

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-08/0307 of 23 August 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Hilti screw anchor HUS Product family Concrete screw for use in concrete to which the construction product belongs Manufacturer Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN Manufacturing plant Hilti Werke This European Technical Assessment 15 pages including 3 annexes which form an integral part contains of this assessment EAD 330232-00-0601 This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-08/0307 issued on 27 August 2015

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-08/0307

Page 2 of 15 | 23 August 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 15 | 23 August 2018

Specific Part

1 Technical description of the product

The Hilti screw anchor HUS is made of galvanised steel (HUS –H) of size 10 or made of stainless steel (HUS –HR; –CR) of sizes 6, 8, 10 and 14. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading	See Annex C1
Characteristic resistance for seismic performance Category C1	See Annex C2
Characteristic resistance for seismic performance Category C2	No performance assessed
Displacements	See Annex C4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-08/0307

Page 4 of 15 | 23 August 2018

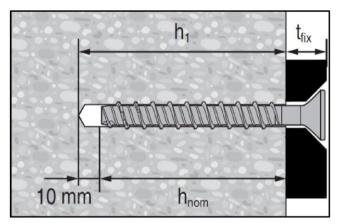
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 23 August 2018 by Deutsches Institut für Bautechnik

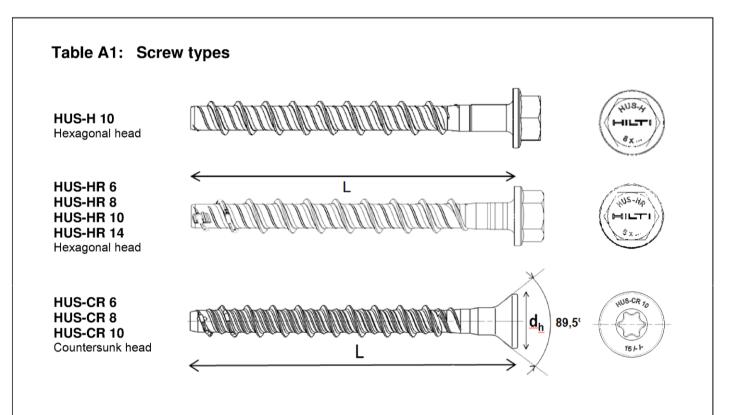
BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange


Product and installed condition

HUS-H (hexagonal head, sizes 10)

10 mm

HUS-HR (hexagonal head, sizes 6, 8, 10 and 14)


hnom

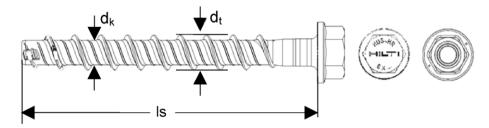
HUS-CR (countersunk head, sizes 6, 8 and 10)

Hilti screw anchor HUS

Product description Installed condition Annex A1

Table A2: Materials

Part	Designation	Material	
Screw anchor HUS-H	Size 10 all lengths	f _{yk} ≥ 860 N/mm ² , f _{uk} ≥ 1000 N/mm ²	Carbon steel, galvanized ($\geq 5 \ \mu$ m) Rupture elongation $A_5 \leq 8\%$
	Size 6 all lengths	f _{yk} ≥ 900 N/mm² , f _{uk} ≥ 1050 N/mm²	
Screw anchor	Size 8 all lengths	f _{yk} ≥ 745 N/mm² , f _{uk} ≥ 870 N/mm²	Stainless steel (A4 grade)
HUS-HR and HUS-CR	Size 10 all lengths	f _{yk} ≥ 815 N/mm² , f _{uk} ≥ 950 N/mm²	Rupture elongation $A_5 > 8\%$
	Size 14 all lengths	f _{yk} ≥ 590 N/mm² , f _{uk} ≥ 690 N/mm²	


Hilti screw anchor HUS

Product description Screw types and materials Annex A2

Fastener size I	HUS		6	8	В		1	0		1	4
Туре			HR, CR	HR,	, CR	HR,	CR	н		н н	
			h _{nom}	h _{nom1} h _{nom2}		h _{nom1}	h _{nom1} h _{nom2}		h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	55	60 80		70	90	70	85	70	110
Threaded outer diameter	dt	[mm]	7,6	10	D,1	12	2,3	12	2,3	16	6,6
Core diameter	d _k	[mm]	5,4	7,05		8	,4	8	,4	12	2,6
Stressed section	As	[mm²]	22,9	39,0		55	5,4	55	5,4	143,1	

Table A3: Fastener dimensions and marking

Head stamp:

e.g. Hilti HUS-HR 8 x ... or circle marks

HILTI	Manufacturer
HUS e.g. "H" resp. circle marks R	H ilti Universal Screw anchor Head configuration (H, C) Corrosion R esistance (stainless steel, grade A4)
8	Nominal anchor diameter/ drill bit diameter (614)Nominal anchor length (I_s)/ under head length

Hilti screw anchor HUS

Production description Fastener dimensions and marking Annex A3

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loadings: all sizes and all embedment depths.
- Seismic action for performance category C1:
- sizes 8, 10 and 14, for maximum embedment depth only (h_{nom2}).
- Fire exposure: all sizes and all embedment depths.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked or cracked concrete.

Use conditions (Environmental conditions):

- Anchorages subject to dry internal conditions: all screw types.
- Anchorages subject to dry internal conditions or external atmospheric exposure including industrial and marine environment or permanently damp internal condition, if no particular aggressive conditions exist: screw types made of stainless steel (HUS-HR, CR). Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme

chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with: FprEN 1992-4:2016 and EOTA Technical Report TR 055, 12/2016

Installation:

- Hammer drilling only: all sizes and all embedment depths.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the fastener must not be possible.
- The head of the fastener must be supported on the fixture and is not damaged.

Hilti screw anchor HUS

Intended use Specifications

Annex B1

Table B1: Installation parameters

Fastener size HUS			6	;	В		1	0		1	4		
Туре			HR, CR	HR,	CR	HR,	, CR	1	н	н	R		
			h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}		
Nominal embedment depth	h _{nom}	[mm]	55	60	80	70	90	70	85	70	110		
lominal drill hole d₀ liameter		[mm]	6	8		10		1	0	1	4		
Cutting diameter d _{cut} ≤ [m of drill bit		[mm]	6,40	8,	45	10	,45	10	,45	14	,50		
Clearance hole diameter d _f ≤ [mr		[mm]	9	12		1	4	1	4	1	8		
Vrench size SW [mn		[mm]	13	1	3	1	5	1	5	21			
Torx size	k size TX [-		T30	Т	T45		50		-	-			
Countersunk head diameter (CR)	d _h	[mm]	11	1	8	2	21		21		-		-
Countersunk head height (CR)	h _h	[mm]	4,3	6	,3	7,0			-		-		
Depth of drill hole in floor/ wall position	h₁ ≥	[mm]	65	h _{nom} +	10mm	h _{nom} +	10mm	h _{nom} +	10mm	h _{nom} +	10mm		
Depth of drill hole in $h_1 \ge$		[mm]	58	h _{nom} +	10mm	h _{nom} +	10mm	h _{nom} +	10mm	h _{nom} +	10mm		
Installation Torque T _{inst}		[Nm]	_ 1)	-	1)	45	5 ²⁾	45	55	6	5		
Setting tool Strength ≥ C20/ class		220/25	Impact screw driver, e.g. Hilti SIW 14- A or 22-A ³⁾		Impa	act screw driver, e.g. Hilti SIW 22				T-A ³⁾			

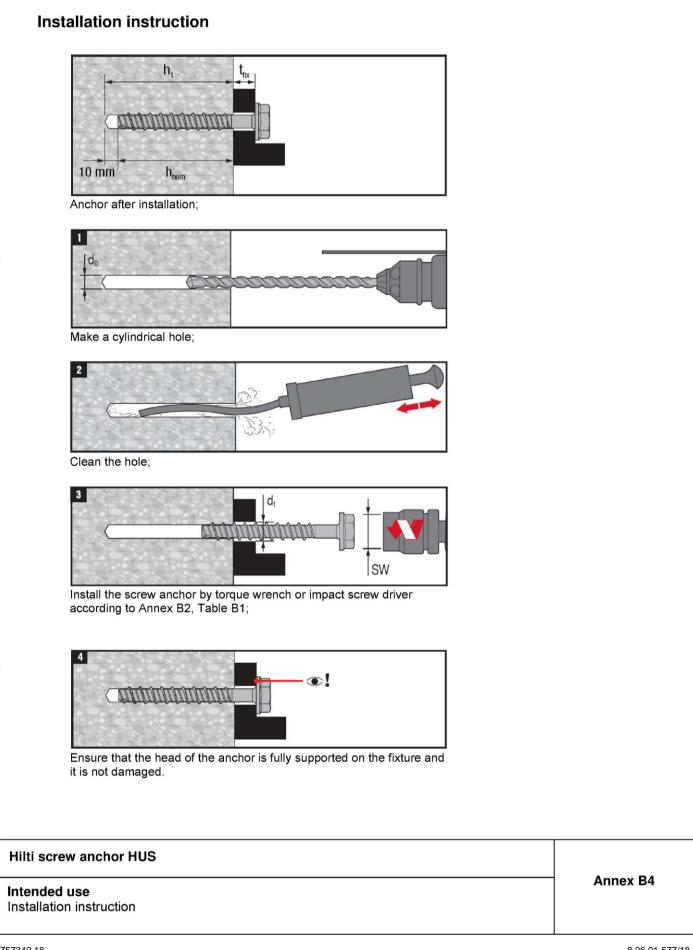
¹⁾ Hand setting in concrete base material not allowed (machine setting only).
 ²⁾ Installation torque referred to HUS-HR only.
 ³⁾ Hilti recommended electrical impact screw drivers are listed in the instruction for use included in the sales box.

Hilti screw anchor HUS

Intended use Installation parameters Annex B2

Table B2: Minimum thickness of concrete member, minimum edge distance and spacing

Fastener siz	e HUS			6	8	8		1	0		1	4
Туре						HR, HR, CR HR, CR				ł	HR	
Nominal embe	Nominal embedmenth depth h _{nom} [mm Minumum thickness of				60	80	70	90	70	85	70	110
Minumum thickness of concrete member		h _{min}	[mm]	100	100	120	120 140		110	130	140	160
Cracked	Minimum spacing	S _{min}	[mm]	35	45	50	F	0	F	0	50	60
concrete	Minimum edge distance	C _{min}	[mm]	35			50		50		50	60
Non-cracked	Minimum spacing	S _{min}	[mm]	35	45	50			6	F	50	60
concrete	Minimum edge distance	C _{min}	[mm]	35	45	50	50		65		50	60


Table B3: Screw length and maximum thickness of fixture

Fastener size	(6		8	3				1	0			14		
Туре	HR	CR	н	IR	c	R	н	R	c	R	1	н	н	R	
Nominal embedment		om1 5	h _{nom1} 60	h _{nom2} 80	h _{nom1} 60	h _{nom2} 80	h _{nom1} 70	h _{nom2} 90	h _{nom1} 70	h _{nom2} 90	h _{nom1} 70	h _{nom2} 85	h _{nom1} 70	h _{nom2} 110	
depth [mm]						Thic	kness c	of fixture	[mm]						
Length of screw [mm]	t _{fi}	ix1	t _{fix1}	t _{fix2}											
60	5	5													
65			5												
70	15	15													
75			15		15		5						10		
85			25	5			15		15						
95			35	15	35	15	25	5							
105			45	25			35	15	35	15					
115							45	25							
120													50	10	
135													65	25	
140							60	40							
200											130	115			
240											170	155			
280											210	195			

Hilti screw anchor HUS

Intended use Minimum concrete thickness and minimum edge distance and spacing. Screw length and thickness of the fixture Annex B3

Table C1: Characteristic values of resistance in case of static and quasi-static loading

Fastener	^r size HUS			6	8	3			10		1	4	
Туре				HR, CR	HR,	CR	HR,	CR	F	1	н	R	
Nominal e	mbedment depth	h _{nom}	[mm]	55	60	80	70	90	70	85	70	110	
Steel failu	ire for tension and	shear load											
Characteri	istic resistance	$N_{Rk,s}$	[kN]	24,0	34	l,0	52,6 55,4				102,2		
Partial fact	tor	γ _{Ms,N} 1)	[-]				1,	4					
Characteri	istic resistance	$V_{Rk,s}$	[kN]	17,0	17,0 26,0 33,0 23,8				,8	55,0	77,0		
Partial fact	tor	γ _{Ms,V} 1)	[-]		1,5								
Ductility fa	ictor	k 7	[-]	1,0	1,0 1,0		1,	0	0,	8	1,	0	
Characteri	istic resistance	$M^0_{Rk,s}$	[Nm]	19	3	6	6	6	7	0	19)3	
Pull-out fa	ailure												
	istic resistance in oncrete C20/25	N _{Rk,p}	[kN]	5	6	12	9	16	7,5	16	12	25	
	istic resistance in ed concrete C20/25	N _{Rk,p}	[kN]	9	12	16	16	25	12	20	- 2)	_ 2)	
	ncreasing factor $\mathrm{creasing}\ \mathrm{factor}\ \mathrm{concrete}\ \psi_{\mathrm{c}}$	C30/37	[-]	1,22	1,	22	1,22		1,17 1,22		1,2	22	
-		C40/50	[-]	1,41	1,	41	1,41		1,32 1,41		1,4	1 1	
	+0	C50/60	[-]	1,58	1,58		1,58		1,44 1,58		1,58		
Concrete	cone and splitting	failure							-		-		
Effective a	anchorage depth	h _{ef}	[mm]	45	47	64	54	71	54	67	52	86	
Factor for	Cracked	$\mathbf{k}_1 = \mathbf{k}_{cr,N}$	[-]					7,7					
Factor for	Non-cracked	$\mathbf{k}_1 = \mathbf{k}_{ucr,N}$	[-]					11,0					
Concrete cone	Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}	1,5	h _{ef}	1,5	h _{ef}	1,5	h _{ef}	1,5	h _{ef}	
failure	Spacing	S _{cr,N}	[mm]	3 h _{ef}	3	h _{ef}	3	1 _{ef}	3 ł	Դ _{ef}	31	٦ _{ef}	
Splitting	Edge distance	C _{cr,sp}	[mm]	1,5 h _{ef}	1,5	h _{ef}	1,8	h _{ef}	1,5	h _{ef}	1,8	h _{ef}	
failure	Spacing	S _{cr,sp}	[mm]	3 h _{ef}	3	h _{ef}	3,6	h _{ef}	3 ł	۱ _{ef}	3,6	h _{ef}	
Installatior	n factor	γinst	[-]	1,4	1	,2	1,	2	1,2	1,4	1,	2	
Concrete	pry-out failure												
Pry-out fac	ctor	k ₈	[mm]	1,5	2	,0	2,	0	2,	0	2,	0	
Concrete	edge failure												
Effective le	ength of anchor	$I_{\rm f} = h_{\rm ef}$	[mm]	45	47	64	54	71	54	67	52	86	
Effective d	liameter of anchor	d _{nom}	[mm]	6	8	3			10		1	4	

In absence of other national regulations.
 Pull-out failure is not decisive.

Hilti screw anchor HUS

Performances

Characteristic values for resistance under static and quasi-static action

Table C2: Characteristic values of resistance in case of seismic performance category C1

Fastener size I	HUS			8	1	0	14		
Туре				HR, CR	HR, CR	н	HR		
Nominal embedm	nent depth	h _{nom}	[mm]	80	90	85	110		
Steel failure for	tension and shear I	oad	•						
Characteristic res	sistance	$N_{Rk,s,seis}$	[kN]	34,0	52,6	55,4	102,2		
Partial factor		$\gamma_{Ms,N}^{1)}$	[-]		1	,4	•		
Characteristic res	sistance	$V_{Rk,s,seis}$	[kN]	11,1	17,9				
Partial factor		γ _{Ms,∨} 1)	[-]		1	,5			
Pull-out failure			•						
Characteristic resistance in cracked concrete		$N_{Rk,p,seis}$	[kN]	7,7	12	2,5	17,5		
Concrete cone f	ailure		•						
Effective embedn	nent depth	h _{ef}	[mm]	64	71	67	86		
Concrete cone	Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}	1,5 h _{ef}	1,5 h _{ef}	1,5 h _{ef}		
failure	Spacing	S _{cr,N}	[mm]	3 h _{ef}	3 h _{ef}	3 h _{ef}	3 h _{ef}		
Installation factor		γinst	[-]	1,2	1,2	1,4	1,2		
Concrete pry-ou	t failure		•						
Pry-out factor		k ₈	[-]	2,0	2,0	2,0	2,0		
Concrete edge f	ailure						•		
Effective length o	f fastener	$l_f = h_{ef}$	[mm]	64	71	67	86		
Outside diameter	of fastener	d _{nom}	[mm]	8	1	0	14		

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS

Annex C2

Performances

Characteristic values for resistance under seismic actions, performance category C1

Fastener siz	e HUS			6	6		8	3				1	0			1	4
Туре				HR	CR	н	R	c	R	HR		CR		н		н	R
Nominal embe depth	dment	h _{nom}	[mm]	5	5	60	80	60	80	70	90	70	90	70	85	70	110
Steel failure fo	or tensi	ion and s	shear l	oad (F	Rk,s,fi	= N _{Rk,s} ,	_{fi} = V _R	k,s,fi)									
	R30	F _{Rk,s,fi}	[kN]	4,9	0,2	9,	3	0	,8	18	8,5	1	,4	5,	0	41	١,7
	R60	F _{Rk,s,fi}	[kN]	3,3	0,2	6,	3	0,6		12	2,0	1	,1	3,	6	26	6,9
	R90	F _{Rk,s,fi}	[kN]	1,8	0,2	3,	2	0	,5	5	,4	0	,9	2,	2	12	2,2
Characteristic	R120	F _{Rk,s,fi}	[kN]	1,0	0,1	1,	7	0,4		2	,4	0	,8	1,	5	5	,4
resistance	R30	M ⁰ _{Rk,s,fi}	[Nm]	4,0	0,2	8,	2	0,8		19	9,4	1	,5	6,	3	65	5,6
	R60	M ⁰ _{Rk,s,fi}	[Nm]	2,7	0,2	5,	5	0	0,7		2,6	1	,2	4,	6	42	2,4
	R90	M ⁰ _{Rk,s,fi}	[Nm]	1,4	0,1	2,	8	0,5		5	,7	0	,9	2,	8	19	9,2
	R120	M ⁰ _{Rk,s,fi}	[Nm]	0,8	0,1	1,5		0,4		2,5		0	,8	1,	9	8	,5
Concrete pull	-out fai	lure															
F Characteristic resistance	R30 R60 R90	N _{Rk,p,fi}	[kN]	1	,3	1,5 3,0		1,5	3,0	2,3	4,0	2,3	4,0	1,9	4,0	3,0	6,3
	R120	N _{Rk,p,fi}	[kN]	1	,0	1,2	2,4	1,2	2,4	1,8	3,2	1,8	3,2	1,5	3,2	2,4	5,0
Edge distance																	
R30	to R12	0 C _{cr,fi}	[mm]							2	h _{ef}						
Anchor spacing	g																
R30	to R12	0 S _{cr,fi}	[mm]							4	h _{ef}						
Concrete pry-	out fail	ure															
R30	to R12	0 k	[-]	1	,5		2,	0				2,	,0			2	,0

Fastener siz	e HUS			6	8	В		1	0		14		
Туре				HR, CR	HR,	CR	HR,	CR	H	ł	н	R	
Nominal anche depth	h _{nom}	[mm]	55	60	80	70	90	70	85	70	110		
	Tension load	Ν	[kN]	1,7	2,4	4,8	3,6	6,3	3,0	4,1	4,8	9,9	
Cracked concrete	Displacement	δ _{ΝΟ}	[mm]	0,4	0,5	0,7	0,3	0,6	0,2	0,3	0,9	1,4	
C20/25 to C50/60		$\delta_{N\infty}$	[mm]	0,5	0,7	1,1	0,6	1,1	0,3	0,7	1,1	1,4	
000,00		$\delta_{\text{N,seis}}$	[mm]	-	-	1,2	-	1,2	-	1,2	-	0,4	
Non-cracked	Tension load	Ν	[kN]	3,1	4,8	6,3	6,3	9,9	4,8	6,8	7,5	16,0	
concrete C20/25 to C50/60	Displacement -	δ _{Ν0}	[mm]	0,8	0,7	1,6	0,3	1,3	0,2	0,3	0,7	1,0	
		$\delta_{N\infty}$	[mm]	0,8	0,7	1,6	0,3	1,3	0,3	0,7	0,7	1,0	

Table C4: Displacements under tension loads

Table C5: Displacements under shear loads

Fastener size HUS				6	8		10				14	
Туре			HR, CR	HR,	CR	HR, CR		н		HR		
Nominal anchorage depth		h _{nom}	[mm]	55	60	80	70	90	70	85	70	110
Cracked and Non-cracked concrete C20/25 to C50/60	Shear load	V	[kN]	7,8	11,0	12,4	13,6	15,7	10,3	10,3	12,9	27,3
	Displacement	δ_{V0}	[mm]	0,4	2,0	2,3	1,1	1,7	1,5	1,5	3,5	3,9
		$\delta_{V\infty}$	[mm]	0,5	2,4	2,9	1,5	2,4	2,3	2,3	3,9	4,3
		$\delta_{V,\text{seis}}$	[mm]	-	-	4,8	-	5,3	-	5,3	-	7,6

Hilti screw anchor HUS

Performances

Displacements under tension and shear loads

Annex C4