

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0339 of 28 June 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Halfen anchor channel HTA

Cast-in anchor channels

Halfen GmbH Abt. Forschung und Entwicklung Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Werk Langenfeld Liebigstraße 14 40764 Langenfeld

30 pages including 3 annexes which form an integral part of this assessment

EAD 330008-02-0601

European Technical Assessment ETA-09/0339

Page 2 of 30 | 28 June 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-09/0339

Page 3 of 30 | 28 June 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Halfen anchor channel HTA is a system consisting of a C-shaped channel profile of steel and stainless steel and at least two metal anchors non-detachably fixed on the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Halfen-channel bolts (hammerhead or hooked) with appropriate hexagon nuts and washers are fixed to the channel. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 to C3 and C6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C4 to C6
Displacements (static and quasi-static loading)	See Annex C3 to C4
Characteristic resistance under fatigue cyclic loads (tension)	See Annex C9 to C11

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	See Annex C7 and C8		

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-02-0601, the applicable European legal act is: I2000/273/EC1.

The system to be applied is: 1

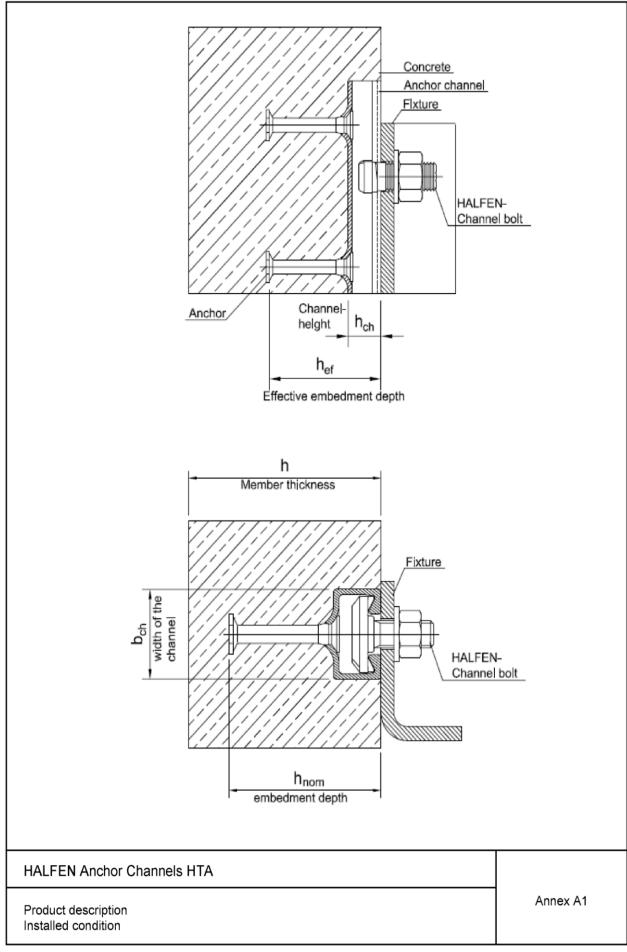
European Technical Assessment ETA-09/0339

Page 4 of 30 | 28 June 2018

English translation prepared by DIBt

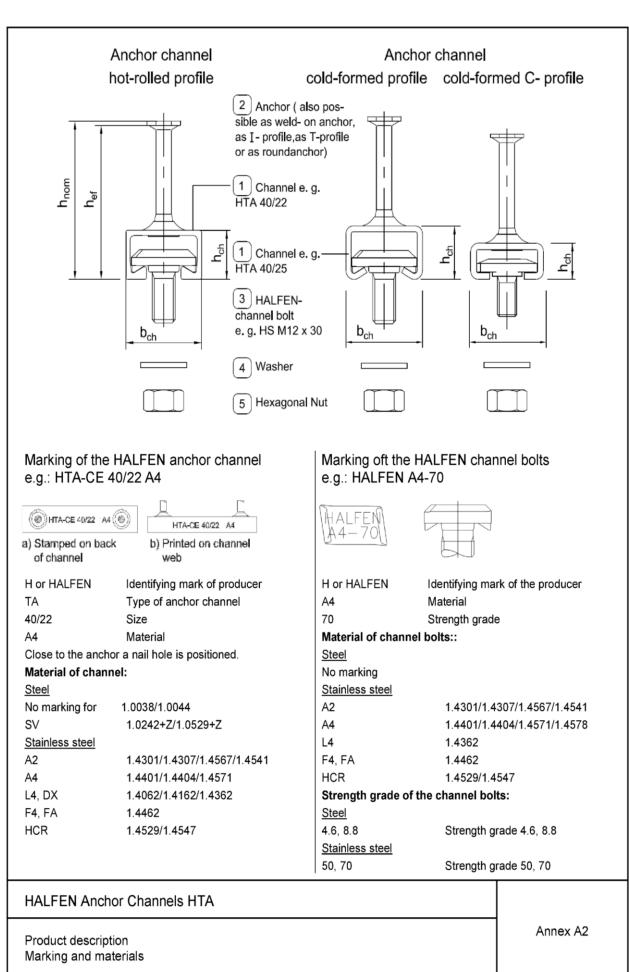
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 28 June 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Müller


English translation prepared by DIBt

Z29729.18

English translation prepared by DIBt

		1	2	3	4	
		Dry internal conditions	Internal conditions with usual humidity	Medium corrosion exposure	High corrosion exposure	
Item no.	Specification	Anchor channels may only be used in structures subject to dry internal conditions	Anchor channels may also be used in structures subject to internal conditions with usual humidity	Anchor channels may also be used in structures subject to external atmospheric exposure (incl. industrial and marine environment) or exposure in permanently damp internal conditions, if no particular aggressive conditions exist.	Anchor channels may also be used in structures subject to exposure inparticular aggressive conditions	
	ď	e.g. accomodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity acc. column 2	e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water	e.g. structures subject to external atmospheric exposure if no particular aggressive conditions exist acc. column 4	e.g. permanent, alternating immersion in seaw ater or the splash zone of seaw ater, chloride atmosphere of indoor sw imming pools or atmosphere w ith chemical pollution (e.g. in desulphurization plants or road tunnels w here de- icing materials are used)	
			Mate	l erials		
①	Channel profile	Steel 1.0038 (A), 1.0044 (A), 1.0976 (D) hot-dip galv. ≥ 55 µm acc. to (N) 1.0242+Z (U), 1.0529+Z (U) hot-dip coated ≥ 15 µm	Steel 1.0038 (A), 1.0044 (A), 1.0976 (D) hot-dip galv. ≥ 55 µm acc. to (N) Stainless Steel 5) 1.4301 (G), 1.4307 (G), 1.4567 (G)	Stainless Steel 1.4401 (G) , 1.4404 (G) , 1.4571 (G) 1.4362 (G) , 1.4062 (F) , 1.4162 (F)	Stainless Steel 1.4462 ²⁾ (G) , 1.4529 (G), 1.4547 (G)	
			1.4541 (G), 1.0213 (B), 1.1122 (E)			
2	Anchor	Steel 1.0038 (A) , 1.0214 (B) , 1.0401 (C) 1.1132 (E) , 1.5525 (I) , 1.5535 (I) 1.5523 (H) hot-dip galv. ≥ 55 μ m acc. to (N)	Steel 1.0038 (A), 1.0214 (B), 1.0401 (C) 1.1132 (E), 1.5525 (I), 1.5535 (I) 1.5523 (H) hot-dip galv.≥55 µm acc. to (N)	Stainless Steel 1.4401 (G) , 1.4404 (G) , 1.4571 (G) 1.4362 (G) , 1.4578 (G)	Stainless Steel 1.4462 ²⁾ (G) , 1.4529 (G), 1.4547 (G)	
			Stainless Steel 5) 1.4301 (G) , 1.4307 (G) , 1.4567 (G) , 1.4541 (G)	1.0038 (A) 4)		
3	HALFEN channel bolts	Steel strength grade 4.6 / 8.8 (J) electroplated ≥5 μm acc. to (O)	Steel strength grade 4.6 / 8.8 (J) hot-dip galv.≥50 µm acc. to {P} 1) Stainless Steel 5) strength grade 50,70 (K) 1.4301 (G), 1.4307 (G), 1.4567 (G), 1.4541 (G)	Stainless Steel strength grade 50,70 (K) 1.4401 (G), 1.4404 (G), 1.4571 (G) 1.4362 (G), 1.4578 (G)	Stainless Steel strength grade 50,70 (K) 1.4462 ²⁾ (G), 1.4529 (G), 1.4547 (G)	
	Washer ³⁾	Steel	Steel	Stainless Steel	Stainless Steel	
4	(R) and (S) production class A, 200 HV	EN 10025:2005 electroplated ≥5 μm acc. to (O)	EN 10025:2005 hot-dip galv. ≥50 μm acc. to {P} 1) Stainless Steel 5) steel grade A2, A3 (K)	steel grade A4, A5 (K)	1.4462 ²⁾ (G), 1.4529 (G), 1.4547 (G)	
⑤	Hexagonal nuts (T)	Steel strength grade 5/8 (L) electroplated ≥5 μm acc. to (O)	Steel strength grade 5/8 (L) hot-dip galv.≥50 µm acc. to {P} ¹⁾ Stainless steel ⁵⁾ strength grade 70, 80 (M) steel grade A2, A3 (M)	Stainless Steel strength grade 70, 80 (M) steel grade A4, A5 (M)	Stainless Steel strength grade 70, 80 (M) 1.4462 ² (G), 1.4529 (G), 1.4547 (G)	
B - C - D -	EN 10025-2:2004 EN 10263-2:2017 EN 10277-2:2008 EN 10149-2:2013	E - EN 10263-3:2017 F - EN 10088-2:2014 G - EN 10088-3:2014 H - EN 10269:2013	I - EN 10263-4:2017 J - EN ISO 898-1:2013 K - EN ISO 3506-1:2009 L - EN ISO 898-2:2012	M-EN ISO 3506-2:2009 N-EN ISO 1461:2009 O-EN ISO 4042:1999 P-EN ISO 10684:2004	R - EN ISO 7089:2000 S - EN ISO 7093-1:2000 T - EN ISO 4032:2012 U - EN 10346:2015	
) 1.4	electroplated w ith 462 not applicabl t included in scop	n special coating ≥ 12 µm le for indoor sw inming pools le of delivery		ficient concrete cover acc. to EN 1992- abination with stainless steel channel p		

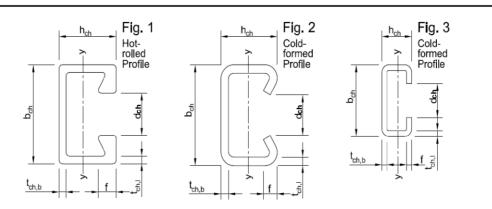


Table A2: Profile dimensions (steel and stainless steel)

	Ð	Dimensions					<u>~</u>		
Anchor- channel	Figure	b _{ch}	h _{ch}	t _{ch,b}	t _{ch,I}	d _{ch}	f	Material	l _y
	ш			[m	m]			Ž	[mm ⁴]
28/15	3	28,00	15,25	2,25	2,25	12,00	2,25	-	4060
38/17	3	38,00	17,50	3,00	3,00	18,00	3,00		8547
40/25	2	40,00	25,00	2,75	2,75	18,00	5,60		20570
49/30	2	50,00	30,00	3,00	3,00	22,00	7,39		41827
54/33	2	54,00	33,00	4,50	4,50	22,00	7,90		72079
72/49	2	72,00	49,00	6,00	6,00	33,00	9,90		293579
40/22 40/22P	1	39,50	23,00	2,60	2,40	18,00	6,00	Steel	20029
50/30 50/30P	1	49,00	30,00	3,20	2,75	22,50	7,85		52896
52/34	1	52,50	33,50	4,10	4,00	22,50	10,50		93262
55/42	1	54,50	42,00	5,00	5,00	26,00	12,90		187464
72/48	1	72,00	48,50	4,50	5,00	33,00	15,50		349721
		Г							
28/15	3	28,00	15,25	2,25	2,25	12,00	2,25		4060
38/17	3	38,00	17,50	3,00	3,00	18,00	3,00		8547
40/25	2	39,50	25,00	2,50	2,50	18,00	5,40		19097
49/30	2	50,00	30,00	3,00	3,00	22,00	7,39		41827
54/33	2	54,00	33,00	4,50	4,50	22,00	7,90	<u> </u>	72079
72/49	2	72,00	49,00	6,00	6,00	33,00	9,90	ste	293579
40/22 40/22P	1	39,50	23,00	2,60	2,40	18,00	6,00	Stainless steel	20029
50/30 50/30P	1	49,00	30,00	3,20	2,75	22,50	7,85	. \$	52896
52/34	1	52,50	33,50	4,10	4,00	22,50	10,50	\neg	93262
55/42	1	54,50	42,00	5,00	5,00	26,00	12,90		187464
72/48	1	72,00	48,50	4,50	5,00	33,00	15,50		349721

HALFEN Anchor Channels HTA Product description Profile dimensions Annex A4

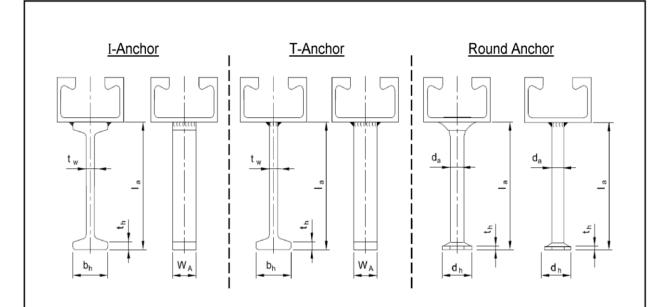


Table A3: Dimensions of anchors (I-Anchor, T-Anchor or Round Anchor)

Amahan		l-An	chor un	d T-And	hor			Roı	ınd An	chor	
Anchor	min l _a	t _w	b _h	t _h	WA	A _h	min l _a	da	d _h	t _h	A _h
channel			[mm]			[mm ²]		[mı	m]		[mm ²]
28/15	62	5	18	3,3	10 - 20	130	32	6	12	1,3	85
38/17	62	5	18	3,3	10 - 20	130	60,4	8	16	1,9	151
40/25	62	5	18	3,3	12 - 24	156	60,9	8	16	1,9	151
40/22	62	5	18	3,3	12 - 24	156	60,9	8	16	1,9	151
40/22P	128	6	17	5	18 - 30	198	70,2	10	20	2,2	236
49/30	69	5	18	3,5	18 - 30	234	69,2	10	20	2,2	236
50/30	69	5	18	3,5	18 - 30	234	69,2	10	20	2,2	236
50/30P	128	6	17	5	25 - 35	275	78,7	12	25	2,7	378
54/33	128	6	17	5	30 - 40	330	126	12	25	2,7	378
52/34	128	6	17	5	30 - 40	330	125,5	12	25	2,7	378
55/42 ¹⁾	140	7,1	20	6	35 - 45	452	136,2	14	28	3,2	462
72/49	140	7,1	20	6	40 - 50	516			-		
72/48	140	7,1	20	6	40 - 50	516			-		

¹⁾ HTA 55/42 in stainless steel only with weld-on anchors.

HALFEN Anchor Channels HTA	
Product description Dimensions of anchors	Annex A5

Deutsches
Institut
für
Bautechnik

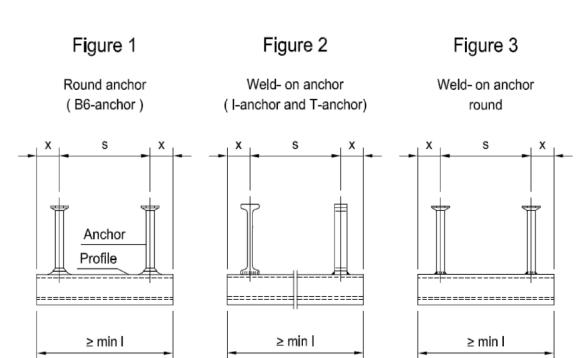


Table A4: Anchor positioning

	Anchors	pacing s	End spa	cing x 1)	Min. Channel length I _{min}		
Anchor			Round	Welded	Round	Welded	
channel	s _{min}	s _{max}	anchor	anchor	anchor	anchor	
			Fig. 1	Fig. 2 and 3	Fig. 1	Fig. 2 and 3	
			[mm]			
28/15	50	200	25	25	100	100	
38/17	30	200	25	20	100	100	
40/25							
40/22			25 ²⁾	25 ²⁾	100	150	
40/22P	100 (50)	250					
49/30	100 (30)	250					
50/30							
50/30P							
52/34	100 (80)	250	35	25 ²⁾	150	150	
54/33	100 (80)	250	35	25	150	150	
55/42	100 (80)	300	35	25 (35)	150	150	
72/48	100 (80)	400		25 (25)		150	
72/49	100 (80)	400	_	25 (35)	-	150	

⁽⁾ valid for round anchor acc. Fig. 1.

²⁾ End spacing may be increased up to 35 mm.

HALFEN Anchor Channels HTA	
Product description Anchor positioning, channel length	Annex A6

electronic copy of the eta by dibt: eta-09/0339

¹⁾ For channels with I = 6070 mm the end spacing x is always 35 mm.

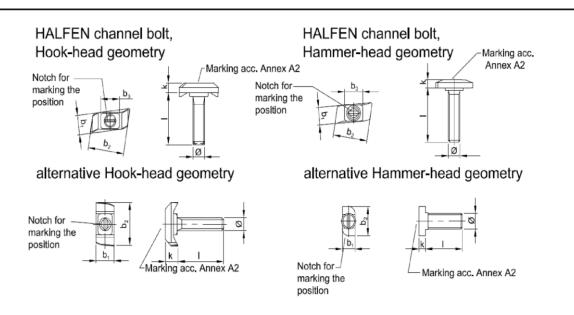


Table A5: Dimensions of HALFEN channel bolts

Head	HS	IS Thread	Channe	el bolts - wing	shape	Channel b	Anchor		
Ĭ		Ø	Width	Length	Thickness	Width	Length	Thickness	channel
			b ₁ [mm]	b ₂ [mm]	k [mm]	b ₁ [mm]	b ₂ [mm]	k [mm]	
		M10	15	30.8	7.2	-	-	-	40/22
	40/22	M12	15	30.8	7.2	-	-	-	40/22P 40/25
		M16	17.4	30.8	8.2 (9.8)	-	-	-	
		M10	16.3	40.2	10	15	41.5	10	49/30 50/30
٦		M12	16.3	40.2	10	15	41.5	10	50/30P
Hook-head	50/30	M16	19.4	40.2	11	20	41.5	11	52/34 54/33
Š		M20	21	39.5	12.5	21	41.5	12	55/42
_		M24	•	-	-	24.5	41	18	55/42
		M20	-	-	-	23	58	14	
	72/48	M24	-	-	-	25	58	16	72/48
		M27	-	-	-	28	58	18	72/49
		M30	-	-	-	31	58	20	
		M6	10.6	21.1	4	10.1	22.7 (22.2)	4	
٦,	28/15	M8	10.6	21.1 (20.7)	4.5	10.1	22.7 (22.2)	4	28/15
Hammer-head		M10	10.9	20.2	5	10.1	22.7 (22.2)	5 (4)	
mer		M12	10.8	20.1	6.5	10.1	22.7 (22.2)	5.5	
Ham		M10	13.6-14.1	29	6	13 (12)	30.5	6	
	38/17	M12	13.6-14.1	29	6	13 (12)	30.5	7 (6)	38/17
		M16	16	29	8.5	16	30.5	7	

⁽⁾ Value applies for strength grade 8.8

HALFEN Anchor Channels HTA

Product description HALFEN channel bolts, dimensions

Annex A7

electronic copy of the eta by dibt: eta-09/0339

Table A6: Strength grade

	Steel 1)		Stainless steel 1)		
Strength grade	4.6	8.8	50	70	
f _{uk} [N/mm²]	400	800	500	700	
f _{yk} [N/mm²]	240	640	210	450	
Finish	electroplated, hot-dip galv.			-	

¹⁾ Materials according Annex A2 and Annex A3, Tab. A1

HALFEN Anchor Channels HTA

Product description
HALFEN channel bolts, strength grade

Annex A8

Specifications for intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static loads in tension and shear perpendicular to the longitudinal axis of the channel.
- Fatigue cyclic loads.
- Fire exposure for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C90/105 according to EN 206-1:2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (e.g. accommodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity)
 (anchor channels and channel bolts according to Annex A3, Table A1, column 1 - 4)
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A3, Table A1, column 2 - 4)
- Structures subject to external atmospheric exposure (incl. industrial and marine environment) or exposure to permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater etc.) exist.
 (anchor channels and channel bolts according to Annex A3, Table A1, column 3 - 4)
- Structures subject to exposure in particular aggressive conditions (e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used))
 - (anchor channels and channel bolts according to Annex A3, Table A1, column 4)

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels", March 2018 or Fpr EN 1992-4:2016.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", November 2015.
- The characteristic resistances are calculated with the minimum effective embedment depth.

HALFEN Anchor Channels HTA	
Intended use Specifications	Annex B1

English translation prepared by DIBt

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A5, Table A5 are generated including end spacing and minimum channel length and only to be used in dry internal conditions (Annex A3, Table A1, column 1). For anchor channels made of stainless steel there are no restrictions regarding corrosion resistance when using cut channel pieces, if cutting is done professionally and contamination of cutting edges with corroding material is avoided.
- Installation in accordance with the installation instruction given in Annexes B6 and B7.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no
 movement of the anchor channels will occur during the time of laying the reinforcement and of
 placing and compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The anchor channels are protected from penetration of concrete into the internal space of the channel profiles.
- Washer may be chosen according to Annex A3 and provided separately by the user.
- Orientating the channel bolt (groove mark according to Annex B7) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.

HALFEN Anchor Channels HTA	
Intended use Specifications	Annex B2

Z29729.18 8.06.01-128/14

electronic copy of the eta by dibt: eta-09/0339

English translation prepared by DIBt

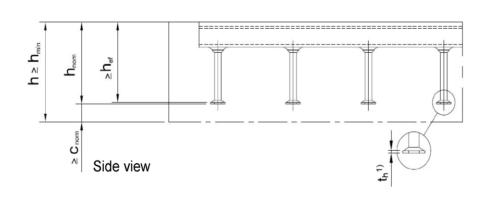


Table B1-1: Minim. anchorage depth, edge distance and member thickness

Anchor channel			28/15	38/17	40/25	49/30	54/33	72/49			
Min. anchorage depth		h _{ef,min}	45	76	79	94	155	179			
Min. edge distance		C _{min}	40	50	50	75	100	150			
Tot. heigth round anchor	[mm]	h	47,3	77,9	85,9	99,2	159	-			
Tot. heigth I- &T-anchor	프	n _{nom,min}	77,3	79,5	87	99	161	189			
Min. manhar thiokness		-	actual h _{nom} + c _{nom} 3)								
Min. member thickness		h _{min}	55	90	90	105	170	195			

Table B1-2: Minim. anchorage depth, edge distance and member thickness

Anchor channel			40/22	40/22P	50/30	50/30P	52/34	55/42	72/48
Min. anchorage depth		h _{ef,min}	79	91	94	106	155	175	179
Min. edge distance		C _{min}	50	50	75	75	100	100	150
Tot. heigth round anchor	[mm]	h	83,9	93,2	99,2	108,7	159	178,2	-
Tot. heigth I- &T-anchor	Œ	n _{nom,min}	85	151	99	158	161,5	182	188,5
Min. momber thickness		h			actu	al h _{nom} + c	nom 3)		
Min. member thickness		h _{min}	90	105	105	120	170	190	195

HALFEN Anchor Channels HTA

Intended use

Installation parameters of anchor channels

Annex B3

 $^{^{1)}}$ t_{h} = Anchor head thickness $^{2)}$ $s_{min},\,s_{max}$ acc. Annex A6, Table A4 $^{3)}$ c_{nom} acc. EN 1992-1-1:2004 + AC:2010

Table B2: Minimum spacing and installation torque of HALFEN channel bolts

		Min		Instal	lation torque	T _{inst} 4)	
	IIAI EEN	Min.	General 2)		Steel - stee	el contact 3)	
Anchor channel	HALFEN Channel bolts Ø	spacing s _{min,cbo} of the channel bolts	Steel 4.6; 8.8 Stainless steel 50; 70 1)	Steel 4.6	Stainless steel 50 1)	Steel 8.8	Stainless Steel 70 ¹⁾
	[mm]	[mm]			[Nm]		
	6	30	3	3	3	-	-
20/45	8	40	8	8	8	20	15
28/15	10	50	13	15	15	40	30
	12	60	15	25	25	70	50
	10	50	15	15	15	40	30
38/17	12	60	25	25	25	70	50
	16	80	40	65	60	180	130
40/25	10	50	15	15	15	40	30
40/22	12	60	25	25	25	70	50
40/22P	16	80	45	65	60	180	130
40/00	10	50	15	15	15	40	30
49/30 50/30	12	60	25	25	25	70	50
50/30P	16	80	60	65	60	180	130
30/307	20	100	75	130	120	360	250
	10	50	15	15	15	40	30
52/34	12	60	25	25	25	70	50
54/33	16	80	60	65	60	180	130
	20	100	120	130	120	360	250
	10	50	15	15	15	40	30
	12	60	25	25	25	70	50
55/42	16	80	60	65	60	180	130
	20	100	120	130	120	360	250
	24	120	200	230	200	620	440
	20	100	120	130	120	360	250
72/48	24	120	200	230	200	620	440
72/49	27	135	300	340	300	900	650
	30	150	380	460	400	1200	850

¹⁾ Materials according to Annex A2 and Annex A3, Tab. A1

HALFEN Anchor Channels HTA Intended use Installation parameters Annex B4

²⁾ Acc. to Annex B5, Fig.1

³⁾ Acc. to Annex B5, Fig. 2

 $^{^{4)}}$ T_{inst} must not be exceeded

General

The fixture is in contact with the channel profile and the concrete surface.

The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Steel to steel contact

The fixture is fastened to the anchor channel by suitable steel parts (e.g. washer). The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Fig. 1

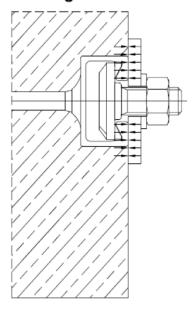
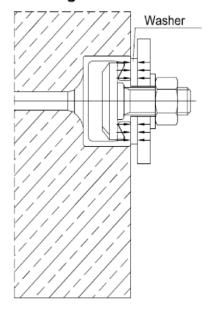
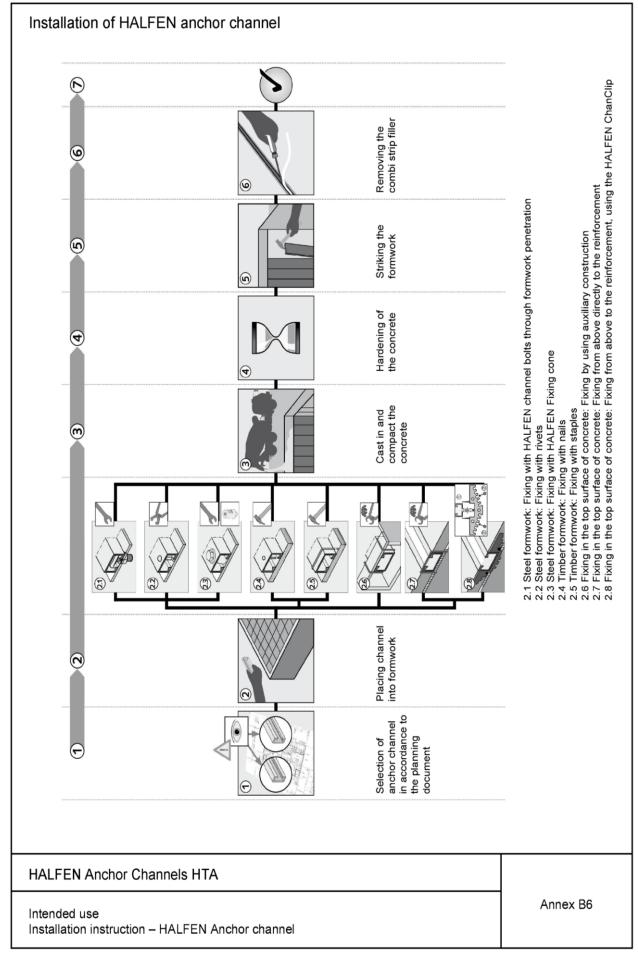



Fig. 2


HALFEN Anchor Channels HTA

Intended use Position of the fixture

Annex B5

electronic copy of the eta by dibt: eta-09/0339

Table	B3:	Installation	torque
I able	DJ.	IIIStaliation	william

Pos. of fixture acc.	Materia strengt	th	Anchor channel	T _{inst} [Nm] ¹⁾										
Annex B5	grade	•		M6	M8	M10	M12	M16	M20	M24	M27	M30		
			28/15	3	8	13	15	1.5	1=1	-	-	-		
	Steel 4.6 / 8.8 and Stainless steel		38/17	-	-	15	25	40	-	-	-	-		
		8.8	40/22, 40/22P, 40/25	-	-	15	25	45	-	-	-	-		
General Stainless steel	ctool	49/30, 50/30, 50/30P	-		15	25	60	75	-	-	-			
	Stainless stee 50 / 70		54/33, 53/34	-	-	15	25	60	120	-	-	-		
			55/42	-	-	15	25	60	120	200	-	-		
			72/49, 72/48	-	-	-	-	-	120	200	300	380		
	Ctool	4.6		3	8	15	25	65	130	230	340	460		
Steel to	Steel to Steel 8.8	8.8	All profiles	-	20	40	70	180	360	620	900	1200		
steel	50	All profiles	3	8	15	25	60	120	200	300	400			
	Steel	70		-	15	30	50	130	250	440	650	850		

¹⁾ T_{inst} must not be exceeded

HALFEN Anchor Channels HTA

Intended use Installation instruction – HALFEN channel bolts

Annex B7

Table C1: Characteristic Resistances under tension load – steel failure anchor channel

Anchor cha	annel		28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Steel failure, anchor	_										
Characteristic resistance	N _{Rk,s,a}	[kN]	9	18	20	31	31	54	56	80	102
Partial safety factor	¥Ms	1)					1,8				
Steel failure, connec	Steel failure, connection channel/a										
Characteristic resistance	N _{Rk,s,c}	[kN]	9	18	20	29	31	39	55	80	100
Partial safety factor	YMs,	1) ca					1,8				
Steel failure, local fle	xure of t	he char	nnel lip	S							
Spacing of channel bolts for N _{Rk,s,l}	S _{I,N}	[mm]	56	76	80 79	79	100 98	98	107 105	109	144
Characteristic resistance	N ⁰ _{Rk,s,l}	[kN]	9	18	20 38	38	31 43	43	55 72	110	100 120
Partial safety factor	Хмs	1) ,I				1	1,8				

¹⁾ In absence of other national regulations

Table C2: Characteristic flexural resistance of channel

Anchor cha	nnel		28/15	38/17	40/25	40/22	40/22P	49/30	50/30	50/30P	54/33	52/34	55/42	72/49	72/48
Characteristic flexure resistance of channel	MRk,s,flex	Steel / Stainless Steel	317	580	1071	1389	1389	1673	2803	2803	2984	3373	6447	8617	8593
Partial safety factor	¥Ms,	1) flex							1,15						

¹⁾ In absence of other national regulations

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under tension load – steel failure anchor channel	Annex C1

Table C3: Char. resistances under tension load – steel failure of HALFEN channel bolts	resistano	es und	er tensic	on load	- steel	failure o	f HALFE	≣N char	nnel bolt	Ø	
HALFEN Channel bolts ∅	bolts Ø			M6	M8	M10	M12 M16	M16	M20	M24	
Steel failure											
			4.6	8,0	14,6	23,2	33,7	62,8	8,0 14,6 23,2 33,7 62,8 98,0 141,2	141,2	,
Charakt.	2		8.8	16,1	29,3	46,4	67,4	125,6	16,1 29,3 46,4 67,4 125,6 196,0 282,4	282,4	()
resistance	Z R K,s	[NX]	50 1)	10,1	18,3	29,0	42,2	78,5	10,1 18,3 29,0 42,2 78,5 122,5 176,5	176,5	``

224,4

183,6

M30

M27

392,7

321,3

247,1

171,5

109,

59,0

25,6

14,1

20

2,00

1,50

2,86

1,87

20

280,

229,5

367,

J Annex A2 and	Junea leacited
1) Materials according Annex A2	2) In special and the second of second

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under tension load – steel failure channel bolts	Annex C2

Partial safety factor

Table C4: Characteristic resistances under tension load – concrete failure

	hor channel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Pull-out failure)											
Characteristic	Round			7,6	13,6	13,6	21,2	21,2	34,0	34,0	41,6	_
resistance in	anchors	N _{Rk,p}	[kN]	,,0	10,0	10,0	21,2	21,2	01,0	0 1,0	41,0	
cr. concrete C12/15	I-anchors	, τικ,ρ	ì	11,7	11,7	14,0	17,8	21,0	24,7	29,7	40,6	46,4
Characteristic	Round			10,6	19,0	19,0	29,7	29,7	47,6	47,6	58,2	_
resistance in	anchors	N _{Rk,p}	[kN]	10,0	10,0	10,0	20,7	20,7	77,0	77,0	55,2	
uncr. concrete C12/15	I-anchors	, , LVV, h	<u></u>	16,4	16,4	19,6	24,9	29,4	34,6	41,6	56,8	65,0
	C20/25							1,67				
	C25/30]						2,08				
	C30/37							2,50				
Increasing	C35/45							2,92				
factor for C40/50 C45/55	C40/50	Ψ_{c}						3,33				
							3,75					
	C50/60							4,17				
	C55/67			4,58								
	≥C60/75			5,00								
Partial safety fa		γ _{Mp} =γ _N	1) //c					1,5				
Concrete cone	failure						1		1			
Product factor k	K 1	k _{cr,N}		7,2	7,8	7,9	8,0	8,1	8,2	8,7	8,9	8,9
	•	k _{ucr,1}	\Box	10,3	11,2	11,2	11,5	11,5	11,7	12,4	12,6	12,7
Charact.edge s	pacing	C _{cr,N}	[mm]	111	171	176	195	199	216	260	269	270
Charact.spacing	g	S _{cr,N}						2,0 c _{cr,N}	I			
Partial safety fa		Y _{Mc}	1)					1,5				
Splitting failure		т——		Г	Г	т	1		ı	1	ı	
Charact.edge s	pacing	C _{cr,sp}	[mm]	135	228	237	273	282	318	465	525	537
Charact.spacing	g	S _{cr,sp}	ᆵ					2,0 c _{cr,s}	p			
Partial safety fa	ctor	¥Msp	1)					1,5				
1)												

¹⁾ In absence of other national regulations

Table C5: Displacements under tension load

Anchor channel		28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48	
Tension load	N _{Ek}	[kN]	3,6	7,1	7,9	11,5	12,3	15,5	21,8	31,7	39,7
Short time displacement	δ_{N0}	[mm]	0,3	0,3	0,4	0,4	0,4	0,5	0,5	0,5	0,5
Long time displacement	δ _{N∞}	[mm]	0,6	0,6	0,8	0,8	0,8	1,0	1,0	1,0	1,0

HALFEN Anchor Channels HTA

Performances

Characteristic resistances under tension load – concrete failure and displacements

Annex C3

Anchor ch	annel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48		
Steel failur	e, anchor													
Characteris	tic	\/	[kN]	9	18	20	35	31	59	55	110	100		
resistance		$V_{Rk,s,a}$		9	10	35	35	52	59	78	110	146		
Partial safety factor $\gamma_{Ms}^{(1)}$					1,8									
Steel failur	e, connectio	n chani	nel / an	chor										
Characteris	tic	$V_{Rk,s,c}$	[kN]	9	18	20	35	31	59	55	110	100		
resistance		V Rk,s,c	' '		10	35	33	52	39	78	110	146		
Partial safe	ty factor	Yms,	1) ca					1,8						
Steel failur	e, local flexu	ire of cl	nannel	lips										
Spacing of		S _{I.V}	[mm]	56	76	80	79	100	98	107	109	144		
bolts for V _R		3 1,√	[]	- 00	, ,	79	, ,	98		105	100			
Characteris	tic	$V^0_{Rk,s,l}$	[kN]	9	18	20	35	31	59	55	110	100		
resistance		V RK,S,I			10	35		52		78		146		
Partial safe	ty factor t	٧мs	1) ,l					1,8						
Pry-out fai	lure		-											
Product fac	tor		k ₈ ²⁾	1,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0		
Partial safety factor $y_{Mc}^{1)}$				1,5										
Concrete e	dge failure													
Product-	cracked concrete		$k_{cr,V}$	4,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5		
	uncracked													

¹⁾ In absence of other national regulations

Partial safety factor

concrete

10,5

10,5

10,5

10,5

1,5

10,5

10,5

10,5

10,5

6,3

 $k_{\text{ucr},V}$

YMc 1)

Table C7: Displacements under shear load

Anchor channel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Shear load	V _{Ek}	[kN]	3,6	7,1	7,9 13,9	13,9	12,3 20,6	23,4	21,8 31,0	43,7	39,7 57,9
Short time displacements	δ _{V0}	[mm]	0,6	0,6	0,6	0,6	0,6	0,6	1,2	1,2	1,2
Long time displacements	δ _{√∞}	[mm]	0,9	0,9	0,9	0,9	0,9	0,9	1,8	1,8	1,8

HALFEN Anchor Channels HTA

Performances

Character. resistances under shear load – steel failure anchor channel, concrete failure, displacements

Annex C4

²⁾ Without supplementary reinforcement. In case of supplementary reinforcement the factor k₈ should be multiplied with 0,75.

HALFEN Channel bolts ∅ M6 M8	Stahlversagen	4.6 4,8 8,8		resistance ^{VRk,s} [KIN] 50 ¹⁾ 6,0 11,0	70 ¹⁾ 8,4 15,4	4.6 6,3 15,0	stic	resistance M RK,s [NM] 50 1) 7,6 18,7	70 ¹⁾ 10,7 26,2	4.6	Partial safety 2) 8.8	factor YMs 50 1)	70 1)	³⁾ For HTA 28/15 M ⁰ _{Rks} is limited to 84 Nm. ³⁾ In absence of other national regulations ⁵⁾ In absence of other national regulations ⁶⁾ For HTA 38/17 M ⁰ _{Rks} is limited to 509 Nm.
M10		13,9	23,2	17,4	24,4	29,9	59,8	37,4	52,3					RKs is limited to RKs is limited to RKs is limited to
M12 M16		20,2 37,7	33,7 62,8	25,3 47,1	35,4 65,9	52,4 133,2	104,8 ³⁾ 266,4 ⁴⁾	65,5 166,5	91,7 3) 233,14)	1,67	1,25	2,38	1,56	84 Nm. 231 Nm. 509 Nm.
6 M20		7 58,8	8 98,0	1 73,5	9 102,9	,2 259,6	4 ⁴⁾ 519,3 ⁵⁾	,5 324,5	1 ⁴⁾ 454,4		5	8	9	
M24		84,7	141,2	105,9	148,3	449,0	0'868	561,3	785,8					
M27		110,2	183,6	137,7	192,8	8,599	1331,5	832,2	1165,1					
M30		134,6	224,4	168,3	235,6	9'668	1799,2	1124,5	1574,3					

Characteristic resistances under shear load – steel failure channel bolts

electronic copy of the eta by dibt: eta-09/0339

Deutsches
Institut
für
Bautechnik

Table C9: Characteristic resistances under combined tension and shear load

Anchor channe	I	28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Steel failure: Local failure by flexure of channel lips and failure by flexure of channel										
Product factor	k ₁₃	2,0	2,0	2,0	2,0	2,0 1,0 1)	1,0 ¹⁾	2,0 1,0 1)	2,0	2,0 1,0 1)
Steel failure: Fa	Steel failure: Failure of anchor and connection between anchor and channel									
Product factor	k ₁₄	2,0	2,0	2,0 1,0 ²⁾	1,0 ²⁾	2,0 1,0 ²⁾	1,0 ²⁾	2,0 1,0 ²⁾	1,0 ²⁾	2,0 1,0 ²⁾

 $^{^{1)}}$ k_{13} can be taken as 2.0 if $V_{Rd,s,I}$ is limited to $N_{Rd,s,I}\,.$

HALFEN Anchor Channels HTA

Performances
Characteristic resistances under combined tension and shear load

Annex C6

8.06.01-128/14

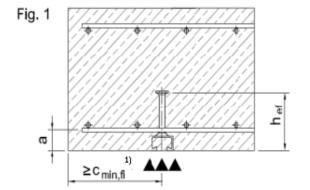
Z29729.18

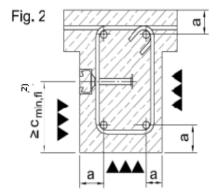
 $^{^{2)}}$ k_{14} can be taken as 2,0 if max (V_{Rd,s,a} ; V_{Rd,s,c}) are limited to the minimum of $N_{Rd,s,a}$ and $N_{Rd,s,c}$.

Table C10: Characteristic resistances under tension and shear load under fire exposure – steel failure

Anchor chan	nel				28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48					
Steel failure:	Anche	or, Con	nection	chani	nel / an	chor, L	ocal fle	exure of	channe	el lips, cl	nannel	bolts						
		M8			1,0	-	-	-	-	-	-	-	-					
		M10			1,0	1,7	1,9	1,9	1,9	1,9	1,9	-	-					
		M12			1,9	1,7	1,9 2,5	2,5	2,5	2,5	2,5	-	1					
	R30	M16			,	3,2	3,6 6,0	6,0	4,0 6,0	6,0	6,0	6,3	6,3					
		M20			-	-	-	-	4,0 9,5	9,5	8,9 10,1	10,3	10,3					
		M24		11 8 12	-	-	-	-	-	-	-	14,8	14,8					
		M8			0,8	-	-	-	-	-	-	-	-					
		M10			0,8	1,5	1,5	1,5	1,5	1,5	1,5	-	-					
	R60	M12									1,3	1,5	1,5 2,5	2,5	2,5	2,5	2,5	-
		M16			-	2,4	3,6 4,5	4,5	3,5 4,5	4,5	4,5	4,8	4,8					
		M20			-	-	-	-	3,5 7,1	7,1	6,5 7,5	7,6	7,6					
Characteristic		M24	$N_{Rk,s,fi}$		-	-	-	-	-	-	-	11,1	11,1					
resistances		M8	= [KN] V _{Rk,s,fi}	0,6	-	-	-	-	-	-	-	-						
		M10		5,11	0,6	1,0	1,1	1,1	1,1	1,1	1,1	-	-					
		M12			0,7	1,0	1,1 1,6	1,6	1,6	1,6	1,6	-	1					
	R90	M16			-	1,4	2,0 2,9	2,9	2,5 3,0	3,0	3,0	3,3	3,3					
		M20			-	-	-	-	2,5 4,8	4,8	4,2 4,8	4,9	4,9					
		M24			-	-	-	-	-	-	-	7,3	7,3					
		M8			0,5	-	-	-	-	-	-	-	-					
		M10			0,5	0,8	0,8	0,8	0,8	0,8	0,8	-	-					
F		M12			0,5	0,8	0,8 1,1	1,1	1,2	1,2	1,2	-	-					
	R120	M16			-	1,0	1,2 1,6	1,6	2,1 2,3	2,3	2,3	2,6	2,6					
		M20			-	-	-	-	2,1	3,6	3,0 3,5	3,6	3,6					
		M24			-	-	-	-	-	-	-	5,4	5,4					
Partial safe	Partial safety factor								1,0									

¹⁾ In absence of other national regulations


HALFEN Anchor Channels HTA	
Performances Characteristic resistances under tension and shear load under fire exposure	Annex C7


Deutsches Institut für **Bautechnik**

English translation prepared by DIBt

Table C11: Characteristic resistances under tension and shear load under fire exposure - concrete cone failure and min. axis distance of reinforcement

Anchor chan	nel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48		
Concrete con	e failure													
				2·h _{ef} ≥ c _{cr,N}										
				2·h _{ef} ¹⁾ ; max(2·h _{ef} ; 300 mm) ²⁾										
Char. spacing s _{cr,N,fi} [mm]				4·h _{ef} ≥ s _{cr,N}										
_ ' '		S _{min,fi}	' '	Acc. Table A4, Annex A6										
Min. axis dist	ance of I	einforce	ment 3)											
	R30	а		35	35	35	35	35	35	50	50	50		
Min. axis	R60	а	[mm]	35	35	35	35	35	35	50	50	50		
distance	R90	а	[mm]	45	45	45	45	45	45	50	50	50		
	R120	а		60	60	60	60	60	60	65	70	70		

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under tension and shear load under fire exposure	Annex C8

¹⁾ Fire exposure from one side only.
2) Fire exposure from more than one side.

³⁾ The reinforced concrete has to be designed acc. to EN 1992. The fire resistance class of the concrete member is not part of this ETA.

Table C12: Combinations of anchor channels and channel bolts under fatigue tension load

	Anchor c	hannel			Chai	nnel bolts	
Profile	Anchor	d₁ [mm]	Material	Channel bolt	Thread Ø [mm]	Grade	Material
					M12	8.8	
40/22	B6	8		HS 40/22	M16	4.6	
					IVITO	8.8	
				HS 40/22	M12	8.8	
40/22P	B6	10			M16	4.6	Steel
			Steel		IVITO	8.8	electroplated,
50/30	B6	10	hot-dip galv.	HS 50/30	M16	4.6	hot-dip galv.
30/30	ВО	10		110 30/30	M20	8.8	not dip gair.
50/30P	B6	12		HS 50/30	M16	4.6	
30/301	ВО	12		110 00/00	M20	8.8	
52/34	B6	12		HS 50/30	M16	8.8	
52/54	_ B0	12		110 30/30	M20	0.0	

Design Method I acc. EOTA TR 050, November 2015

Table C13: Characteristic resistances under fatigue tension load after n load cycles without static preload ($N_{Ed} = 0$) – Steel failure

Anchor channel		40/22	40/22P	50/30	52/34
Anchor channel		40/22	40/22P	50/30P	52/34
	Load cycles		ΔN_{R}	k,s;0;n	
	n		[k	N]	
	≤ 10 ⁴	11,7	12,8	16,5	22,2
Characteristic	≤ 10 ⁵	6,7	7,7	9,8	13,2
resistances under fatigue tension load	≤ 10 ⁶	3,8	4,7	5,8	7,9
without static preload	≤ 2·10 ⁶	3,2	4,0	4,9	6,7
	≤ 5·10 ⁶	2,6			
	≤ 10 ⁸	1,2	3,3	4,0	5,5
	> 108	-			

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under fatigue tension load – Design method I	Annex C9

Table C14: Characteristic resistances under fatigue tension load after n load cycles without static preload ($N_{Ed} = 0$) – Concrete failure

Pull-out failure and Concrete cone failure:

Reduction factor for pull-out and concrete cone failure without static preload ($N_{Ed} = 0$)

	Load cycles	$\eta_{c,fat}$
	n	[-]
	≤ 10 ⁴	0,736
Reduction factor for	≤ 10 ⁵	0,665
	≤ 10 ⁶	0,600
$\Delta N_{Rk,c;0;n} = \eta_{c,fat} N_{Rk,c}^{1}$	≤ 2·10 ⁶	0,582
$\Delta N_{Rk,p;0;n} = \eta_{c,fat} \cdot N_{Rk,p}^{2}$	≤ 5·10 ⁶	0,559
	≤ 6·10 ⁷	0.500
	> 6·10 ⁷	0,500

¹⁾ N_{Rk,c} static resistance according to Annex C3 and EOTA TR 047, March 2018 or Fpr EN 1992-4:2016

N_{Rk,p} static resistance according to Annex C3

electronic copy of the eta by dibt: eta-09/0339

HALFEN Anchor Channels HTA		
Performances Characteristic resistances under fatigue tension load – Design method I	Annex C10	

Design method II acc. EOTA TR 050, November 2015

Table C15: Characteristic limit resistances under fatigue tension load (n $\rightarrow \infty$) Steel failure

Anchor channel	40/22P	50/30	52/34
Alichor Channel		50/30P	
Characteristic resistances under fatigue tension load	∆ N _{Rk,s;0;∞}		
	[kN]		
	3,3	4,0	5,5

Table C16: Characteristic limit resistances under fatigue tension load (n $\rightarrow \infty$) Concrete cone and pull-out failure

Anchor Channel	40/22P	50/30 50/30D	52/34
Characteristic resistances under fatigue tension load	50/30P		
$\Delta \mathbf{N}_{Rk,c;0;\infty} = \eta_{c,fat} \cdot \mathbf{N}_{Rk,c}^{1)}$ $\Delta \mathbf{N}_{Rk,p;0;\infty} = \eta_{c,fat} \cdot \mathbf{N}_{Rk,p}^{2)}$	0,5		

¹⁾ N_{Rk,c} static resistance according Annex C3 and EOTA TR 047, March 2018 or Fpr EN 1992-4:2016

In absence of other national regulations the following safety factors $\gamma_{M,fat}$ are recommended for design method I and II (Tables C12 to C15) according to EOTA TR 050, November 2015.

$$\begin{split} & \gamma_{\text{Ms,fat}} = 1,35 \text{ (steel)} \\ & \gamma_{\text{Mc,fat}} = \gamma_{\text{Mp,fat}} = 1,5 \text{ (concrete)} \end{split}$$

HALFEN Anchor Channels HTA

Performances
Characteristic resistances under fatigue tension load – Design method II

²⁾ N_{Rk,p} static resistance according Annex C3