

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0021 of 23 April 2018

English translation prepared by DIBt - Original version in German language

General Part

Deutsches Institut für Bautechnik
Deutsches Institut für Dautechnik
CORONA, HWH, MH, DC and LP
Fastening screws for metal members and sheeting
RED HORSE dissing as Niels Bohrs Vej 25 8660 Skanderborg DÄNEMARK
RED HORSE / dissing as Niels Bohr Vej 25-27 8660 Skanderborg Denmark
GEXIN, No. 131, Yusing Road, Gushan District, Kaohsiung 804, Taiwan R.O.C.
40 pages including 35 annexes which form an integral part of this assessment
EAD 330046-01-0602

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-10/0021 English translation prepared by DIBt

Page 2 of 40 | 23 April 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-10/0021 English translation prepared by DIBt

Page 3 of 40 | 23 April 2018

Specific part

1 Technical description of the product

The fastening screws are self-drilling or self-tapping screws made of austenitic stainless steel or carbon steel with anticorrosion coating (listed in Table 1). The fastening screws are normally completed with sealing washers consisting of metal washer and EPDM-seal.

Table 1 – Fastening screws for metal members and sheeting

		1
Annex	Fastening screw	Description
Annex 4	CORONA 4,8L#1 TX20 EPDM-9,5B	with undercut, mushroom head with Torx T-20 drive and EPDM seal ring
Annex 5	CORONA 4,8L#2+ TX20 EPDM-9,5B	with undercut, mushroom head with Torx T-20 drive and EPDM seal ring
Annex 6* ⁾	CORONA 4,8L#1 TX20 EPDM-9,5B for timber substructures	with undercut, mushroom head with Torx T-20 drive and EPDM seal ring
Annex 7	HWH 4,8L#1 HX8 ALU-14B	with hexagon head and seal washer $\emptyset \ge 14 \text{ mm}$
Annex 8	HWH 4,8L#2+ HX8 ALU-14B	with hexagon head and seal washer $\emptyset \ge 14 \text{ mm}$
Annex 9*)	HWH 4,8L#1 HX8 ALU-14B for timber substructures	with hexagon head and seal washer $\emptyset \ge 14 \text{ mm}$
Annex 10	LP 4,8L#1 TX20 M-ALU-14B	with countersunk head with Torx T-20 drive and seal washer $\emptyset \ge 14 \text{ mm}$
Annex 11	LP 4,8L#2+ TX20 M-ALU-14B	with countersunk head with Torx T-20 drive and seal washer $\emptyset \ge 14 \text{ mm}$
Annex 12*)	LP 4,8L#1 TX20 M-ALU-14B for timber substructures	with countersunk head with Torx T-20 drive and seal washer $\emptyset \ge 14 \text{ mm}$
Annex 13	HWH RXB 4,8xL#1 HX8 RX-14G	with hexagon head and seal washer $\varnothing \ge 14 \text{ mm}$
Annex 14	HWH 4,8xL#1 HX8	with hexagon head
Annex 15*)	HWH RXB 4,8xL#1 HX8 RX-14G for timber substructures	with hexagon head and seal washer $\emptyset \ge 14 \text{ mm}$
Annex 16	HWH RXB 5,5xL#1 HX8 RX-16G	with hexagon head and seal washer $\emptyset \ge 16 \text{ mm}$
Annex 17	HWH RXB 5,5xL#2+ HX8 RX-16G	with hexagon head and seal washer $\emptyset \ge 16 \text{ mm}$
Annex 18	HWH 5,5xL#2+ HX8 ALU-16B	with hexagon head and seal washer $\emptyset \ge 16 \text{ mm}$
Annex 19	HWH RXB 5,5xL#2P+ HX8 RX-16G	with hexagon head and seal washer $\varnothing \ge 16 \text{ mm}$
Annex 20	HWH RXB 5,5xL#2P+ HX8 RX-16G	with hexagon head and seal washer $\emptyset \ge 16 \text{ mm}$

*) these fastening screws are applicable for fastening to timber substructures

European Technical Assessment

ETA-10/0021

Page 4 of 40 | 23 April 2018

English translation prepared by DIBt

Table 1 - continued

Annex	Fastening screw	Description
Annex 21	HWH 5,5xL#2P+ HX8 ALU-16B	with hexagon head and seal washer $\varnothing \ge 16 \text{ mm}$
Annex 22	HWH 5,5xL#2P+ HX8 ALU-16B	with hexagon head and seal washer $\varnothing \ge 16 \text{ mm}$
Annex 23	HWH RXB 5,5xL#5+ HX8 RX-16G	with hexagon head and seal washer $\varnothing \ge 16 \text{ mm}$
Annex 24	HWH 5,5xL#5+ HX8 ALU-16B	with hexagon head and seal washer $\emptyset \ge 16 \text{ mm}$
Annex 25	MH RXB 4,8xL#1 TX20	with mushroom head with Torx drive system
Annex 26	DC 4,8xL#1 TX20	with mushroom head with Torx drive system
Annex 27	CORONA RXB 4,8xL#1 TX20 EPDM-9,5B	with undercut, mushroom head with Torx drive system and EPDM seal ring
Annex 28* ⁾	CORONA RXB 4,8xL#1 TX20 EPDM-9,5B for timber substructures	with undercut, mushroom head with Torx drive system and EPDM seal ring
Annex 29	CORONA RXB 5,5xL#2+ TX20 EPDM-9,5B	with undercut, mushroom head with Torx drive system and EPDM seal ring
Annex 30	CORONA 5,5xL#2+ TX20 EPDM-9,5B	with undercut, mushroom head with Torx drive system and EPDM seal ring
Annex 31	CORONA RXB 5,5xL#2P+ TX20 EPDM-9,5B	with undercut, mushroom head with Torx drive system and EPDM seal ring
Annex 32	CORONA RXB 5,5xL#2P+ TX20 EPDM-9,5B	with undercut, mushroom head with Torx drive system and EPDM seal ring
Annex 33	CORONA RXB 5,5xL#5 TX20 EPDM-9,5B	with undercut, mushroom head with Torx drive system and EPDM seal ring
Annex 34*)	LP 4,8/5,5L#1 TX20 M-ALU-14B for timber substructures	with countersunk head with Torx drive system and seal washer $\varnothing \ge 14$ mm
Annex 35	HWH RXB 4,8xL#2+ HX8 RX-14G	with hexagon head and seal washer $\emptyset \ge 14 \text{ mm}$

*) these fastening screws are applicable for fastening to timber substructures

Specification of the intended use in accordance with the applicable European Assessment Document 330046-01-0602

The fastening screws are intended to be used for fastening metal sheeting to metal or timber substructures. The sheeting can either be used as wall or roof cladding or as load bearing wall and roof element. The fastening screws can also be used for the fastening of any other thin gauge metal members. The intended use comprises fastening screws and connections for indoor and outdoor applications. Fastening screws which are intended to be used in external environments with \geq C2 corrosion according to the standard EN ISO 12944-2 are made of stainless steel. Furthermore the intended use comprises connections with predominantly static loads (e. g. wind loads, dead loads). The fastening screws are not intended for re-use.

2

European Technical Assessment ETA-10/0021

Page 5 of 40 | 23 April 2018

English translation prepared by DIBt

The performances given in Section 3 are only valid if the fastening screws are used in compliance with the specifications and conditions given in Annex (1-35).

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastening screws of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the manufacturer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

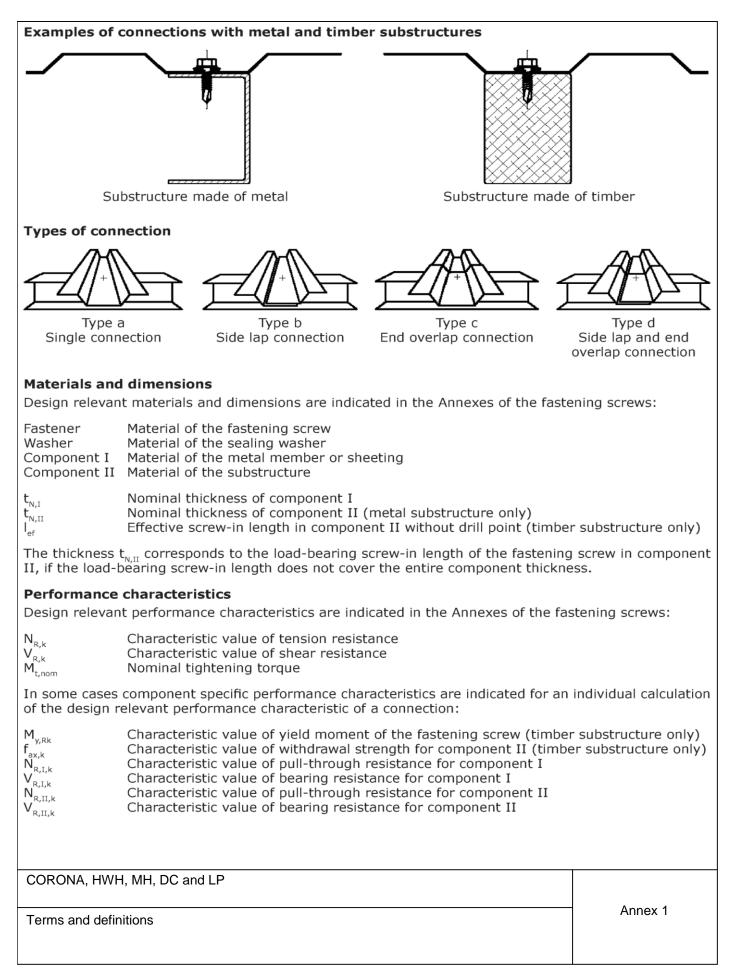
Essential characteristic	Performance
Shear Resistance of the Connection	see Annexes to this ETA
Tension Resistance of the Connection	see Annexes to this ETA
Design Resistance in case of combined Tension and Shear Forces (interaction)	see Annexes to this ETA
Check of Deformation Capacity in case of constraining forces due to temperature	No performance assessed
Durability	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Performance Class A1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330046-01-0602, the applicable European legal act is: Commission Decision 1998/214/EC, amended by 2001/596/EC. The system to be applied is: 2+


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 April 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Schult

Design values

The verification concept stated in EN 1990:2002 + A1:2005 + A1:2005/AC:2010 is used for the design of the connections made with the fastening screws. The characteristic values (shear and tension resistance) stated in the Annexes are used for the design of the entire connections.

The following formulas are used to calculate the values of design resistance:

$$N_{_{R,d}} = ~N_{_{R,k}} ~/~ \gamma_{_M}$$

 $V_{R,d} = V_{R,k} / \gamma_M$

 $\mathsf{N}_{\mathsf{R},\mathsf{d}}$ $V_{\rm R,d}$ Υ_M

Design value of tension resistance Design value of shear resistance Partial factor

The recommended partial factor $\gamma_{M} = 1.33$ is used in order to determine the corresponding design resistances, provided no values are given in national regulations of the member state in which the fastening screws are used or in the respective National Annex to Eurocode 3.

Special conditions

If the component thickness $t_{_{N,I}}$ or $t_{_{N,II}}$ lies in between two indicated component thicknesses, the characteristic value may be calculated by linear interpolation.

The possibly required reduction of the pull-through resistance due to the position of the fastener is taken into account in accordance with EN 1993 1 3:2006 + AC:2009, section 8.3 (7) and Fig. 8.2 (if component I is made of steel) or EN 1999-1-4:2007 + A1:2011, section 8.1 (6) and Table 8.3 (if component I is made of aluminium).

For asymmetric metal substructures (e.g. Z- or C-shaped profiles) with $t_{NTT} \leq 5$ mm, the characteristic value $N_{P_{P_{k}}}$ has to be reduced by 70%.

In case of combined tension and shear forces the following linear interaction formula according to EN 1993-1-3:2006 + AC:2009, section 8.3 (8) is taken into account:

$$N_{s,d} / N_{R,d} + V_{s,d} / V_{R,d} \le 1.0$$

 $N_{s,d}$ $V_{s,d}$

$$V_{s,d} / N_{R,d} + V_{s,d} / V_{R,d} \le 1.0$$

Design value of the applied tension forces Design value of the applied shear forces

For the types of connection (a, b, c, d) listed in the Annexes it is not necessary to take into account the effect of constraints due to temperature. For other types of connection the effect of constraints has to be considered unless they do not occur or are not significant (e. g. sufficient flexibility of the structure).

Additional rules for connections with timber substructures

As far as no other provisions are made in the following EN 1995-1-1:2004 + A1:2008 + A2:2014 applies. Drill points of self drilling screws are not taken into account for the effective screw-in length. The following formulas are used to calculate the values of characteristic resistance:

$$\begin{split} N_{\text{R},k} &= \min \{ N_{\text{R},\text{I},k} \text{ ; } N_{\text{R},\text{II},k} \} \\ V_{\text{R},k} &= \min \{ V_{\text{R},\text{I},k} \text{ ; } V_{\text{R},\text{II},k} \} \end{split}$$

 $N_{R,II,k} = F_{ax,Rk} \cdot k_{mod}$

 $V_{R,II,k} = F_{V,Rk} \cdot k_{mod}$

F_{ax,Rk} F_{v,Rk} $\mathsf{k}_{\mathsf{mod}}$

Characteristic withdrawal capacity with $a = 90^{\circ}$, EN 1995-1-1, section 8.7.2 (5) Characteristic load-bearing capacity per shear plane, EN 1995-1-1, section 8.2.3 Strength modification factor, EN 1995-1-1, section 3.1.3

 $N_{_{\mathrm{R,L}k}}$ and $V_{_{\mathrm{R,L}k}}$ are stated in the relevant annexes.

CORONA, HWH, MH, DC and LP

Design

Installation conditions

The installation is carried out according to the manufaturer's instructions.

The load-bearing screw-in length of the fastening screw specified by the manufacturer must be taken into account.

The fastening screws must be installed with suitable equipment. Using an impact wrench is not allowed.

The fastening screws must be installed perpendicular to the plane of component I an II.

Component I and II must be in direct contact. The use of compression resistant thermal insulation strips up to a thickness of 3 mm is allowed.

CORONA, HWH, MH, DC and LP

Installation

Page 9 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	~3,80	-	L				Mate	<u>rials</u>											
	h	~	~1,60	~4,50	06'7		Faste			Carbor Quencl			red a	and gal	vaniz	zed			
			<u>tttt</u>		1		Comp	Vasher: None Component I: S280GD, S320GD or S350GD Component II: S235 – EN 10025-2 S280GD, S320GD or S350GD											
		~Ø13	3,80	-			Drillir	ng capa	acity	: Σt _i ≤	2 x 1	L,25 m	m						
				Torx T-20				er subs mber s		<u>tures</u> tructure	es no	perfo	mran	ce dete	ermir	ned			
t	: _{n,II} =	0,5	50	0,5	55	0,6	53	0,7	5	0,8	88	1,0	00	1,1	.3	1,2	25		
М	M _{t,nom} =								4	Nm									
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,07 1,07 1,07 1,07 1,07 1,07 1,07 - - - -		1,07 1,30 1,30 1,30 1,30 1,30 1,30 - - - -		1,07 1,30 1,65 1,65 1,65 1,65 1,65 1,65 - - - -		1,07 1,30 1,65 2,22 2,22 2,22 2,22 2,22 2,22 - - - -		1,07 1,30 1,65 2,22 2,62 2,62 2,62 2,62 - - - - -		1,07 1,30 1,65 2,22 2,62 3,02 3,02 3,02 - - - - -		1,07 1,30 1,65 2,22 2,62 3,02 3,56 3,56 - - - - -		1,07 1,30 1,65 2,22 2,62 3,02 3,56 4,09 - - - - -			
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,57 0,57 0,57 0,57 0,57 0,57 0,57 - - - -		0,62 0,62 0,62 0,62 0,62 0,62 0,62 - - - -		0,71 0,71 0,71 0,71 0,71 0,71 0,71 - - - -		1,05 1,05 1,05 1,05 1,05 1,05 1,05 1,05		1,34 1,34 1,34 1,34 1,34 1,34 1,34 - - - -		1,45 1,62 1,62 1,62 1,62 1,62 1,62 - - - -		1,45 1,65 1,92 1,92 1,92 1,92 1,92 1,92 - - - -		1,45 1,65 1,97 2,22 2,22 2,22 2,22 2,22 2,22 - - - -			

If both components I and II are made of S320GD or S350GD, all values may be increased by 8,3%.

CORONA, HWH, MH, DC and LP

CORONA 4.8XL #1 TX20 EPDM-9,5B with undercut, mushroom head with TX drive system and EPDM seal ring

Page 10 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	~3,80		L			Mate	<u>rials</u>										
		-@13.86		00 00		Wash Com	Fastener:Carbon steel Quenched, tempered and galvanizedWasher:NoneComponent I:S280GD, S320GD or S350GD - EN 10346Component II:S235 - EN 10025-2 S280GD or S320GD - EN 10346										
	-	010,00				Drilli	ng ca	pacity:	Σt _i ≤	5,50 m	m						
			Torx	T-20				<u>bstructı</u> r substri		es no pe	erfom	rance de	etern	nined			
t	: N,II =	1,5	0	1,7	5	2,0	0	2,5	0	3,0	0	3,5	0	4,0	0		
М	t,nom =							5 N	m								
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,98 ^{a)} 2,07 2,22 2,45 2,69 2,92 3,23 3,53 - - - -		1,98 ^{a)} 2,12 2,33 2,67 2,96 3,25 3,54 3,84 - - - -		1,98 ^{a)} 2,16 ^{a)} 2,44 ^{a)} 2,89 ^{a)} 3,24 3,58 3,86 4,14 - - -		1,98 ^{a)} 2,16 ^{a)} 2,44 ^{a)} 2,89 ^{a)} 3,90 4,24 4,50 4,75 - - - -		1,98 ^{a)} 2,16 ^{a)} 2,44 ^{a)} 2,89 ^{a)} 3,90 4,90 5,13 5,37 - - - -		1,98 ^{a)} 2,16 ^{a)} 2,44 ^{a)} 2,89 ^{a)} 3,90 4,90 5,75 5,98 - - - -		1,98 ^{a)} 2,16 ^{a)} 2,44 ^{a)} 2,89 ^{a)} 3,90 4,90 5,75 6,59 - - - -			
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,45 ^{a)} 1,65 ^{a)} 1,97 2,06 2,06 2,06 2,06 2,06 - - - -		1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 2,62 2,62 2,62 2,62 2,62 - - - -	-	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 3,18 3,18 3,18 3,18 - - - -	-	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,03 4,03 4,03 - - -	-	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 4,87 - - - -	-	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,43 ^{a)} 6,13 - - -		$ \begin{array}{r} 1,45^{a)} \\ 1,65^{a)} \\ 1,97^{a)} \\ 3,06^{a)} \\ 3,68^{a)} \\ 4,29^{a)} \\ 5,43^{a)} \\ 6,56^{a)} \\ - \\ $	-		

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

CORONA, HWH, MH, DC and LP

CORONA 4.8XL #2+ TX20 EPDM-9,5B with undercut, mushroom head with TX drive system and EPDM seal ring

<u>~3,8</u> <u>~1,3</u>	~4,50		2.20 IIIII	~4,50	F V C	laterials astener: /asher: compone compone	ent I:	None S280GD	ed, tem), S3200	GD or S		anized – EN 10	346
	~Ø13,80						apacity	$\Sigma t_i \leq 2$	x 1,25	mm			
	-		Torx T	20	F	<u>Timber substructures</u> For timber substructures perfomrance determined with $M_{y,Rk} = 4,992 \text{ Nm}$ $f_{ax,k} = 13,181 \text{ N/mm}^2$ for $I_{ef} \ge 24 \text{ mm}$							
l _g = 29 31 33 35						37	39	41	43	45	47		
М	t,nom =						-						
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,09 ^a) 1,20 ^a) 1,41 1,41 1,41 1,41 1,41 1,41 - - - -	1,09 ^a) 1,20 ^a) 1,44 1,44 1,44 1,44 1,44 1,44 - - - -	1,09 ^{a)} 1,20 ^{a)} 1,47 1,47 1,47 1,47 1,47 1,47 - - - -	1,09 ^{a)} 1,20 ^{a)} 1,49 1,49 1,49 1,49 1,49 1,49 - - - -	1,09 ^a) 1,20 ^a) 1,52 1,52 1,52 1,52 1,52 1,52 1,52 - - - -	1,09 ^a) 1,20 ^a) 1,55 1,55 1,55 1,55 1,55 1,55 - - - -	1,09 ^a) 1,20 ^a) 1,58 1,58 1,58 1,58 1,58 1,58 1,58 - - -	1,09 ^{a)} 1,20 ^{a)} 1,61 1,61 1,61 1,61 1,61 - - - -	1,09 ^a) 1,20 ^a) 1,64 1,64 1,64 1,64 1,64 - - - -	1,09 ^a) 1,20 ^a) 1,64 1,66 1,66 1,66 1,66 1,66 - - -	1,09 ^{a)} 1,20 ^{a)} 1,64 ^{a)} 2,18 ^{a)} 2,18 ^{a)} 2,18 ^{a)} 2,18 ^{a)} 2,18 ^{a)} - - -	Bearing resistance of component I, $V_{\text{R,I,k}}$
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,37 1,37 1,37 1,37 1,37 1,37 1,37 1,37	1,45 1,48 1,48 1,48 1,48 1,48 1,48 1,48 1,48	1,45 ^{a)} 1,60 1,60 1,60 1,60 1,60 1,60 - - - -	1,45ª) 1,65 1,65 1,65 1,65 1,65 1,65 - - - -	1,45 ^{a)} 1,65 ^{a)} 1,71 1,71 1,71 1,71 1,71 1,71 1,71 - - - -	1,45 ^{a)} 1,65 ^{a)} 1,82 1,82 1,82 1,82 1,82 1,82 - - - -	1,45 ^{a)} 1,65 ^{a)} 2,05 2,05 2,05 2,05 2,05 - - - -	1,45 ^{a)} 1,65 ^{a)} 2,17 2,17 2,17 2,17 2,17 2,17 - - - -	1,45 ^{a)} 1,65 ^{a)} 2,28 2,28 2,28 2,28 2,28 2,28 2,28 - - - -	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 2,40 2,40 2,40 2,40 2,40 - - - -	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,43 ^{a)} 6,56 ^{a)} - -	Pull-through resistance of component I, N _{R,I,k}

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8.3%. The values listed above in dependence on the screw-in length I_g are valid for $k_{mod} = 0,90$ and timber strength grade C24 ($\rho_k = 350 \text{ kg/m}^3$).

CORONA, HWH, MH, DC and LP

CORONA 4.8XL #1 TX20 EPDM-9,5B for timber substructures with undercut, mushroom head with TX drive system and EPDM seal ring

Page 12 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

-	~5,30		L		-		Mate	rials									
		~04,80		.60 ~4.5	~2,90	-			I: II:	Carbor Quencl Alumin S280G S235 - S280G	hed, ium D, Si - EN	tempe (EN AV 320GD 10025	V-11 or S -2	00-H18 350GD	3), t 9 – Eľ	= 0,8 r N 1034	6
		~Ø10,9	-				Drillir	ng capa	acity	: Σt _i ≤	2 x 1	L,25 m	m				
)				<u>Timber substructures</u> For timber substructures no perfomrance determi								ned	
t	N,II =	0,5	50	0,5	55	0,	63	0,7	5	0,8	8	1,0	0	1,1	3	1,2	.5
M	t,nom =								4	Nm							
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,95 0,95 0,95 0,95 0,95 0,95 0,95 - - - -		0,95 1,11 1,11 1,11 1,11 1,11 1,11 1,11 - - - -		0,95 1,11 1,36 1,36 1,36 1,36 1,36 - - - -		0,95 1,11 1,36 1,76 1,76 1,76 1,76 1,76 - - - -		0,95 1,11 1,36 1,76 2,36 2,36 2,36 2,36 - - - - -		0,95 1,11 1,36 1,76 2,36 2,96 2,96 2,96 - - - - -		0,95 1,11 1,36 1,76 2,36 2,96 3,32 3,32 - - - - -		0,95 1,11 1,36 1,76 2,36 2,96 3,32 3,67 - - - -	
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,57 0,57 0,57 0,57 0,57 0,57 0,57 - - - -		0,62 0,62 0,62 0,62 0,62 0,62 0,62 - - - -		0,71 0,71 0,71 0,71 0,71 0,71 0,71 - - -		1,05 1,05 1,05 1,05 1,05 1,05 1,05 1,05		1,34 1,34 1,34 1,34 1,34 1,34 1,34 - - - -		1,37 1,45 1,58 1,62 1,62 1,62 1,62 - - - -		1,37 1,45 1,58 1,92 1,92 1,92 1,92 - - - -		1,37 1,45 1,58 2,22 2,22 2,22 2,22 2,22 2,22 - - - -	

If both components I and II are made of S320GD or S350GD, all values may be increased by 8,3%.

CORONA, HWH, MH, DC and LP

HWH 4.8XL #1 HX8 ALU-14B with hexagon head and seal washer $\geq \emptyset$ 14 mm

Page 13 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

		L 99:00 200 200 200 200 200 200 200 200 200		~7,00	~3,90	Faste Wasł Com Com	MaterialsFastener:Carbon steel Quenched, tempered and galvanizedWasher:Aluminium (EN AW-1100-H18), t = 0,8 mm Carbon steel, galvanized, t = 0,8 mmComponent I:S280GD, S320GD or S350GD - EN 10346Component II:S235 - EN 10025-2 S280GD or S320GD - EN 10346									
						Drilli	ng ca	pacity:	∑t _i ≤	5,50 m	m					
				08.7.80				<u>bstruct</u> r r substr		es no pe	erfom	irance d	eterm	nined		
t	, _{N,II} =	1,5	50	1,7	'5	2,0	0	2,5	0	3,0	00	3,5	0	4,0	0	
M	t,nom =							5 N	m							
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,89 ^{a)} 2,00 2,18 2,46 2,75 3,03 3,40 3,77 - - - -	ac - - - - - - - - - -	1,89 ^{a)} 2,05 2,29 2,69 2,94 3,19 3,56 3,93 - - - -	ac - - - - - - - - - - -	1,89 ^{a)} 2,09 ^{a)} 2,40 ^{a)} 2,91 ^{a)} 3,13 3,34 3,71 4,09 - - - -	ac ac ac - - - - - - -	1,89 ^{a)} 2,09 ^{a)} 2,40 ^{a)} 2,91 ^{a)} 3,44 3,65 4,03 4,40 - - - -	ac ac ac - - - - - - -	1,89 ^{a)} 2,09 ^{a)} 2,40 ^{a)} 2,91 ^{a)} 3,44 3,96 4,34 4,72 - - - -	ac ac ac ac ac - - - -	1,89 ^{a)} 2,09 ^{a)} 2,40 ^{a)} 2,91 ^{a)} 3,44 3,96 4,66 5,03 - - - -	ac ac ac ac a - - - -	1,89 ^{a)} 2,09 ^{a)} 2,40 ^{a)} 2,91 ^{a)} 3,44 3,96 4,66 5,35 - - - -	ac ac a a a a a - -	
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 2,06 2,06 2,06 2,06 2,06 - - - -	ac - - - - - - - - -	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 2,36 ^{a)} 2,62 2,62 2,62 2,62 - - - -	ac - - - - - - - -	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 2,36 ^{a)} 2,69 ^{a)} 3,01 3,18 3,18 - - - -	ac ac ac - - - - - - -	1,37 ^{a)} 1,45 ^{a)} 2,36 ^{a)} 2,69 ^{a)} 3,01 ^{a)} 3,73 ^{a)} 4,03 - - -	ac ac ac - - - - -	1,37 ^{a)} 1,45 ^{a)} 2,36 ^{a)} 2,69 ^{a)} 3,01 ^{a)} 3,73 ^{a)} 4,44 ^{a)} - - -	ac ac ac ac ac - - -	1,37 ^{a)} 1,45 ^{a)} 2,36 ^{a)} 2,69 ^{a)} 3,01 ^{a)} 3,73 ^{a)} 4,44 ^{a)} - - -	ac ac ac ac a - - -	1,37 ^{a)} 1,45 ^{a)} 2,36 ^{a)} 2,69 ^{a)} 3,01 ^{a)} 3,73 ^{a)} 4,44 ^{a)} - - -	ас ас а а а а а а - -	

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8.3%.

CORONA, HWH, MH, DC and LP

HWH 4.8XL #2+ HX8 ALU-14B with hexagon head and seal washer $\ge Ø14 \text{ mm}$

Page 14 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

~5,	~4.00	L				Materials										
		93 [°] 80 70 70 70 70 70 70 70 70 70 70 70 70 70	° -1	~4,50 8; ?		Fastener:Carbon steel Quenched, tempered and galvanizedWasher:Aluminium (EN AW-1100-H18), t = 0,8 Carbon steel, galvanized, t = 0,8 mmComponent I:S280GD, S320GD or S350GD - EN 102 Structural timber - EN 14081										
		~8,00	-+			Drilling c	apacity	: Σt _i ≤ 2	2 x 1,25	mm						
						$\frac{\text{Fimber s}}{\text{For timber}} = 2$ $\frac{M_{y,Rk}}{m_{x,k}} = 13$	er subst 1,992 Ni	ructure	-		determi	ned with	1			
	$I_g =$	29	31	33	35	37	39	41	43	45	47					
M	t,nom =						-									
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,07 ^a) 1,12 ^a) 1,32 1,32 1,32 1,32 1,32 1,32 - - - -	1,07 ^a) 1,12 ^a) 1,34 1,37 1,37 1,37 1,37 1,37 - - - -	1,07 ^{a)} 1,12 ^{a)} 1,34 ^{a)} 1,41 1,41 1,41 1,41 1,41 - - - -	1,07° 1,12° 1,34° 1,45 1,45 1,45 1,45 1,45 - - - -	1,12ª)	1,07 ^a) 1,12 ^a) 1,34 ^a) 1,54 1,54 1,54 1,54 1,54 - - - -	1,07 ^a) 1,12 ^a) 1,34 ^a) 1,58 1,58 1,58 1,58 1,58 1,58 - - - -	1,07 ^a) 1,12 ^a) 1,34 ^a) 1,60 1,60 1,60 1,60 - - - -	1,07 ^a) 1,12 ^a) 1,34 ^a) 1,60 1,60 1,60 1,60 - - - -	1,07 ^a) 1,12 ^a) 1,34 ^a) 1,60 1,60 1,60 1,60 - - - -	1,07 ^{a)} 1,12 ^{a)} 1,34 ^{a)} 1,60 ^{a)} 1,60 ^{a)} 1,60 ^{a)} 1,60 ^{a)} - - -	Bearing resistance of component I, $V_{{\rm R},{\rm I},{\rm k}}$			
$N_{R,k}$ for $t_{N,I} =$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1,37 ^a 1,45 ^a 1,58 1,71 1,71 1,71 1,71 1,71 - - -		1,37 ^a) 1,45 ^a) 1,58 ^a) 1,94 1,94 1,94 1,94 1,94 - - -	1,37°) 1,45°) 1,58°) 2,05 2,05 2,05 2,05 2,05 - - - -	1,37 ^a) 1,45 ^a) 1,58 ^a) 2,17 2,17 2,17 2,17 2,17 - - - -	1,37 ^a) 1,45 ^a) 1,58 ^a) 2,28 2,28 2,28 2,28 2,28 2,28 2,28 - - - -	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 2,36 2,40 2,40 2,40 2,40 - - - -	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 2,36 ^{a)} 2,69 ^{a)} 3,01 ^{a)} 3,73 ^{a)} 4,44 ^{a)} - -	Pull-through resistance of component I, N _{R,I,k}					

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8.3%. The values listed above in dependence on the screw-in length I_g are valid for $k_{mod} = 0,90$ and timber strength grade C24 ($\rho_k = 350 \text{ kg/m}^3$).

CORONA, HWH, MH, DC and LP

HWH 4.8XL #1 HX8 ALU-14B for timber structrures with hexagon head and seal washer $\ge \emptyset$ 14 mm

Page 15 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

			Mate	Materials															
		0 <u>5</u> 0 <u>5</u> 0 <u>5</u> 0 <u>5</u> 0 <u>5</u> 0 <u>5</u> 0 <u>6</u> -1,60	~8,0	0 ,50 ,50 ,50			Faste	ner:		Carbor			rod a	nd as	vania	od			
		₩₩₩	00 1				Comp	Quenched, tempered and galvaVasher:Aluminium (EN AW-5052-H32),Component I:S280GD, S320GD or S350GD -Component II:S235 - EN 10025-2S280GD, S320GD or S350GD -								z = 0,8 mm EN 10346			
							Drillin	ng capa	acity	: Σt _i ≤	2 X :	L,25 m	m						
			T	orx T-20			<u>Timber substructures</u> For timber substructures no perfomrance determine									ned			
t	N,II =	0,	63	0,7	'5	0,8	88	1,0	0	1,1	3	1,2	5						
М	M _{t,nom} =								4	Nm									
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82	- - - - - - - - - - -	0,82 1,07 1,07 1,07 1,07 1,07 1,07 - - - -		0,82 1,07 1,44 1,44 1,44 1,44 1,44 - - - -	- - - -	0,82 1,07 1,44 2,05 2,05 2,05 2,05 2,05 - - - - -	- - - - - - - - - -	0,82 1,07 1,44 2,05 2,70 2,70 2,70 2,70 - - - - -		0,82 1,07 1,44 2,05 2,70 3,34 3,34 3,34 - - - - -		0,82 1,07 1,44 2,05 2,70 3,34 3,88 3,88 - - - - -		0,82 1,07 1,44 2,05 2,70 3,34 3,88 4,42 - - - -	- - - - - - - - - - -		
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,57 0,57 0,57 0,57 0,57 0,57 0,57 - - - -		0,62 0,62 0,62 0,62 0,62 0,62 0,62 - - - -		0,71 0,71 0,71 0,71 0,71 0,71 0,71 - - - -	-	1,05 1,05 1,05 1,05 1,05 1,05 1,05 1,05		1,32 1,34 1,34 1,34 1,34 1,34 1,34 1,34 - - - -		1,32 1,35 1,40 1,62 1,62 1,62 1,62 - - - -		1,32 1,35 1,40 1,92 1,92 1,92 1,92 1,92 - - - -		1,32 1,35 1,40 1,92 2,22 2,22 2,22 2,22 2,22 - - - - -			

If both components I and II are made of S320GD or S350GD, all values may be increased by 8,3%.

CORONA, HWH, MH, DC and LP

LP 4.8XL #1 TX20 M-ALU-14B with countersunk head with TX drive system and seal washer ≥ Ø14 mm

Annex 10

electronic copy of the eta by dibt: eta-10/0021

Page 16 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	•		Mate	rials											
	~04,80	2. 02 ~1,60	~7,0	0		Faste	ener:			n steel	~ ~ ~ ~ ~	danda		ind	
							ponei	A ntI: S ntII: S	lumir 280G 235 -	nium (El iD, S320 - EN 10	N AW OGD 0 025-2	or S3500 2	132), GD -	t = 0.8 EN 1034 EN 1034	46
		~Ø9,00	•			Drilli	ng ca	pacity:	Σt _i ≤	5,50 m	m				
) Torx T-20				<u>bstructi</u> r substr		es no pe	erfom	rance d	etern	nined	
t	: _{n,II} =	1,5	50	1,7	5	2,0	0	2,5	0	3,0	0	3,5	50	4,0	0
М	t,nom =				5 N	m									
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,39 1,54 1,76 2,14 2,51 2,88 3,58 4,27 - - - -		1,39 1,59 1,89 2,40 2,79 3,19 3,79 4,39 - - - -		1,39 1,64 2,03 2,66 3,08 3,50 4,01 4,52 - - - -		1,39 1,64 2,03 2,66 3,71 4,13 4,45 4,77 - - - -		1,39 1,64 2,03 2,66 3,71 4,75 4,88 5,01 - - - -	ac ac ac ac ac ac - - - -	1,39 1,64 2,03 2,66 3,71 4,75 5,13 5,26 - - - -	ac ac ac ac a - - - -	1,39 1,64 2,03 2,66 3,71 4,75 5,13 5,51 - - - - -	ac ac a a a a a - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,92 2,06 2,06 2,06 2,06 - - - -		1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,92 ^{a)} 2,29 ^{a)} 2,62 2,62 2,62 - - - -	-	1,32°) 1,35°) 1,40°) 1,92°) 2,29°) 2,66°) 2,96°) 3,18 - - - -	-	1,32°) 1,35°) 1,40°) 1,92°) 2,29°) 2,66°) 2,96°) 3,25°) - - - -	-	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,92 ^{a)} 2,29 ^{a)} 2,66 ^{a)} 2,96 ^{a)} 3,25 ^{a)} - - -	ac ac ac ac ac - - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,92 ^{a)} 2,29 ^{a)} 2,66 ^{a)} 2,96 ^{a)} 3,25 ^{a)} - - -	ac ac ac ac a - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,92 ^{a)} 2,29 ^{a)} 2,66 ^{a)} 2,96 ^{a)} 3,25 ^{a)} - - -	ас ас а а а а а - -

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8.3%.

CORONA, HWH, MH, DC and LP

LP 4.8XL #2+ TX20 M-ALU-14B with countersunk head with TX drive system and seal washer ≥ Ø14 mm

Page 17 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	-03.50 -03.50	L ~2.2 → ~Ø9,00		4,5	F W C C	laterials astener: /asher: ompone ompone prilling c	ent I: ent II:	Alumini S280GD Structur	ed, tem um (EN), S3200 ral timb	AW-50! GD or S er - EN	52-H32) 350GD	anized), t = 0,; – EN 10	
	-		Torx T-	20	F	I _{v. Rk} = 4	er subst 1,992 Nr	ructure: n	s perfon r I _{ef} ≥ 2		determi	ned with	1
	l _g =	29	31	33	35	37	39	41	43	45	47		
M	t,nom =						-						
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,41 1,41 1,41 1,41 1,41 1,41 1,41 1,41	1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44	1,47 1,47 1,47 1,47 1,47 1,47 1,47 1,47	1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49	1,52 1,52 1,52 1,52 1,52 1,52 1,52 1,52	1,53 1,55 1,55 1,55 1,55 1,55 1,55 1,55	1,53 1,58 1,58 1,58 1,58 1,58 1,58 1,58 - - - -	1,53 1,59 1,61 1,61 1,61 1,61 1,61 - - - -	1,53 1,59 1,64 1,64 1,64 1,64 1,64 - - - -	1,53 ^{a)} 1,59 1,66 1,66 1,66 1,66 1,66 - - - -	1,53 ^{a)} 1,59 ^{a)} 1,82 ^{a)} 2,10 ^{a)} 2,10 ^{a)} 2,10 ^{a)} 2,10 ^{a)} - - - -	Bearing resistance of component I, V _{R,I,k}
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,32 1,35 1,37 1,37 1,37 1,37 1,37 1,37 - - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 1,48 1,48 1,48 1,48 1,48 - - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,60 1,60 1,60 1,60 - - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,71 1,71 1,71 1,71 1,71 - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,82 1,82 1,82 1,82 1,82 - - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,92 1,94 1,94 1,94 1,94 - - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,92 ^{a)} 2,05 2,05 2,05 2,05 - - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,92 ^{a)} 2,17 2,17 2,17 2,17 - - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,92 ^{a)} 2,28 2,28 2,28 2,28 2,28 - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,92 ^{a)} 2,29 2,40 2,40 2,40 - - - -	1,32 ^{a)} 1,35 ^{a)} 1,40 ^{a)} 1,92 ^{a)} 2,29 ^{a)} 2,66 ^{a)} 2,96 ^{a)} 3,25 ^{a)} - - -	Pull-through resistance of component I, N _{R,I,k}

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8.3%. The values listed above in dependence on the screw-in length I_g are valid for $k_{mod} = 0,90$ and timber strength grade C24 ($\rho_k = 350 \text{ kg/m}^3$).

CORONA, HWH, MH, DC and LP

LP 4.8XL #1 TX20 M-ALU-14B for timber stuctures with countersunk head with TX drive system and seal washer $\geq \emptyset$ 14 mm

Page 18 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

		~L ~4,00					Mate	rials									
		-03,50		~4,50	~~02,90				I: II:	Stainle Stainle Stainle Stainle S280G S235 – S280G	ss st ss st ss st D, Si EN	eel (1.4 eel (1.4 eel (1.4 320GD 10025-	4401 4301 4401 or S ·2	.) - EN .) - EN .) - EN 350GD	1008 1008 1008 – El	38 38 38 N 1034	
	ł	~Ø14,0		-			Drillir	ng capa	acity	: Σt _i ≤	2 x 1	L,25 mr	m				
		RXE)				<u>er subs</u> mber s		<u>tures</u> ructure	es no) perfor	nran	ce dete	ermir	ned	
t	,,II =	0,50	0	0,5	5	0,	63	0,7	5	0,8	8	1,0	0	1,1	3	1,2	5
M	t,nom =					-											
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,95 ^{a)} 0,95 ^{a)} 0,95 ^{a)} 0,95 ^{a)} 0,95 ^{a)} 0,95 ^{a)} 0,95 ^{a)} - - -	- - - -	0,95 ^{a)} 1,11 ^{a)} 1,11 ^{a)} 1,11 ^{a)} 1,11 ^{a)} 1,11 ^{a)} 1,11 ^{a)} - - -	- - -	0,95 ^{a)} 1,11 ^{a)} 1,36 ^{a)} 1,36 ^{a)} 1,36 ^{a)} 1,36 ^{a)} 1,36 ^{a)} - - -	- - - -	0,95 ^{a)} 1,11 ^{a)} 1,36 ^{a)} 1,76 ^{a)} 1,76 ^{a)} 1,76 ^{a)} 1,76 ^{a)} - - -		0,95 ^{a)} 1,11 ^{a)} 1,36 ^{a)} 2,36 ^{a)} 2,36 ^{a)} 2,36 ^{a)} 2,36 ^{a)} - - - -	- - -	0,95 ^{a)} 1,11 ^{a)} 1,36 ^{a)} 2,36 ^{a)} 2,96 ^{a)} 2,96 ^{a)} - - - -	- - -	0,95 ^{a)} 1,11 ^{a)} 1,36 ^{a)} 2,36 ^{a)} 2,96 ^{a)} 3,32 ^{a)} - - - -	- - - -	0,95 ^{a)} 1,11 ^{a)} 1,36 ^{a)} 2,36 ^{a)} 2,96 ^{a)} 3,32 ^{a)} 3,67 ^{a)} - - -	- - - - - - - - - - - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} - - -	-	0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} - -	-	0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} - - -	- - - -	1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} - - -	-	1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} - - -	- - -	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} - - -		1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 1,92 1,92 1,92 1,92 1,92 - - -		1,37 ^{a)} 1,45 ^{a)} 2,22 2,22 2,22 2,22 2,22 2,22 - - - -	- - - - - - - - - - - - -

If both components I and II are made of S320GD or S350GD, the values marked with $^{\rm a)}$ may be increased by 8,3%.

CORONA, HWH, MH, DC and LP

HWH RXB 4.8XL #1 HX8 RX-14G with hexagon head and seal washer $\geq \emptyset$ 14 mm

Page 19 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

		~					Mate	rials									
			04 04 04 04 04	~4,50	~ 02,90			er: ponent	I: II:	Carbon Case ha None S280GI S235 – S280GI	arde D, S: EN	ned and 320GD 10025-	or S 2	350GD	– Eľ		
		~Ø10,00	•	1		ſ	Drillir	ng capa	acity	: Σt _i ≤ 2	2 x 1	.,25 mr	n				
)				<u>er subs</u> mber s		<u>tures</u> ructure	es no	perfon	nran	ce dete	ermir	ned	
t	N,II =	0,50	0	0,5	5	0,0	53	0,7	5	0,8	8	1,0	0	1,1	3	1,2	5
M	t,nom =									-							
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,52°) 1,52°) 1,52°) 1,52°) 1,52°) 1,52°) 1,52°) 1,52°) - - - -	- - -	$\begin{array}{c} 1,52^{a)} \\ 1,64^{a)} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \end{array}$		$\begin{array}{c} 1,52^{a)} \\ 1,64^{a)} \\ 1,82^{a)} \\ - \\ - \\ - \\ - \end{array}$	- - - -	1,52 ^{a)} 1,64 ^{a)} 2,11 ^{a)} 2,11 ^{a)} 2,11 ^{a)} 2,11 ^{a)} 2,11 ^{a)} - - - -	-	1,52 ^{a)} 1,64 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 2,79 ^{a)} 2,79 ^{a)} 2,79 ^{a)} - - - -	- - -	1,52 ^{a)} 1,64 ^{a)} 1,82 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 3,47 ^{a)} 3,47 ^{a)} - - -	- - -	1,52 ^{a)} 1,64 ^{a)} 1,82 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 3,47 ^{a)} 3,47 ^{a)} - - -	- - -	1,52 ^{a)} 1,64 ^{a)} 1,82 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 3,47 ^{a)} 3,47 ^{a)} - - -	- - - - - - - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} - - -	-	0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} - - -	- - - - - - -	0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} - - -		1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} - - -	- - - - - -	1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} - - -	- - - -	1,35 ^{a)} 1,53 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} - - -	- - - - - -	1,35 ^{a)} 1,53 ^{a)} 1,81 1,92 1,92 1,92 1,92 1,92 - - -		1,35 ^{a)} 1,53 ^{a)} 1,81 2,22 2,22 2,22 2,22 2,22 2,22 - - -	- - - - - - -

If both components I and II are made of S320GD or S350GD, the values marked with $^{\rm a)}$ may be increased by 8,3%.

CORONA, HWH, MH, DC and LP

HWH 4.8XL #1 HX8 with hexagon head

Page 20 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	Drilling c <u>Timber s</u> For timber $M_{y Rk} = 4$	ent I: Sent II: Sent	Stainles Stainles Stainles S280GD Structur $\Sigma t_i \leq 2$ <u>ures</u> ructures	The second sec
V _{R,k} TOF t _{N,I} =	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,07 ^{a)} 1,12 ^{a)} 1,34 ^{a)} 1,60 ^{a)} 1,60 ^{a)} 1,60 ^{a)} 1,60 ^{a)} - - -	Bearing resistance of component I, V _{R,I,k}	
$N_{R,k}$ for $r_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 2,36 ^{a)} 2,69 ^{a)} 3,01 ^{a)} 3,73 4,44 - - -	Pull-through resistance of component I, $N_{R_{\mathrm{I},\mathrm{K}}}$	

CORONA, HWH, MH, DC and LP

HWH RXB 4.8XL #1 HX8 RX-14G for timber substructures with hexagon head and seal washer $\ge \emptyset$ 14 mm

Page 21 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

		~L					Mate	rials									
				-4,50	~02;90				I: II:	Stainle Stainle Stainle S280G S235 -	ss st ss st ss st D, Si EN	teel (1.4 teel (1.4 teel (1.4 teel (1.4 320GD 10025- 320GD	4401 4301 4401 or S 2	.) - EN .) - EN .) - EN 350GD	1008 1008 1008 – El	38 38 38 N 1034	
	-	~Ø16,0		-•			Drillir	ng capa	acity	: Σt _i ≤	2 x 1	L,25 mr	n				
				er subs mber s			es no) perfon	nran	ce dete	ermir	ned					
t	N,II =	0,5	0	0,5	5	0,0	53	0,7	'5	0,8	8	1,0	0	1,1	3	1,2	5
M	t,nom =			_				_		-							
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,96 ^{a)} 0,96 ^{a)} 0,96 ^{a)} 0,96 ^{a)} 0,96 ^{a)} 0,96 ^{a)} 0,96 ^{a)} - - -	-	0,96 ^{a)} 1,11 ^{a)} 1,11 ^{a)} 1,11 ^{a)} 1,11 ^{a)} 1,11 ^{a)} 1,11 ^{a)} - - - -		0,96 ^{a)} 1,11 ^{a)} 1,35 ^{a)} 1,35 ^{a)} 1,35 ^{a)} 1,35 ^{a)} 1,35 ^{a)} - - -		0,96 ^{a)} 1,11 ^{a)} 1,35 ^{a)} 1,73 ^{a)} 1,73 ^{a)} 1,73 ^{a)} 1,73 ^{a)} - - - -	- - -	0,96 ^{a)} 1,11 ^{a)} 1,35 ^{a)} 2,07 ^{a)} 2,07 ^{a)} 2,07 ^{a)} 2,07 ^{a)} - - - -	- - -	0,96 ^{a)} 1,11 ^{a)} 1,35 ^{a)} 2,07 ^{a)} 2,41 ^{a)} 2,41 ^{a)} - - - -		0,96 ^{a)} 1,11 ^{a)} 1,35 ^{a)} 1,73 ^{a)} 2,07 ^{a)} 2,41 ^{a)} 2,41 ^{a)} - - - -	- - - -	0,96 ^{a)} 1,11 ^{a)} 1,35 ^{a)} 1,73 ^{a)} 2,07 ^{a)} 2,41 ^{a)} 2,41 ^{a)} - - - -	- - - - - - - - - - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} - - -		0,64 ^{a)} 0,64 ^{a)} 0,64 ^{a)} 0,64 ^{a)} 0,64 ^{a)} 0,64 ^{a)} 0,64 ^{a)} - - -	- - - - - -	0,76 ^{a)} 0,76 ^{a)} 0,76 ^{a)} 0,76 ^{a)} 0,76 ^{a)} 0,76 ^{a)} 0,76 ^{a)} - - -	- - - -	0,94 ^{a)} 0,94 ^{a)} 0,94 ^{a)} 0,94 ^{a)} 0,94 ^{a)} 0,94 ^{a)} 0,94 ^{a)} - - -	- - - - - -	1,29 ^{a)} 1,29 ^{a)} 1,29 ^{a)} 1,29 ^{a)} 1,29 ^{a)} 1,29 ^{a)} 1,29 ^{a)} 1,29 ^{a)} - - -	-	$1,63^{a)}$ $1,63^{a)}$ $1,63^{a)}$ $1,63^{a)}$ $1,63^{a)}$ $1,63^{a)}$ $1,63^{a)}$ $1,63^{a)}$ - - - -	- - - - - - - -	1,77 ^{a)} 1,91 1,91 1,91 1,91 1,91 1,91 - - -	- - - - - - -	1,77 ^{a)} 1,96 ^{a)} 2,18 2,18 2,18 2,18 2,18 2,18 - - - -	- - - - - - - - - -

If both components I and II are made of S320GD or S350GD, the values marked with $^{\rm a)}$ may be increased by 8,3%.

CORONA, HWH, MH, DC and LP

HWH RXB 5.5XL #1 HX8 RX-16G with hexagon head and seal washer $\geq \emptyset$ 16 mm

Page 22 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

		~L				Mate	erials								
		-04,10	~1,80	~8,00		Wasl Com	poner	s s nt I: nt II:	Stainle Stainle Stainle S280C S235	ess stee ess stee ess stee SD, S320 – EN 10 SD or S3	(1.4 (1.4 (1.4)GD (025-2	401) - E 301) - E 401) - E or S3500 2	EN 10 EN 10 EN 10 GD -	088 088 088 EN 1034	46
	+	~Ø16,0		1		Drilli	ng ca			6,0 mm			.0340		
	(Timt	ber su	bstruct	ures	es no pe		rance d	eterm	nined	
t	N,II =	1,5	50	1,7	'5	2,0	00	2,5	50	3,0	0	3,5	0	4,0	0
M	_{t,nom} =							-							
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,16 3,44 3,79 4,14 4,84 4,84 4,84	ac ac ac - - - - - -	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,21 3,54 3,54 3,87 4,19 4,84 4,84 4,84	ac ac ac - - - - - -	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,27 3,65 3,95 4,25 4,84 4,84 4,84	ac ac ac - - - - - -	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,37 3,85 4,10 4,35 4,84 4,84 4,84	ac ac ac - - - - - - -	2,04 ^{a)} 2,21 ^{a)} 2,88 ^{a)} 3,47 ^{a)} 4,06 ^{a)} 4,26 4,45 4,84 4,84 4,84	ac ac ac ac ac ac - - - -	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,47 ^{a)} 4,06 ^{a)} 4,26 4,45 4,84 4,84 4,84	ac ac ac ac ac ac ac - - -	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,47 ^{a)} 4,06 ^{a)} 4,26 4,45 4,84 4,84 4,84	ac ac ac ac ac ac ac - - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65	ac ac ac - - - - -	1,77 ^{a)} 1,96 ^{a)} 2,14 2,14 2,14 2,14 2,14 2,14 2,14 2,14	ac ac ac - - - - -	1,77 ^{a)} 1,96 ^{a)} 2,35 2,63 2,63 2,63 2,63 2,63 2,63 2,63 2,63	ac ac ac - - - - - -	1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 3,92 3,92 3,92	ac ac ac - - - - -	1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 4,87 4,87 4,87	ac ac ac ac ac - - - - -	1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 4,87 4,87 4,87	ac ac ac ac ac - - - - -	1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 4,87 4,87 4,87	ac ac ac ac ac - - - - -

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

CORONA, HWH, MH, DC and LP

HWH RXB 5.5XL #2+ HX8 RX-16G with hexagon head and seal washer $\geq \emptyset$ 16 mm

Page 23 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

		~L				Mate	rials								
	~4,00	~04,10		~8,00	-04 ^{,50}	Faste	ener:			n steel nardene	d and	l galvani	ized		
F		M. M. M. M. M. M. M. M.	<u> የ</u>		7	Wasł	ner:	A	lumir	nium (El	N AW	-1100-+	18),		mm
{				1,80	<u> </u>		ponei ponei	ntI: S ntII: S	2800 235 ·	GD, S320 - EN 10	0GD (025-2	nized, t or S3500 2 D – EN 1	GD -	EN 1034	46
		~Ø16,0	-			Drilli	ng ca	pacity:	Σt _i ≤	6,0 mm	٦				
							i <u>bstruct</u> r substr		es no pe	erforr	nrance d	etern	nined		
t	: _{N,II} =	1,5	50	1,7	'5	2,0	0	2,5	50	3,0	0	3,5	50	4,0	0
М	M _{t,nom} =							-							
	0,50	2,04ª)	ac	2,04ª)	ac	2,04ª)	ac	2,04ª)	ac	2,04ª)	ac	2,04ª)	ac	2,04ª)	ac
	0,55	2,21ª)	ac	2,21ª)	ac	2,21ª)	ac	2,21ª)	ac	2,21ª)	ac	2,21ª)	ac	2,21ª)	ac
	0,63	2,46ª)	ac	2,46 ^{a)}	ac	2,46 ^{a)}	ac	2,46ª)	ac	2,46ª)	ac	2,46 ^{a)}	ac	2,46ª)	ac
П	0,75	2,88ª)	ac	2,88ª)	ac	2,88ª)	ac	2,88ª)	ac	2,88ª)	ac	2,88ª)	ac	2,88ª)	ac
$V_{\scriptscriptstyle R,k}$ for $t_{\scriptscriptstyle N,I}$	0,88	3,16	-	3,21	-	3,27	-	3,37	-	3,47ª)	ac	3,47ª)	ac	3,47ª)	ac
or	1,00	3,44	-	3,54	-	3,65	-	3,85	-	4,06 ^{a)}	ac	4,06 ^{a)}	ac	4,06 ^{a)}	ac
R,k f	1,13	3,79	-	3,87	-	3,95	-	4,10	-	4,26	-	4,26	-	4,26	-
>	1,25	4,14	-	4,19	-	4,25	-	4,35	-	4,45	-	4,45	-	4,45	-
	1,50	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-
	1,75	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-
	2,00	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-
	0,50	1,65	ac	1,77ª)	ac	1,77ª)	ac	1,77 ^{a)}	ac	1,77ª)	ac	1,77ª)	ac	1,77ª)	ac
	0,55	1,65	ac	1,96ª)	ac	1,96ª)	ac	1,96ª)	ac	1,96ª)	ac	1,96ª)	ac	1,96ª)	ac
	0,63	1,65	ac	2,14	ac	2,35	ac	2,35ª)	ac	2,35ª)	ac	2,35ª)	ac	2,35ª)	ac
Ш	0,75	1,65	ac	2,14	ac	2,63	ac	2,73 ^{a)}	ac	2,73ª)	ac	2,73 ^{a)}	ac	2,73ª)	ac
	0,88	1,65	-	2,14	-	2,63	-	2,86ª)	-	2,86ª)	ac	2,86ª)	ac	2,86ª)	ac
ort	1,00	1,65	-	2,14	-	2,63	-	2,98ª)	-	2,98ª)	ac	2,98ª)	ac	2,98ª)	ac
$N_{{\scriptscriptstyle R},{\scriptscriptstyle k}}$ for $t_{{\scriptscriptstyle N},{\scriptscriptstyle I}}$	1,13	1,65	-	2,14	-	2,63	-	3,40	-	3,40	-	3,40	-	3,40	-
Z	1,25	1,65	-	2,14	-	2,63	-	3,81	-	3,81	-	3,81	-	3,81	-
	1,50	1,65	-	2,14	-	2,63	-	3,92	-	4,87	-	4,87	-	4,87	-
	1,75	1,65	-	2,14	-	2,63	-	3,92	-	4,87	-	4,87	-	4,87	-
1	2,00	1,65	-	2,14	-	2,63	-	3,92	-	4,87	-	4,87	-	4,87	-

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8.3%.

CORONA, HWH, MH, DC and LP

HWH 5.5XL #2+ HX8 ALU-16B with hexagon head and seal washer $\ge @16 \text{ mm}$

Page 24 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	~4,00	~L				Mate	<u>rials</u>								
F	-01.10	-05,50 	1	~8,00	~04,50	Faste Wash		S S	tainl tainl	ess steel ess steel ess steel ess steel	(1.4 (1.4	401) - E 301) - E	N 10 N 10	088 088	
		~1,80					ponei ponei	ntI: S ntII: S	2800 235	GD, S320 - EN 100 GD or S3)GD ()25-2	or S3500 2	GD -	EN 1034	46
		~Ø16,0	-			Drilli	ng ca	pacity:	Σt _i ≤	6,0 mm	I				
		RXB						<u>bstructu</u> r substru		es no pe	erfom	rance de	etern	nined	
t	- N,II =	1,5	0	1,7	5	2,0	0	2,5	0	3,0	0	3,5	0	4,0	0
М	_{t,nom} =							-							
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,82 ^{a)} 0,83 ^{a)} 0,84 ^{a)} 0,92 ^{a)} 0,97 ^{a)} 1,09 1,21 1,44 1,44 1,44		0,82 ^{a)} 0,83 ^{a)} 0,84 ^{a)} 0,86 ^{a)} 1,00 ^{a)} 1,14 ^{a)} 1,24 1,34 1,53 1,53 1,53		0,82 ^{a)} 0,83 ^{a)} 0,84 ^{a)} 0,86 ^{a)} 1,09 ^{a)} 1,31 ^{a)} 1,39 1,47 1,63 1,63 1,63		0,82 ^{a)} 0,83 ^{a)} 0,84 ^{a)} 1,26 ^{a)} 1,66 ^{a)} 1,70 1,74 1,81 1,81 1,81		0,82 ^{a)} 0,83 ^{a)} 0,84 ^{a)} 0,86 ^{a)} 1,43 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)}		0,82 ^{a)} 0,83 ^{a)} 0,84 ^{a)} 0,86 ^{a)} 1,43 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)}		0,82 ^{a)} 0,83 ^{a)} 0,84 ^{a)} 1,43 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)}	
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65		1,77 ^{a)} 1,96 ^{a)} 2,14 2,14 2,14 2,14 2,14 2,14 2,14 2,14		1,77 ^{a)} 1,96 ^{a)} 2,35 2,63 2,63 2,63 2,63 2,63 2,63 2,63 2,63		1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 3,92 3,92 3,92		1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 4,87 4,87 4,87		1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 4,87 4,87 4,87		1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 4,87 4,87 4,87	

If component I is made of S320GD or S350GD, the values marked with $^{\rm a)}$ may be increased by 8.3%.

The values listed above are valid for hard, non pre-drilled intermediate layers (plasterboard, timber or fiber cement sheets with thickness up to 9,5 mm) between component I and component II.

CORONA, HWH, MH, DC and LP

HWH RXB 5.5XL #2P+ HX8 RX-16G with hexagon head and seal washer $\geq \emptyset$ 16 mm

Page 25 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	~4,00	~L		•		Mate	rials								
Ę	-04.10	05'50 00 1,80	<u>.</u>	~8,00	~ 04,50		ner: ponei	S S nt I: S nt II: S	tainle tainle tainle 2800 235	ess steel ess steel ess steel ess steel GD, S320 – EN 100 GD or S3	(1.4 (1.4 (1.4)GD ()25-2	401) - E 301) - E 401) - E or S3500 2	N 10 N 10 N 10 GD -	088 088 088 EN 1034	46
		~Ø16,0	-			Drilli	ng ca	pacity:	Σt _i ≤	6,0 mm	1				
		RXB		1				<u>bstructi</u> r substri		es no pe	erfom	rance de	etern	nined	
t		1,5	50	1,7	5	2,0	0	2,5	0	3,0	0	3,5	0	4,0	0
М	t,nom =							-							
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,49 ^{a)} 0,49 ^{a)} 0,49 ^{a)} 0,57 0,64 0,79 0,79 0,79		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,52 ^{a)} 0,55 ^{a)} 0,91 0,67 0,80 0,80 0,80		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,55 ^{a)} 0,60 ^{a)} 0,65 0,70 0,80 0,80		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,60 ^{a)} 0,72 ^{a)} 0,72 0,72 0,82 0,82 0,82		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,66 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)}		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,66 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)}		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,66 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)}	
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65		1,77 ^a) 1,96 ^a) 2,14 2,14 2,14 2,14 2,14 2,14 2,14 2,14		1,77°) 1,96°) 2,35 2,63 2,63 2,63 2,63 2,63 2,63 2,63 2,63	-	1,77°) 1,96°) 2,35°) 2,73°) 2,86°) 2,98°) 3,40 3,81 3,92 3,92 3,92		1,77°) 1,96°) 2,35°) 2,73°) 2,86°) 2,98°) 3,40 3,81 4,87 4,87 4,87		1,77°) 1,96°) 2,35°) 2,73°) 2,86°) 2,98°) 3,40 3,81 4,87 4,87 4,87	-	1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 4,87 4,87 4,87	

If component I is made of S320GD or S350GD, the values marked with $^{\rm a)}$ may be increased by 8.3%.

The values listed above are valid for hard, non pre-drilled intermediate layers (plasterboard, timber or fiber cement sheets with thickness up to 19 mm) between component I and component II.

CORONA, HWH, MH, DC and LP

HWH RXB 5.5XL #2P+ HX8 RX-16G with hexagon head and seal washer $\geq \emptyset$ 16 mm

Page 26 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	~4,00	~L			-	Mate	rials								
F	-05,50	- ^{~1,80}		~8,00		Faste		С	ase h	n steel hardeneo					
	00000000	••••••				Wash	ner:			nium (EN n steel,					mm
		~Ø16,00	-				pone pone	ntI: S ntII: S	2800 235	GD, S320 - EN 100 GD or S3)GD (025-2	or S3500 2	GD -	EN 1034	16
						Drilli	ng ca	pacity:	Σt _i ≤	6,0 mm	ı				
			Ŋ												
								ı <u>bstructı</u> r substr		es no pe	erfom	irance de	etern	nined	
t	,,,II =	1,5	0	1,7	5	2,0	0	2,5	50	3,0	0	3,5	0	4,0	0
M	$t_{N,II} = 1,50$ $M_{t,nom} = 1,50$ $0,50$ $0,82^{a} - 0,82^{a} - 0,82^{a} - 0,83^{a} - 0,63$ $0,63$ $0,84^{a} - 0,88^{a} - 0,84^{a} - 0,75$ $0,86^{a} - 0,86^{a} - 0,86^{a} - 0,86^{a} - 0,86^{a} - 0,75$ $1,00$ $0,97^{a} - 1,14^{a} - 1,53$ $1,75$ $1,44$ $-1,53$ $1,75$ $1,44$ $-1,53$ $-1,75$ $1,44$ $-1,53$ $-1,75$ $1,44$ $-1,53$ $-1,75$ $1,44$ $-1,53$ $-1,75$ $-2,00$ $1,44$ $-1,53$ $-1,75$ $-2,14$ $-0,55$ $-2,14$ $-0,75$ $-2,14$ $-1,55$ $-1,55$ $-2,14$ $-1,55$ $-1,5$							-							
	0,50	0,82ª)	-	0,82ª)	-	0,82ª)	-	0,82ª)	-	0,82ª)	-	0,82ª)	-	0,82ª)	-
	0,55	0,83ª)	-	0,83 ^{a)}	-	0,83ª)	-	0,83ª)	-	0,83ª)	-	0,83ª)	-	0,83ª)	-
	0,63	0,84ª)	-	0,84 ^{a)}	-	0 , 84ª)	-	0,84 ^{a)}	-	0,84 ^{a)}	-	0,84ª)	-	0,84ª)	-
П	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0,86 ^{a)}	-	0,86ª)	-	0,86 ^{a)}	-	0,86ª)	-	0,86ª)	-
L, I	0,88	0,92ª)	-	1,00ª)	-	1,09 ^{a)}	-	1,26 ^{a)}	-	1,43ª)	-	1,43ª)	-	1,43ª)	-
or t	1,00	0,97ª)	-	$1,14^{a}$	-	1,31ª)	-	1,66ª)	-	2,00ª)	-	2,00ª)	-	2,00ª)	-
۲× ۲	1,13	1,09	-	1,24	-	1,39	-	1,70	-	2,00 ^{a)}	-	2,00ª)	-	2,00ª)	-
>"	1,25	1,21	-	1,34	-	1,47	-	1,74	-	2,00 ^{a)}	-	2,00 ^{a)}	-	2,00ª)	-
	1,50	1,44	-	1,53	-	1,63	-	1,81	-	2,00 ^{a)}	-	2,00ª)	-	2,00ª)	-
	1,75	1,44	-	1,53	-	1,63	-	1,81	-	2,00 ^{a)}	-	2,00ª)	-	2,00ª)	-
	2,00	1,44	-	1,53	-	1,63	-	1,81	-	2,00ª)	-	2,00ª)	-	2,00ª)	-
	0,50	1,65	-	1,77 ^{a)}	-	1,77ª)	-	1,77ª)	-	1,77ª)	-	1,77 ^{a)}	-	1,77ª)	-
	0,55	1,65	-	1,96 ^{a)}	-	1,96 ^{a)}	-	1,96ª)	-	1,96ª)	-	1,96ª)	-	1,96ª)	-
	0,63	1,65	-	2,14	-	2,35	-	2,35 ^{a)}	-	2,35 ^{a)}	-	2,35ª)	-	2,35ª)	-
Ш	0,75	1,65	-	2,14	-	2,63	-	2,73 ^{a)}	-	2,73 ^{a)}	-	2,73ª)	-	2,73 ^{a)}	-
t _{N,I}	0,88	1,65	-	2,14	-	2,63	-	2,86ª)	-	2,86ª)	-	2,86ª)	-	2,86ª)	-
or	1,00	1,65	-	2,14	-	2,63	-	2,98ª)	-	2,98ª)	-	2,98ª)	-	2,98ª)	-
$N_{{\scriptscriptstyle R},{\scriptscriptstyle k}}$ for	1,13	1,65	-	2,14	-	2,63	-	3,40	-	3,40	-	3,40	-	3,40	-
Z	1,25	1,65	-	2,14	-	2,63	-	3,81	-	3,81	-	3,81	-	3,81	-
	1,50	1,65	-	2,14	-	2,63	-	3,92	-	4,87	-	4,87	-	4,87	-
	1,75	1,65	-	2,14	-	2,63	-	3,92	-	4,87	-	4,87	-	4,87	-
	2,00	1,65	-	2,14	-	2,63	-	3,92	-	4,87	-	4,87	-	4,87	-

If component I is made of S320GD or S350GD, the values marked with $^{a)}$ may be increased by 8.3%.

The values listed above are valid for hard, non pre-drilled intermediate layers (plasterboard, timber or fiber cement sheets with thickness up to 9,5 mm) between component I and component II.

CORONA, HWH, MH, DC and LP

HWH 5.5XL #2P+ HX8 ALU-16B with hexagon head and seal washer $\geq \emptyset$ 16 mm

Page 27 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	~4,00	-	Mate	rials											
	-04,10	~1,80		~8,0	-04,50	Faste Wasł		C A	ase l Iumi	n steel hardeneo hium (EN n steel,	WA I	-1100-H	18),		mm
		~Ø16,00					pone pone	ntI: S ntII: S	2800 235	GD, S320 - EN 100 GD or S3)GD ()25-2	or S3500 2	GD -	EN 1034	16
						Drilli	ng ca	pacity:	Σt _i ≤	6,0 mm	1				
								i <u>bstructi</u> r substr		es no pe	erforr	nrance de	etern	nined	
t	N,II =	1,5	0	1,7	5	2,0	0	2,5	0	3,0	0	3,5	0	4,0	0
М	t,nom =							-							
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,34 ^{a)} 0,37 ^{a)} 0,49 ^{a)} 0,49 ^{a)} 0,49 ^{a)} 0,57 0,57 0,64 0,79 0,79 0,79		0,34 ^{a)} 0,37 ^{a)} 0,49 ^{a)} 0,52 ^{a)} 0,55 ^{a)} 0,91 0,67 0,80 0,80		0,34 ^{a)} 0,42 ^{a)} 0,49 ^{a)} 0,55 ^{a)} 0,60 ^{a)} 0,65 0,70 0,80 0,80 0,80		0,34 ^{a)} 0,37 ^{a)} 0,49 ^{a)} 0,60 ^{a)} 0,72 ^{a)} 0,74 0,77 0,82 0,82 0,82		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,66 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)}		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,66 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)}		0,34 ^{a)} 0,37 ^{a)} 0,49 ^{a)} 0,66 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)}	- - - - - - - - - - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65		1,77 ^a) 1,96 ^a) 2,14 2,14 2,14 2,14 2,14 2,14 2,14 2,14	-	1,77°) 1,96°) 2,35 2,63 2,63 2,63 2,63 2,63 2,63 2,63 2,63		1,77 ^a) 1,96 ^a) 2,35 ^a) 2,73 ^a) 2,86 ^a) 2,98 ^a) 3,40 3,81 3,92 3,92 3,92		1,77 ^a) 1,96 ^a) 2,35 ^a) 2,73 ^a) 2,86 ^a) 2,98 ^a) 3,40 3,81 4,87 4,87 4,87	-	1,77°) 1,96°) 2,35°) 2,73°) 2,86°) 2,98°) 3,40 3,81 4,87 4,87 4,87	-	1,77°) 1,96°) 2,35°) 2,73°) 2,86°) 2,98°) 3,40 3,81 4,87 4,87 4,87	

If component I is made of S320GD or S350GD, the values marked with $^{\rm a)}$ may be increased by 8.3%.

The values listed above are valid for hard, non pre-drilled intermediate layers (plasterboard, timber or fiber cement sheets with thickness up to 19 mm) between component I and component II.

CORONA, HWH, MH, DC and LP

HWH 5.5XL #2P+ HX8 ALU-16B with hexagon head and seal washer $\geq \emptyset$ 16 mm

Page 28 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	~4,00	~L				Materials							
	-04,10	93 93 93 93 94 94 94 94 94 94 94 94 94 94		-04,90		Fastener: Washer: Componer Componer		Stainless Stainless Stainless S280GD, S235 – E S280GD	steel steel steel S320 N 100	(1.4401) (1.4301) (1.4401) GD or S3 25-2) - EN) - EN) - EN 350GD	10088 10088 10088 - EN 103	346
						Drilling ca	pacity	$\Sigma t_i \leq 12$	2,5 mn	n			
				1		<u>Fimber su</u> For timber	r subst	tructures				1	
t	$E_{N,II} = 4,00$ 5,00				0	6,0	0	8,0	0	10,	00	12,0	00
M	t,nom =							-					
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	2,26 ^{a)} 2,54 ^{a)} 2,97 ^{a)} 3,67 ^{a)} 4,38 ^{a)} 5,08 ^{a)} 5,53 5,98 6,87 6,87 6,87	ac ac ac ac ac ac ac ac ac ac -	2,26 ^{a)} 2,54 ^{a)} 2,97 ^{a)} 3,67 ^{a)} 4,38 ^{a)} 5,08 ^{a)} 5,53 5,98 6,87 6,87 6,87	ac ac ac ac ac ac ac ac ac ac ac -	2,26 ^a) 2,54 ^a) 2,97 ^a) 3,67 ^a) 4,38 ^a) 5,08 ^a) 5,53 5,98 6,87 6,87 6,87	ac ac ac ac ac ac ac ac ac ac -	2,26 ^{a)} 2,54 ^{a)} 2,97 ^{a)} 3,67 ^{a)} 4,38 ^{a)} 5,08 ^{a)} 5,53 5,98 6,87 6,87 6,87	ac ac ac ac ac ac ac ac ac ac -	2,26 ^a) 2,54 ^a) 2,97 ^a) 3,67 ^a) 4,38 ^a) 5,08 ^a) 5,53 5,98 6,87 6,87 6,87	ac ac ac ac ac ac a a a -	2,26 ^{a)}	a - - - - - - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 4,87 4,87 4,87	ac ac ac ac ac ac ac ac ac -	1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 4,87 4,87 4,87	ac ac ac ac ac ac ac ac ac ac -	1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 4,87 4,87 4,87 4,87	ac ac ac ac ac ac ac ac ac -	1,77 ^{a)} 1,96 ^{a)} 2,35 ^{a)} 2,73 ^{a)} 2,86 ^{a)} 2,98 ^{a)} 3,40 3,81 4,87 4,87 4,87 4,87	ac ac ac ac ac ac ac ac ac -	1,77°) 1,96°) 2,35°) 2,73°) 2,86°) 2,98°) 3,40 3,81 4,87 4,87 4,87 4,87	ас ас ас ас ас а а а а -	1,77 ^{a)}	a - - - - - -

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8.3%.

CORONA, HWH, MH, DC and LP

HWH RXB 5.5XL #5 RX-16G with hexagon head and seal washer $\ge @16 \text{ mm}$

Page 29 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	•	~L				Materials							
	 -4,00 -4,00 -9,00 -9,00 -9,00 -9,00 	I				Fastener:		Carbon s		and cal			
	~	+	~15,00	-04,90		Washer:		Case har Aluminiu					3 mm
E			1,00			Componer Componer		Carbon s S280GD, S235 - E S280GD	S320 N 100	GD or S3 25-2	350GD	- EN 103	346
		~Ø16,00			Γ	Drilling ca	pacity	: Σt _i ≤ 12	2,5 mn	n			
		-010,00				<u>Timber su</u> For timber			no pei	rfomranc	e dete	rmined	
t	_{N,II} = 4,00 5,0				0	6,0	0	8,0	0	10,	00	12,0	00
М	_{t,nom} =							-					
	0,50	2,26ª)	ac	2,26ª)	ac	2,26ª)	ac	2,26ª)	ac	2,26ª)	ac	2,26ª)	а
	0,55	2,54ª)	ac	2,54ª)	ac	2,54ª)	ac	2,54ª)	ac	2,54ª)	ac	-	-
	0,63	2,97ª)	ac	2,97ª)	ac	2,97ª)	ac	2,97ª)	ac	2,97ª)	ac	-	-
П	0,75	3,67ª)	ac	3,67ª)	ac	3,67ª)	ac	3,67ª)	ac	3,67ª)	ac	-	-
$V_{\scriptscriptstyle R,k}$ for $t_{\scriptscriptstyle N,I}$	0,88	4,38ª)	ac	4,38ª)	ac	4,38ª)	ac	4,38ª)	ac	4,38ª)	ac	-	-
or	1,00	5,08ª)	ac	5,08ª)	ac	5,08ª)	ac	5,08ª)	ac	5,08ª)	ac	-	-
,× f	1,13	5,53	ac	5,53	ac	5,53	ac	5,53	ac	5,53	а	-	-
>	1,25	5,98	ac	5,98	ac	5,98	ac	5,98	ac	5,98	а	-	-
	1,50	6,87	ac	6,87	ac	6,87	ac	6,87	ac	6,87	а	-	-
	1,75	6,87	-	6,87	-	6,87	-	6,87	-	6,87	-	-	-
	2,00	6,87	-	6,87	-	6,87	-	6,87	-	6,87	-	-	-
	0,50	1,77ª)	ac	1,77ª)	ac	1,77 ^{a)}	ac	1,77ª)	ac	1,77ª)	ac	1,77ª)	а
	0,55	1,96ª)	ac	1,96ª)	ac	1,96ª)	ac	1,96ª)	ac	1,96ª)	ac	-	-
	0,63	2,35ª)	ac	2,35 ^{a)}	ac	2,35 ^{a)}	ac	2,35ª)	ac	2,35ª)	ac	-	-
П	0,75	2,73ª)	ac	2,73ª)	ac	2,73ª)	ac	2,73ª)	ac	2,73ª)	ac	-	-
t _{N,I}	0,88	2,86ª)	ac	2,86ª)	ac	2,86ª)	ac	2,86ª)	ac	2,86ª)	ac	-	-
or	1,00	2,98ª)	ac	2,98ª)	ac	2,98ª)	ac	2,98ª)	ac	2,98ª)	ac	-	-
$N_{{\scriptscriptstyle R},{\scriptscriptstyle k}}$ for $t_{{\scriptscriptstyle N},{\scriptscriptstyle I}}$	1,13	3,40	ac	3,40	ac	3,40	ac	3,40	ac	3,40	а	-	-
Z	1,25	3,81	ac	3,81	ac	3,81	ac	3,81	ас	3,81	а	-	-
	1,50	4,87	ac	4,87	ac	4,87	ac	4,87	ас	4,87	а	-	-
	1,75	4,87	-	4,87	-	4,87	-	4,87	-	4,87	-	-	-
	2,00	4,87	-	4,87	-	4,87	-	4,87	-	4,87	-	-	-

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8.3%.

CORONA, HWH, MH, DC and LP

HWH 5.5XL #5 ALU-16G with hexagon head and seal washer $\geq \emptyset$ 16 mm

Page 30 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

		~L	~1,60		-		Mate	rials									
	-03:50	⁸⁸ ⁴ ⁶ / ₂ , → → → → → → → → → →		- ^{~4,50}	~02,90	-	Com	er: ponent ponent	II:	Stainle Stainle None S280GI S235 – S280GI	ss st D, S EN D, S	eel (1.4 320GD 10025- 320GD	1401 or S 2 or S	.) - EN 350GD	1008 – El	38 N 1034	
						L	Drillir	ng capa	acity	: Σt _i ≤ 2	2 x 1	.,25 mr	n				
)		I		<u>er subs</u> mber s		<u>tures</u> tructure	es no	perfon	nran	ce dete	ermir	ned		
t	N,II =							0,7	5	0,8	8	1,0	0	1,1	3	1,2	5
M	t,nom =									-							
$V_{R,k}$ for $t_{N,I} =$	0,63 0,75	1,52 ^{a)} 1,52 ^{a)} 1,52 ^{a)} 1,52 ^{a)} 1,52 ^{a)} 1,52 ^{a)} - - -		1,52 ^{a)} 1,64 ^{a)} 1,64 ^{a)} 1,64 ^{a)} 1,64 ^{a)} 1,64 ^{a)} 1,64 ^{a)} - - -		1,52 ^{a)} 1,64 ^{a)} 1,82 ^{a)} 1,82 ^{a)} 1,82 ^{a)} 1,82 ^{a)} 1,82 ^{a)} 1,82 ^{a)} - - -	- - - -	1,52 ^{a)} 1,64 ^{a)} 2,11 ^{a)} 2,11 ^{a)} 2,11 ^{a)} 2,11 ^{a)} 2,11 ^{a)} - - -	-	1,52 ^{a)} 1,64 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 2,79 ^{a)} 2,79 ^{a)} 2,79 ^{a)} - - - -	- - -	1,52 ^{a)} 1,64 ^{a)} 1,82 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 3,47 ^{a)} 3,47 ^{a)} - - - -	- - - -	1,52 ^{a)} 1,64 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 3,47 ^{a)} 3,47 ^{a)} - - - -	- - -	1,52 ^{a)} 1,64 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 3,47 ^{a)} 3,47 ^{a)} - - - -	- - - - - - - - - - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} 0,57 ^{a)} - -		0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} - - -		0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} - - -	- - - -	$1,05^{a)}$ $1,05^{a)}$ $1,05^{a)}$ $1,05^{a)}$ $1,05^{a)}$ $1,05^{a)}$ $1,05^{a)}$ $1,05^{a)}$ - - - -		1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} - - -	- - -	1,35 ^{a)} 1,53 ^{a)} 1,58 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} - - -		1,35 ^{a)} 1,53 ^{a)} 1,81 ^{a)} 1,92 1,92 1,92 1,92 1,92 - - - -	-	1,35 ^{a)} 1,53 ^{a)} 1,81 ^{a)} 2,22 2,22 2,22 2,22 2,22 - - - -	

If both components I and II are made of S320GD or S350GD, the values marked with $^{\rm a)}$ may be increased by 8,3%.

CORONA, HWH, MH, DC and LP

MH RXB 4.8XL #1 TX20 with mushroom head with TX drive system

Page 31 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	-	~L	_~1,60	•			Mate	rials									
	-03,56	-04'8		~4,50	~ 02,90			er: ponent		Carbon Case ha None S280GI S235 -	arde D, S	ned and 320GD	or S			N 1034	6
							Com	onent	11.	5255 - S280GI				350GD	– Eľ	N 1034	6
		~Ø9,50		•			Drillir	ng capa	city	: Σt _i ≤ 2	2 x 1	.,25 mr	n				
		= 0,50 0,55						<u>er subs</u> mber s		<u>tures</u> tructure	es no	perfor	nran	ce dete	ermir	ned	
t	N,II =							0,7	5	0,8	8	1,0	0	1,1	3	1,2	5
M	t,nom =							_		-				_			
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,52°) 1,52°) 1,52°) 1,52°) 1,52°) 1,52°) 1,52°) 1,52°) - - - - -	- -	1,52 ^{a)} 1,64 ^{a)} 1,64 ^{a)} 1,64 ^{a)} 1,64 ^{a)} 1,64 ^{a)} 1,64 ^{a)} - - -	- - - -	1,52 ^{a)} 1,64 ^{a)} 1,82 ^{a)} 1,82 ^{a)} 1,82 ^{a)} 1,82 ^{a)} 1,82 ^{a)} - - -		1,52 ^{a)} 1,64 ^{a)} 2,11 ^{a)} 2,11 ^{a)} 2,11 ^{a)} 2,11 ^{a)} 2,11 ^{a)} - - - -		1,52 ^{a)} 1,64 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 2,79 ^{a)} 2,79 ^{a)} 2,79 ^{a)} - - - -		1,52 ^{a)} 1,64 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 3,47 ^{a)} 3,47 ^{a)} - - -		1,52 ^{a)} 1,64 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 3,47 ^{a)} 3,47 ^{a)} - - - -		1,52 ^{a)} 1,64 ^{a)} 2,11 ^{a)} 2,79 ^{a)} 3,47 ^{a)} 3,47 ^{a)} - - - -	- - - - - - - - - - - - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,57°) 0,57°) 0,57°) 0,57°) 0,57°) 0,57°) 0,57°) - - - -		0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} 0,62 ^{a)} - - -		0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} - - -	- - - -	1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} - - -		1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} - - -		1,35 ^{a)} 1,53 ^{a)} 1,58 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} - - -		1,35 ^{a)} 1,53 ^{a)} 1,81 ^{a)} 1,92 1,92 1,92 1,92 1,92 - - - -		1,35 ^{a)} 1,53 ^{a)} 1,81 ^{a)} 2,22 2,22 2,22 2,22 2,22 2,22 - - - -	- - - - - - - - -

If both components I and II are made of S320GD or S350GD, the values marked with $^{\rm a)}$ may be increased by 8,3%.

CORONA, HWH, MH, DC and LP

DC 4.8XL #1 TX20 with mushroom head with TX drive system

Page 32 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	•	~L		-			Mate	rials									
	-d9.50	05 ¹ 07 1.6	I	4,50				er: oonent	I: II:	Stainle Stainle None S280GI S235 – S280GI	ss st D, S: EN	eel (1. 320GD 10025-	4401 or S ·2	.) - EN 350GD	1008 – Eľ	38 N 1034	
		~Ø13,80	-				Drillir	ng capa	acity	$\Sigma \Sigma t_i \leq 2$	2 x 1	.,25 mi	m				
								<u>er subs</u> mber s		<u>tures</u> ructure	es no	perfor	nran	ce dete	ermir	ned	
t	_{N,II} =	0,50		0,5	5	0,	63	0,7	5	0,8	8	1,0	0	1,1	3	1,2	5
M	.,nom =									-							
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,07 ^{a)} - 1,07 ^{a)} - 1,07 ^{a)} - 	- 1 - 1 - 1 - 1 - 1 - 1	1,07 ^{a)} 1,30 ^{a)} 1,30 ^{a)} 1,30 ^{a)} 1,30 ^{a)} 1,30 ^{a)} 1,30 ^{a)} 1,30 ^{a)} - -	- -	1,07 ^{a)} 1,30 ^{a)} 1,65 ^{a)} 1,65 ^{a)} 1,65 ^{a)} 1,65 ^{a)} 1,65 ^{a)} - - -	- - - -	1,07 ^{a)} 1,30 ^{a)} 1,65 ^{a)} 2,22 ^{a)} 2,22 ^{a)} 2,22 ^{a)} 2,22 ^{a)} - - - -		1,07 ^{a)} 1,30 ^{a)} 1,65 ^{a)} 2,62 ^{a)} 2,62 ^{a)} 2,62 ^{a)} 2,62 ^{a)} - - - -	- - -	1,07 ^{a)} 1,30 ^{a)} 1,65 ^{a)} 2,22 ^{a)} 2,62 ^{a)} 3,02 ^{a)} 3,02 ^{a)} - - -		1,07 ^{a)} 1,30 ^{a)} 1,65 ^{a)} 2,22 ^{a)} 2,62 ^{a)} 3,02 ^{a)} 3,56 ^{a)} - - -	- - - -	1,07 ^{a)} 1,30 ^{a)} 1,65 ^{a)} 2,22 ^{a)} 2,62 ^{a)} 3,02 ^{a)} 3,56 ^{a)} 4,09 ^{a)} - -	- - - - - - - - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,57 ^{a)} - 0,57 ^{a)} - 0,57 ^{a)} - 0,57 ^{a)} - 0,57 ^{a)} - 0,57 ^{a)} - 0,57 ^{a)} - 	- C - C - C - C),62 ^{a)}),62 ^{a)}),62 ^{a)}),62 ^{a)}),62 ^{a)}),62 ^{a)}),62 ^{a)} - - -	-	0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} 0,71 ^{a)} - - -	- - - -	1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} 1,05 ^{a)} - - -		1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} 1,34 ^{a)} - - -	- - -	1,45 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} 1,62 ^{a)} - - -	- - - - - - -	1,45 ^{a)} 1,65 ^{a)} 1,92 1,92 1,92 1,92 1,92 1,92 - - -	-	1,45 ^{a)} 1,65 ^{a)} 2,22 2,22 2,22 2,22 2,22 2,22 - - - -	- - - - - - - - - -

If both components I and II are made of S320GD or S350GD, the values marked with $^{\rm a)}$ may be increased by 8,3%.

CORONA, HWH, MH, DC and LP

CORONA RXB 4.8XL #1 TX20 EPDM-9,5B with undercut, mushroom head with TX drive system and EPDM seal ring

Page 33 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

	Compor	r: : nent I: nent II:	Stainles None S280GD Structur	s steel (1.4301) - EN 10088 s steel (1.4401) - EN 10088 o, S320GD or S350GD - EN 10346 ral timber - EN 14081
	<u>Timber</u> For tim	<u>substruct</u> per subst 4,992 Nr	ructures	s perfomrance determined with r $I_{ef} \ge 24 \text{ mm}$
V _o , for t _v =	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,09 ^{a)} 1,20 ^{a)} 1,64 ^{a)} 2,18 ^{a)} 2,18 ^{a)} 2,18 ^{a)} 2,18 ^{a)} 2,18 ^{a)} 2,18 ^{a)} - -	Bearing resistance of component I, V _{R,I,k}	
N for t.	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,43 6,56 - - - -	Pull-through resistance of component I, $N_{R,\mathrm{I},k}$	

CORONA, HWH, MH, DC and LP

CORONA RXB 4.8XL #1 TX20 EPDM-9,5B for timber substructures with undercut, mushroom head with TX drive system and EPDM seal ring

Page 34 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt

		۲~ ای او		-		Mate	erials								
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~8,00	~@4,50		Faste	ener:			ess stee					
	06,50		1,80			Stainless steel (1.4401) - EN 10088           Washer:         None           Component I:         S280GD, S320GD or S350GD - EN 1034           Component II:         S235 - EN 10025-2           S280GD or S320GD - EN 10346						46			
		~Ø13,80				Drilli	ng ca	pacity:	Σt _i ≤	6,0 mm	ו				
	t _{N,II} = 1,50 1,75							<u>bstruct</u> r substr		es no pe	erfom	rance d	eterm	nined	
t	t _{N,II} = 1,50 1,75					2,0	0	2,5	50	3,0	0	3,5	0	4,0	0
M	t,nom =							-							
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,16 3,44 3,79 4,14 4,84 4,84 4,84	ac - - - - - - - - - -	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,21 3,54 3,87 4,19 4,84 4,84 4,84	ac ac ac - - - - - - -	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,27 3,65 3,95 4,25 4,84 4,84 4,84	ac ac ac - - - - - - -	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 3,37 3,85 4,10 4,35 4,84 4,84 4,84	ac ac ac - - - - - -	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,47 ^{a)} 4,06 ^{a)} 4,26 4,45 4,84 4,84 4,84	ac ac ac ac ac ac - - - -	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,47 ^{a)} 4,06 ^{a)} 4,26 4,45 4,84 4,84 4,84	ac ac ac ac ac ac - - - -	2,04 ^{a)} 2,21 ^{a)} 2,46 ^{a)} 2,88 ^{a)} 3,47 ^{a)} 4,06 ^{a)} 4,26 4,45 4,84 4,84 4,84	ac ac ac ac ac ac - - - - - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,45 ^{a)} 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65	ac ac ac - - - -	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 2,14 2,14 2,14 2,14 2,14 2,14 2,14 2,14	ac ac ac - - - - -	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 2,63 2,63 2,63 2,63 2,63 2,63 2,63 2,63	ac ac ac - - - -	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 3,92 3,92 3,92 3,92 3,92 3,92	ac ac ac - - - -	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,21 5,21 5,21 5,21 5,21 5,21	ac ac ac ac ac - - - -	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,43 5,63 5,63 5,63 5,63	ac ac ac ac ac - - - -	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,43 6,05 6,05 6,05 6,05	ac ac ac ac ac ac - - - -

If component I is made of S320GD or S350GD, the values marked with  $^{a)}$  may be increased by 8.3%.

CORONA, HWH, MH, DC and LP

CORONA RXB 5.5XL #2+ TX20 EPDM-9,5B with undercut, mushroom head with TX drive system and EPDM seal ring

### Page 35 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt



	• • •	L~ 2019		-		Mate	erials								
	09'60~	~ 05,50	~1,80	~00,8 ~07,20 ~07,8	-	Wasł		C	Case h Ione			l galvani			4.5
		♥₩₩₩			L	Component I: S280GD, S320GD or S350GD – EN 10346 Component II: S235 – EN 10025-2 S280GD or S320GD – EN 10346								46	
	-	~Ø13,8	30	1		Drilli	ng ca	pacity:	Σt _i ≤	6,0 mm	า				
								<u>bstruct</u> r substr		es no pe	erforr	irance d	eterm	nined	
t	- N,II =	1,5	50	1,7	'5	2,0	0	2,5	50	3,0	0	3,5	0	4,0	0
М	_{t,nom} =							-							
	0,50	2,04ª)	ac	2,04 ^{a)}	ас	2,04ª)	ac	2,04ª)	ac	2,04ª)	ac	2,04ª)	ac	2,04ª)	ac
	0,55	2,21 ^{a)}	-	2,21 ^{a)}	ac	2,21 ^{a)}	ac	2,21 ^{a)}	ac	2,21 ^{a)}	ac	2,21 ^{a)}	ac	2,21ª)	ac
	0,63	2,46 ^{a)}	-	2,46 ^{a)}	ac	2,46 ^{a)}	ac	2,46 ^{a)}	ac	2,46 ^{a)}	ac	2,46 ^{a)}	ac	2,46 ^{a)}	ac
 	0,75	2,88ª)	-	2,88ª)	ac	2,88ª)	ac	2,88	ac	2,88ª)	ac	2,88ª)	ac	$2,88^{a}$	ac
$V_{\scriptscriptstyle R,k}$ for $t_{\scriptscriptstyle N,I}$	0,88	3,16 3,44	-	3,21	-	3,27 3,65	-	3,37 3,85	-	3,47 ^{a)} 4,06 ^{a)}	ac	3,47 ^{a)} 4,06 ^{a)}	ac	3,47 ^{a)} 4,06 ^{a)}	ac
for	1,00 1,13	3,79	-	3,54 3,87	-	3,95	-	4,10	-	4,00%	ac -	4,00%	ac -	4,06	ac -
× ۳, к	1,15	4,14	-	4,19	-	4,25	-	4,10	-	4,20	-	4,20	-	4,20	-
	1,50	4,84	_	4,84	_	4,84	_	4,84	_	4,84	_	4,84	_	4,84	_
	1,75	4,84	-	4,84	_	4,84	-	4,84	_	4,84	_	4,84	_	4,84	-
	2,00	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-	4,84	-
	0,50	1,45ª)	ac	1,45ª)	ас	1,45ª)	ac	1,45ª)	ас	1,45ª)	ac	1,45ª)	ac	1,45ª)	ac
	0,55	1,65	ac	1,65ª)	ac	1,65ª)	ac	1,65ª)	ac	1,65ª)	ac	1,65ª)	ac	1,65ª)	ac
	0,63	1,65	ac	1,97 ^{a)}	ac	1,97ª)	ac	1,97 ^{a)}	ac	1,97ª)	ac	1,97ª)	ac	1,97ª)	ac
Ш	0,75	1,65	ac	2,14	ac	2,63	ac	3,06ª)	ac	3,06ª)	ac	3,06ª)	ac	3,06ª)	ac
t _{N,I}	0,88	1,65	-	2,14	-	2,63	-	3,68ª)	-	3,68ª)	ac	3,68ª)	ac	3,68ª)	ac
$N_{{\scriptscriptstyle R},{\scriptscriptstyle k}}$ for $t_{{\scriptscriptstyle N},{\scriptscriptstyle I}}$	1,00	1,65	-	2,14	-	2,63	-	3,92	-	4,29ª)	ac	4,29ª)	ac	4,29ª)	ac
R,k f	1,13	1,65	-	2,14	-	2,63	-	3,92	-	5,21	-	5,43	-	5,43	-
Z	1,25	1,65	-	2,14	-	2,63	-	3,92	-	5,21	-	6,19	-	6,56	-
	1,50	1,65	-	2,14	-	- 2,63 - 3,92 - 5,21 - 6,19 - 6,56 -									-
	1,75	1,65	-	2,14	-	2,63	-	3,92	-	5,21	-	6,19	-	6,56	-
	2,00	1,65	-	2,14	-	2,63	-	3,92	-	5,21	-	6,19	-	6,56	-

If component I is made of S320GD or S350GD, the values marked with  $^{a)}$  may be increased by 8.3%.

CORONA, HWH, MH, DC and LP

CORONA 5.5XL #2+ TX20 EPDM-9,5B with undercut, mushroom head with TX drive system and EPDM seal ring

### Page 36 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt



	~03,50	~L	0 0	~8,00	-04,50	Com	ener: ner: poner poner	S N nt I: S nt II: S S	tainl one 2800 235 2800	ess steel ess steel GD, S320 – EN 100 GD or S3 6,0 mm	(1.4 )GD c )25-2 20GE	401) - E or S3500 2	SD -	088 EN 1034	46
		1,5		1,7	5		imbe	bstructu r substru 2,5	uctur	-es no pe 3,0		rance de 3,5		nined	0
	, _{N,II} = =	1,5	0	1,7	5	2,0	0	- 2,5	0	3,0	0	5,5	0	4,0	0
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,82 ^{a)} 0,83 ^{a)} 0,86 ^{a)} 0,92 ^{a)} 0,97 ^{a)} 1,09 1,21 1,44 1,44 1,44		0,82 ^{a)} 0,83 ^{a)} 0,84 ^{a)} 0,86 ^{a)} 1,14 ^{a)} 1,24 1,34 1,53 1,53 1,53	- - -	0,82°) 0,83°) 0,86°) 1,09°) 1,31°) 1,39 1,47 1,63 1,63 1,63	-	0,82 ^{a)} 0,83 ^{a)} 0,86 ^{a)} 1,26 ^{a)} 1,66 ^{a)} 1,70 1,74 1,81 1,81 1,81		0,82 ^{a)} 0,83 ^{a)} 0,86 ^{a)} 1,43 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)}		0,82 ^{a)} 0,83 ^{a)} 0,86 ^{a)} 1,43 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)}		0,82 ^{a)} 0,83 ^{a)} 0,86 ^{a)} 1,43 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)} 2,00 ^{a)}	
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,45 ^{a)} 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65		1,45 ^{a)} 1,65 ^{a)} 2,14 2,14 2,14 2,14 2,14 2,14 2,14 2,14	-	1,45 ^{a)} 1,65 ^{a)} 2,63 2,63 2,63 2,63 2,63 2,63 2,63 2,63	-	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 3,92 3,92 3,92 3,92 3,92 3,92 3,92	- - - - - - - -	1,45 ^a ) 1,65 ^a ) 1,97 ^a ) 3,06 ^a ) 3,68 ^a ) 4,29 ^a ) 5,21 5,21 5,21 5,21 5,21 5,21	-	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,43 5,63 5,63 5,63 5,63 5,63		1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,43 6,05 6,05 6,05 6,05	

If component I is made of S320GD or S350GD, the values marked with  $^{\rm a)}$  may be increased by 8.3%.

The values listed above are valid for hard, non pre-drilled intermediate layers (plasterboard, timber or fiber cement sheets with thickness up to 9,5 mm) between component I and component II.

CORONA, HWH, MH, DC and LP

CORONA RXB 5.5XL #2P+ TX20 EPDM-9,5B with undercut, mushroom head with TX drive system and EPDM seal ring

## Page 37 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt



	~Ø9,50 ~Ø4,10 ~Ø5,50	~L	1,80	~8,00	~04,50	<u>Mate</u> Faste		S	tainl	ess steel	(1.4	301) - F	N 10	088	
	<u> </u>	~Ø13,8	<u> </u>			Wash Com	ner: ponei	S N nt I: S nt II: S	tainl Ione 2800 235	ESS steel GD, S320 – EN 100 GD or S3	(1.4) )GD ( )25-2	401) - E or S3500 2	SD -	088 EN 1034	46
			<u> </u>			Drilli	ng ca	pacity:	Σt _i ≤	6,0 mm	I				
	Timber si           For timber           t _{N,II} =         1,50         1,75         2,00									es no pe	erfom	rance de	etern	nined	
t	N,II =	1,5	0	1,7	5	2,0	0	2,5	0	3,0	0	3,5	0	4,0	0
М	_{t,nom} =							-							
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,49 ^{a)} 0,49 ^{a)} 0,49 ^{a)} 0,57 0,64 0,79 0,79 0,79		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,52 ^{a)} 0,55 ^{a)} 0,91 0,67 0,80 0,80	- - - - - - - - -	0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,55 ^{a)} 0,60 ^{a)} 0,65 0,70 0,80 0,80 0,80		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,60 ^{a)} 0,72 ^{a)} 0,74 0,77 0,82 0,82 0,82		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,66 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)}		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,66 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)}		0,34 ^{a)} 0,37 ^{a)} 0,42 ^{a)} 0,66 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)} 0,83 ^{a)}	
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,45 ^{a)} 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65		1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 2,14 2,14 2,14 2,14 2,14 2,14 2,14 2,14	-	1,45 ^{a)} 1,65 ^{a)} 2,63 2,63 2,63 2,63 2,63 2,63 2,63 2,63		1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 3,92 3,92 3,92 3,92 3,92 3,92 3,92		1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,21 5,21 5,21 5,21 5,21 5,21		1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,43 5,63 5,63 5,63 5,63		1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,43 6,05 6,05 6,05 6,05	

If component I is made of S320GD or S350GD, the values marked with  $^{a)}$  may be increased by 8.3%.

The values listed above are valid for hard, non pre-drilled intermediate layers (plasterboard, timber or fiber cement sheets with thickness up to 19 mm) between component I and component II.

CORONA, HWH, MH, DC and LP

CORONA RXB 5.5XL #2P+ TX20 EPDM-9,5B with undercut, mushroom head with TX drive system and EPDM seal ring

### Page 38 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt



	-04,50	~L	~15.0	~04,90	1	Materials							
		~1.00 ~Ø13.80	-			Fastener: Washer: Componer Componer	nt II:	S280GD	steel S320 N 100 or S32	(1.4401) GD or S3 25-2 20GD – E	) - EN 350GD	10088 - EN 103	346
					Ľ	Drilling ca	pacity	$2: 2t_i \leq 12$	2,5 mn	n			
			)	1		<u>Fimber su</u> For timber			no pe	rfomranc	e dete	rmined	
t	$t_{N,II} = 4,00$ 5,00 $\eta_{t,nom} =$				0	6,0	0	8,0	0	10,	00	12,0	00
М	_{t,nom} =							-					
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	2,26 ^{a)} 2,54 ^{a)} 2,97 ^{a)} 3,67 ^{a)} 4,38 ^{a)} 5,08 ^{a)} 5,53 5,98 6,87 6,87 6,87	ac ac ac ac ac ac ac ac ac ac -	2,26 ^{a)} 2,54 ^{a)} 2,97 ^{a)} 3,67 ^{a)} 4,38 ^{a)} 5,08 ^{a)} 5,53 5,98 6,87 6,87 6,87	ac ac ac ac ac ac ac ac ac ac -	2,26 ^a ) 2,54 ^a ) 2,97 ^a ) 3,67 ^a ) 4,38 ^a ) 5,08 ^a ) 5,53 5,98 6,87 6,87 6,87	ac ac ac ac ac ac ac ac ac ac -	2,26 ^a ) 2,54 ^a ) 2,97 ^a ) 3,67 ^a ) 4,38 ^a ) 5,08 ^a ) 5,53 5,98 6,87 6,87 6,87	ac ac ac ac ac ac ac ac ac ac -	2,26 ^a ) 2,54 ^a ) 2,97 ^a ) 3,67 ^a ) 4,38 ^a ) 5,08 ^a ) 5,53 5,98 6,87 6,87 6,87	ac ac ac ac ac a a a -	2,26 ^{a)}	a - - - - - - -
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,45 ^{a)} 1,65 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 5,43 5,74 5,74 5,74 5,74 5,74	ac ac ac ac ac ac ac ac ac	1,45 ^{a)} 1,65 ^{a)} 1,97 ^{a)} 3,06 ^{a)} 3,68 ^{a)} 4,29 ^{a)} 6,56 6,56 6,56 6,56 6,56 6,56	ac ac ac ac ac ac ac ac ac ac	1,45 ^a ) 1,65 ^a ) 1,97 ^a ) 3,06 ^a ) 3,68 ^a ) 4,29 ^a ) 6,56 6,56 6,56 6,56 6,56 6,56	ac ac ac ac ac ac ac ac ac ac	1,45 ^a ) 1,65 ^a ) 1,97 ^a ) 3,06 ^a ) 3,68 ^a ) 4,29 ^a ) 6,56 6,56 6,56 6,56 6,56 6,56	ac ac ac ac ac ac ac ac ac -	1,45 ^a ) 1,65 ^a ) 1,97 ^a ) 3,06 ^a ) 3,68 ^a ) 4,29 ^a ) 6,56 6,56 6,56 6,56 6,56 6,56	ас ас ас ас ас а а а а -	1,45 ^{a)}	a - - - - - - -

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8.3%.

CORONA, HWH, MH, DC and LP

CORONA RXB 5.5XL #5 TX20 EPDM-9,5B with undercut, mushroom head with TX drive system and EPDM seal ring

## Page 39 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt



06'20-	Compone Drilling ca <u>Timber si</u> For timbe	ent I: ent II: apacity: ubstruct er subst	Stainles Aluminiu S280GD Structur $\Sigma t_i \le 2$ <u>sures</u> ructures	s steel (1.4301) - EN 10088 s steel (1.4401) - EN 10088 Jm (EN AW-5052-H32), t = 0,8 mm o, S320GD or S350GD - EN 10346 ral timber - EN 14081 x x 1,25 mm s perfomrance determined with r $ _{ef} \ge 24 mm$
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00		Bearing resistance of component I, $V_{R,I,k}$	
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,32 1,35 1,40 1,92 2,29 2,66 2,96 3,25 - - - -	Pull-through resistance of component I, N _{R,I,k}	

The values listed above are valid for component I. For component II see Annex 2.

CORONA, HWH, MH, DC and LP

LP 4.8/5.5XL #1 TX20 M-ALU-14B for timber substructures with countersunk head with TX drive system and seal washer  $\geq \emptyset$ 14 mm

Annex 34

electronic copy of the eta by dibt: eta-10/0021

## Page 40 of European Technical Assessment ETA-10/0021 of 23 April 2018

English translation prepared by DIBt



~L							Materials									
						Wash Com	Fastener:       Stainless steel (1.4301) - EN 10088         Stainless steel (1.4401) - EN 10088         Washer:       Stainless steel (1.4301) - EN 10088         Stainless steel (1.4401) - EN 10088         Stainless steel (1.4401) - EN 10088         Component I:       S280GD, S320GD or S350GD - EN 10346         Component II:       S235 - EN 10025-2								46	
~Ø14,00						Drilli	S280GD or S320GD – EN 10346 Drilling capacity: $\Sigma t_i \leq 6,0$ mm									
~Ø10,00 <b>-</b>							$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$									
							<u>Timber substructures</u> For timber substructures no perfomrance determined									
$t_{_{N,II}} =$		1,50		1,75		2,00		2,50		3,00		3,50		4,00		
М	_{t,nom} =							-								
$V_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,89 ^{a)} 2,00 2,18 2,46 2,75 3,03 3,40 3,77 3,77 3,77 3,77	ac - - - - - - - - - -	1,89 ^{a)} 2,05 2,29 2,69 2,94 3,19 3,56 3,93 3,93 3,93 3,93 ^{a)}	ac - - - - - - - - - -	1,89 ^{a)} 2,09 ^{a)} 2,40 ^{a)} 2,91 ^{a)} 3,13 3,34 3,71 4,09 4,09 4,09 4,09	ac ac ac - - - - - - - -	1,89 ^{a)} 2,09 ^{a)} 2,40 ^{a)} 2,91 ^{a)} 3,44 3,65 4,03 4,40 4,40 4,40 4,40	ac ac ac - - - - - -	1,89 ^{a)} 2,09 ^{a)} 2,40 ^{a)} 2,91 ^{a)} 3,44 3,96 4,34 4,72 4,72 4,72 4,72	ac ac ac ac ac - - - - -	1,89 ^{a)} 2,09 ^{a)} 2,40 ^{a)} 2,91 ^{a)} 3,44 3,96 4,66 5,03 5,03 5,03 5,03	ac ac ac ac ac - - - - -	1,89 ^{a)} 2,09 ^{a)} 2,40 ^{a)} 2,91 ^{a)} 3,44 3,96 4,66 5,35 5,35 5,35 5,35	ac ac ac ac ac ac a - -	
$N_{R,k}$ for $t_{N,I} =$	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 1,77 1,77 1,77 1,77 1,77 1,77 1,77 1,7	ac - - - - - - - -	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 2,18 2,18 2,18 2,18 2,18 2,18 2,18 2,18	ac - - - - - - - - -	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 2,36 ^{a)} 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,58	ac ac ac - - - - -	1,37 ^{a)} 1,45 ^{a)} 2,36 ^{a)} 2,69 ^{a)} 3,01 ^{a)} 3,57 3,57 3,57 3,57 3,57	ac ac ac - - - -	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 2,36 ^{a)} 2,69 ^{a)} 3,01 ^{a)} 3,73 4,44 4,44 4,44 4,44	ac ac ac ac ac - - - -	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 2,36 ^{a)} 2,69 ^{a)} 3,01 ^{a)} 3,73 4,44 4,44 4,44	ac ac ac ac ac - - - -	1,37 ^{a)} 1,45 ^{a)} 1,58 ^{a)} 2,36 ^{a)} 2,69 ^{a)} 3,01 ^{a)} 3,73 4,44 4,44 4,44 4,44	ас ас ас ас ас ас а - -	

If component I is made of S320GD or S350GD, the values marked with  $^{a)}$  may be increased by 8.3%.

CORONA, HWH, MH, DC and LP

HWH RXB 4.8XL #2+ HX8 RX-14G with hexagon head and seal washer  $\ge Ø14$  mm