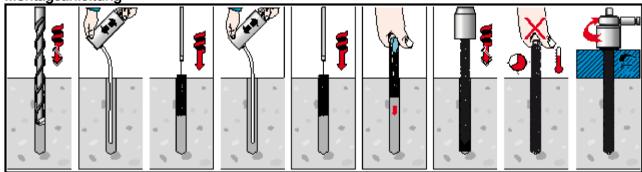


Tabelle B2: Mindestbauteildicke, Achs- und Randabstand

Dübelgröße			M8	M10	M12	M16	M20	M24
Mindestbauteildicke	h_{min}	[mm]	110	120	140	160	220	260
Minimaler Randabstand	C _{min}	[mm]	40	45	55	65	85	105
Minimaler Achsabstand	S _{min}	[mm]	40	45	55	65	85	105

Tabelle B3: Aushärtezeiten

Temperatur im Bohrloch	Min. Aushärtezeit im trockenen Beton	Min. Aushärtezeit im feuchten Beton
≥ 0°C	5 Std.	10 Std.
≥ + 5°C	1 Std.	2 Std.
≥ +20°C	20 Min.	40 Min.
≥ +30°C	10 Min.	20 Min.

GFS Verbundanker VA

Verwendungszweck

Montagekennwerte, Mindestbauteildicke, minimaler Achs- und Randabstand, Aushärtezeiten Anhang B 3

Teile aus galvanisiertes verzinktem oder feuerverzinktem Stahl

Tabelle C1: Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung

Dübelgröße			М8	M10	M12	M16	M20	M24
Stahlversagen								
Charakteristische Zugtragfähigkeit Festigkeitsklasse 5.8	$N_{Rk,S}$	[kN]	18	29	42	78	123	177
Charakteristische Zugtragfähigkeit Festigkeitsklasse 8.8	$N_{Rk,S}$	[kN]	29	46	67	126	196	282
Kombiniertes Versagen durch Herausziehen und Betonausbruch								
Charakteristische Tragfähig	keit im ungeri	ssenen	Beton C	20/25 b	is C50/6	60		
Temperaturbereich I	$N^0_{Rk,p}$	[kN]	20	30	40	60	90	120
Temperaturbereich II	${\sf N^0}_{\sf Rk,p}$	[kN]	20	30	40	50	75	90
Faktor für k ₁	$k_{ucr,N}$	[-]			11	,0		
Betonausbruch								
Faktor für k ₁	$k_{ucr,N}$	[-]			11	,0		
Randabstand	C _{cr,N}	[mm]			1,5	h _{ef}		
Achsabstand	$s_{\text{cr,N}}$	[mm]			3	h _{ef}		
Spalten ¹⁾								
Randabstand	C _{cr,sp}	[mm]	1,5 h _{ef} 1 h _{ef}					
Achsabstand	S _{cr,sp}	[mm]	3 h _{ef} 2 h _{ef}					
Montagebeiwert	γ inst	[-]			1	,2		

Beim Nachweis gegen Spalten ist N⁰_{Rk,c} durch N⁰_{Rk,p} zu ersetzen

Tabelle C2: Verschiebungen unter Zuglast

Dübelgröße			M8	M10	M12	M16	M20	M24
Zuglast	Ν	[kN]	8	12	16	20	30	38
Verschiebung	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	$\delta_{N\infty}$	[mm]	0,5					

GFS Verbundanker VA	
Leistungen Charakteristische Werte bei Zugbeanspruchung Verschiebungen	Anhang C 1

Teile aus nichtrostendem Stahl 1.4401, 1.4404 oder 1.4571

Tabelle C3: Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24		
Stahlversagen										
Charakteristische Zugtragfähigkeit Festigkeitsklasse A4-70	$N_{Rk,S}$	[kN]	26	40	59	110	172	247		
Charakteristische Zugtragfähigkeit Festigkeitsklasse A4-80	$N_{Rk,S}$	[kN]	29	46	67	126	196	282		
Kombiniertes Versagen durch Herausziehen und Betonausbruch										
Charakteristische Tragfähigk	•	issenen	Beton C	20/25 b	is C50/6	60				
Temperaturbereich I	$N^0_{Rk,p}$	[kN]	20	30	40	60	90	120		
Temperaturbereich II	$N^0_{Rk,p}$	[kN]	20	30	40	50	75	90		
Faktor für k₁	$k_{ucr,N}$	[-]								
Betonausbruch										
Faktor für k₁	k _{ucr,N}	[-]			11	,0				
Randabstand	C _{cr,N}	[mm]			1,5	h _{ef}				
Achsabstand	S _{cr,N}	[mm]			3	h _{ef}				
Spalten ¹⁾										
Randabstand	C _{cr,sp}	[mm]	1,5 h _{ef} 1 h _{ef}							
Achsabstand	S _{cr,sp}	[mm]	3 h _{ef} 2 h _{ef}							
Montagesbeiwert	γ inst	[-]			1	,2				

Beim Nachweis gegen Spalten ist N⁰_{Rk,c} durch N⁰_{Rk,p} zu ersetzen

Tabelle C4: Verschiebungen unter Zuglast

Dübelgröße			M8	M10	M12	M16	M20	M24
Zuglast	Ν	[kN]	8	12	16	20	30	38
Verschiebung	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	$\delta_{N\infty}$	[mm]	0,5					

GFS Verbundanker VA	
Leistungen Charakteristische Werte bei Zugbeanspruchung Verschiebungen	Anhang C 2

Teile aus nichtrostendem Stahl 1.4529 oder 1.4565

Tabelle C5: Bemessungsverfahren A
Charakteristische Werte bei Zugbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24		
Stahlversagen										
Charakteristische Zugtragfähigkeit Festigkeitsklasse 70	$N_{Rk,S}$	[kN]	26	40	59	110	172	247		
Kombiniertes Versagen durch Herausziehen und Betonausbruch										
Charakteristische Tragfähig	gkeit im ungeri	ssenen	Beton C	20/25 b	is C50/6	60				
Temperaturbereich I	$N^0_{Rk,p}$	[kN]	20	30	40	60	90	120		
Temperaturbereich II	$N^0_{Rk,p}$	[kN]	20	30	40	50	75	90		
Faktor für k₁	k _{ucr,N}	[-]	11,0							
Betonausbruch										
Faktor für k₁	k _{ucr,N}	[-]			11	,0				
Randabstand	C _{cr,N}	[mm]			1,5	h _{ef}				
Achsabstand	S _{cr,N}	[mm]			3	h _{ef}				
Spalten ¹⁾										
Randabstand	C _{cr,sp}	[mm]	1,5 h _{ef} 1 h _{ef}							
Achsabstand	S _{cr,sp}	[mm]	3 h _{ef} 2 h _{ef}							
Montagebeiwert	γinst	[-]			1	,2				

¹⁾ Beim Nachweis gegen Spalten ist N⁰_{Rk,c} durch N⁰_{Rk,p} zu ersetzen

Tabelle C6: Verschiebungen unter Zuglast

Dübelgröße			M8	M10	M12	M16	M20	M24
Zuglast	Ν	[kN]	8	12	16	20	30	38
Verschiebung	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	$\delta_{N\infty}$	[mm]	0,5					

GFS Verbundanker VA

Leistungen
Charakteristische Werte bei Zugbeanspruchung
Verschiebungen

Teile aus galvanisch verzinktem oder feuerverzinktem Stahl

Tabelle C7: Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24		
Stahlversagen ohne Hebelarm										
Charakteristische Quertragfähigkeit Festigkeitsklasse 5.8	$V^0_{Rk,S}$	[kN]	9	14	21	39	61	88		
Charakteristische Quertragfähigkeit Festigkeitsklasse 8.8	$V^0_{Rk,S}$	[kN]	15	23	33	63	98	141		
Duktilitätsfaktor	k_7	[-]	0,8							
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment Festigkeitsklasse 5.8	$M^0_{Rk,S}$	[Nm]	19	37	65	166	325	561		
Charakteristisches Biegemoment Festigkeitsklasse 8.8	${\sf M^0}_{\sf Rk,S}$	[Nm]	30	60	105	266	519	898		
Betonbruch auf der lastabgewar	ndten Se	eite								
Faktor	k ₈	[-]			2	,0				
Montagebeiwert	γinst	[-]			1	,0				
Betonkantenbruch										
Effektive Dübellänge	ℓ_{f}	[mm]	80	90	110	125	170	210		
Wirksamer Außendurchmesser	d _{nom}	[mm]	10	12	14	18	25	28		
Montagebeiwert	γinst	[-]			1	,0				

Tabelle C8: Verschiebungen unter Querlast

Dübelgröße			M8	M10	M12	M16	M20	M24
Querlast	٧	[kN]	5	8	12	22	35	50
Verschiebung	δ_{V0}	[mm]	2	3	3	4	5	5
	$\delta_{V\infty}$	[mm]	4	5	5	6	7	7

GFS Verbundanker VA	
Leistungen Charakteristische Werte bei Querbeanspruchung Verschiebungen	Anhang C 4

Teile aus nichtrostendem Stahl 1.4401, 1.4404 oder 1.4571

Tabelle C9: Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24	
Stahlversagen ohne Hebelarm									
Charakteristische Quertragfähigkeit Festigkeitsklasse A4-70	$V^0_{Rk,S}$	[kN]	13	20	29	55	86	124	
Charakteristische Quertragfähigkeit Festigkeitsklasse A4-80	$V^0_{Rk,S}$	[kN]	15	23	33	62	98	141	
Duktilitätsfaktor	k_7	[-]	0,8						
Stahlversagen mit Hebelarm									
Charakteristisches Biegemoment Festigkeitsklasse A4-70	$M^0_{Rk,S}$	[Nm]	26	52	92	233	454	785	
Charakteristisches Biegemoment Festigkeitsklasse A4-80	$M^0_{Rk,S}$	[Nm]	30	60	105	266	519	898	
Betonbruch auf der lastabgewar	ndten Se	eite							
Faktor	k ₈	[-]			2	,0			
Montagbeiwert	γinst	[-]			1	,0			
Betonkantenbruch									
Effektive Dübellänge	ℓ_{f}	[mm]	80	90	110	125	170	210	
Wirksamer Außendurchmesser	d_{nom}	[mm]	10	12	14	18	25	28	
Montagebeiwert	γinst	[-]			1	,0			

Tabelle C10: Verschiebungen unter Querlast

Dübelgröße			М8	M10	M12	M16	M20	M24
Querlast	٧	[kN]	5	8	12	22	35	50
Verschiebung	δ_{V0}	[mm]	2	3	3	4	5	5
	$\delta_{V\infty}$	[mm]	4	5	5	6	7	7

GFS Verbundanker VA	
Leistungen Charakteristische Werte bei Querbeanspruchung Verschiebungen	Anhang C 5

Teile aus nichtrostendem Stahl 1.4529 oder 1.4565

Tabelle C11: Bemessungsverfahren A
Charakteristische Werte bei Querbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24
Stahlversagen ohne Hebelarm								
Charakteristische Quertragfähigkeit Festigkeitsklasse 70	$V^0_{Rk,S}$	[kN]	13	20	29	55	86	124
Duktilitätsfaktor	k_7	[-]	0,8					
Stahlversagen mit Hebelarm								
Charakteristisches Biegemoment Festigkeitsklasse 70	$M^0_{Rk,S}$	[Nm]	26	52	92	233	454	785
Betonbruch auf der lastabgewandten Seite								
Faktor	k ₈	[-]	2,0					
Montagebeiwert	γ̃inst	[-]	1,0					
Betonkantenbruch								
Effektive Dübellänge	ℓ_{f}	[mm]	80	90	110	125	170	210
Wirksamer Außendurchmesser	d_{nom}	[mm]	10	12	14	18	25	28
Montagebeiwert	γinst	[-]	1,0					

Tabelle C12: Verschiebungen unter Querlast

Dübelgröße			M8	M10	M12	M16	M20	M24
Querlast	V	[kN]	5	8	12	22	35	50
Verschiebung	δ_{V0}	[mm]	2	3	3	4	5	5
	$\delta_{V^{\infty}}$	[mm]	4	5	5	6	7	7

GFS Verbundanker VA

Leistungen
Charakteristische Werte bei Querbeanspruchung
Verschiebungen

Anhang C 6