

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0183 of 25 June 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

OCWS 4,8 x L, OCWS 5,5 x L, OCS 5,5 x L, ONS 5,5 x L, ODWS 6,5 x L

Fastening screws for metal members and sheeting

RAWLPLUG S.A. Kwidzynska 6 51-416 WROCLAW POLEN

Production plant No. 2

15 pages including 11 annexes which form an integral part of this assessment

EAD 330046-01-0602

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-10/0183

Page 2 of 15 | 25 June 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 15 | 25 June 2018

European Technical Assessment ETA-10/0183 English translation prepared by DIBt

Specific part

1 Technical description of the product

The fastening screws are self-drilling or self-tapping screws made of austenitic stainless steel or carbon steel with anticorrosion coating (listed in Table 1). The fastening screws are normally completed with sealing washers consisting of metal washer and EPDM-seal.

No.	Self drilling screw	Description	Annex
1	OCWS-4,8	with hexagon head and sealing washer $\ge \emptyset$ 14 mm	Annex 4
2	OCWS-5,5	with hexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$	Annex 5
3	OCWS-5,5	with hexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$	Annex 6
4 ^{*)}	ODWS-6,5	with hexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$	Annex 7
5 ^{*)}	OCS-5,5	with hexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$	Annex 8
6	OCS-5,5	with hexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$	Annex 9
7	ONS-5,5	with hexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$	Annex 10
8	ONS-5,5	with hexagon head	Annex 11

^{*)} These self drilling screws are applicable for fastening to timber substructure.

Specification of the intended use in accordance with the applicable European Assessment Document 330046-01-0602

The fastening screws are intended to be used for fastening metal sheeting to metal or timber substructures. The sheeting can either be used as wall or roof cladding or as load bearing wall and roof element. The fastening screws can also be used for the fastening of any other thin gauge metal members. The intended use comprises fastening screws and connections for indoor and outdoor applications. Fastening screws which are intended to be used in external environments with \geq C2 corrosion according to the standard EN ISO 12944-2 are made of stainless steel. Furthermore the intended use comprises connections with predominantly static loads (e. g. wind loads, dead loads). The fastening screws are not intended for re-use.

The performances given in Section 3 are only valid if the fastening screws are used in compliance with the specifications and conditions given in Annexes (1-11).

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastening screws of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the manufacturer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2

European Technical Assessment

ETA-10/0183

Page 4 of 15 | 25 June 2018

English translation prepared by DIBt

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

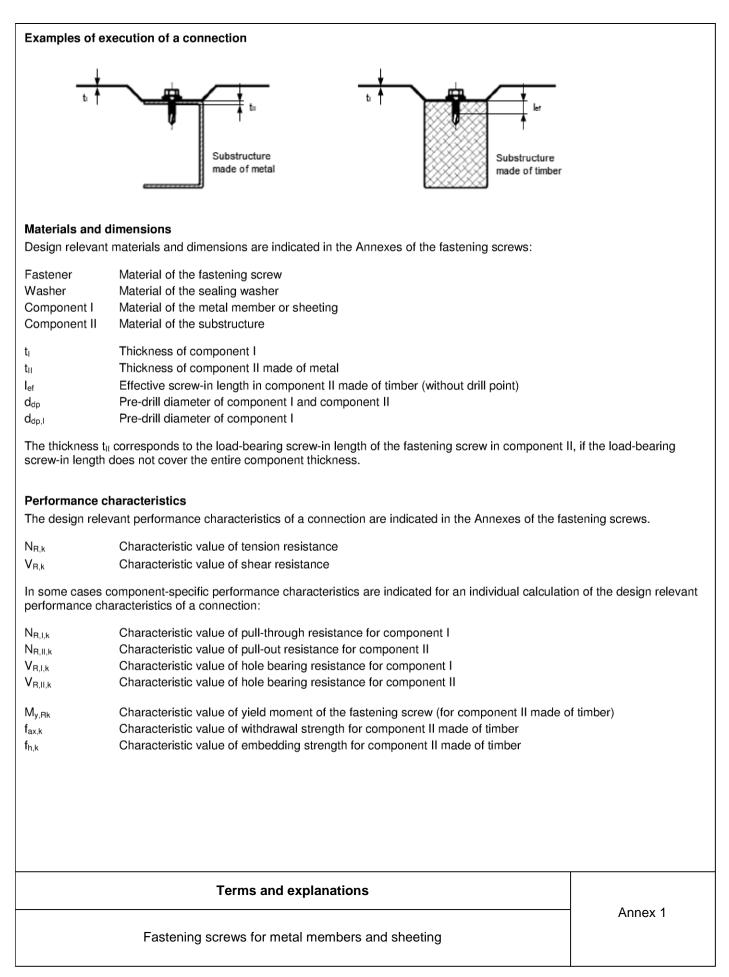
Essential characteristic	Performance
Shear Resistance of the Connection	see Annexes to this ETA
Tension Resistance of the Connection	see Annexes to this ETA
Design Resistance in case of combined Tension and Shear Forces (interaction)	see Annexes to this ETA
Check of Deformation Capacity in case of constraining forces due to temperature	No performance assessed
Durability	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Performance Class A1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

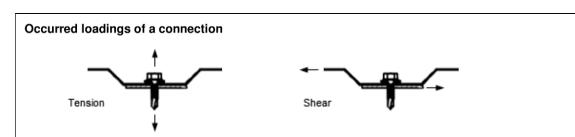
In accordance with EAD No. 330046-01-0602, the applicable European legal act is: Commission Decision 1998/214/EC, amended by 2001/596/EC. The system to be applied is: 2+


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 25 June 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Schult



Page 6 of European Technical Assessment ETA-10/0183 of 25 June 2018

English translation prepared by DIBt

Design values

The design values of tension and shear resistance of a connection have to be determined as follows:

$$N_{R,d} = \frac{N_{R,k}}{Y_M}$$

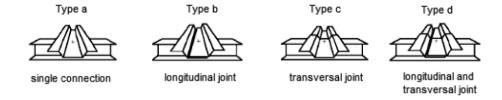
The recommended partial safety factor γ_M is 1.33, provided no partial safety factor is given in national regulations or national Annexes to Eurocode 3.

 $V_{R,d} = \frac{V_{R,k}}{V_M}$

Special conditions

If the component thickness t_l or t_{ll} lies in between two indicated component thicknesses, the characteristic value may be calculated by linear interpolation.

For asymmetric components II made of metal (e.g. Z- or C-shaped profiles) with component thickness $t_{II} < 5$ mm, the characteristic value $N_{R,k}$ has to be reduced to 70%.


In case of combined loading by tension and shear forces the following interaction equation has to be taken into account:

$$\frac{N_{S,d}}{N_{R,d}} + \frac{V_{S,d}}{V_{R,d}} \leq 1,0$$

N_{S,d} V_{S,d} Design value of the applied tension forces Design value of the applied shear forces

Types of connection

For the types of connection (a, b, c, d) given in the Annexes of the fastening screws, it is not necessary to take into account the effect of constraints due to temperature. For other types of connection the effect of constraints have to be taken into account, unless they do not occur or are not significant (e.g. sufficient flexibility of the substructure).

Installation conditions

The installation is carried out according to manufacturer's instruction.

The load-bearing screw-in length of the fastening screw specified by the manufacturer has to be taken into account.

The fastening screws have to be processed with suitable drill driver (e.g. cordless drill driver with depth stop). The use of impact wrench is not allowed.

The fastening screws have to be fixed rectangular to the surface of the component.

Component I and component II have to be in direct contact to each other. The use of compression resistant thermal insulation strips up to a thickness of 3 mm is allowed.

Design and installation	
Fastening screws for metal members and sheeting	Annex 2

Page 7 of European Technical Assessment ETA-10/0183 of 25 June 2018

English translation prepared by DIBt

Component I made of perforated sheeting

The characteristic values of tension and shear resistance are determined as follows:

$$N_{\text{R},k} = \min \left\{ \begin{array}{l} N_{\text{R},l,k} \\ N_{\text{R},ll,k} \end{array} \right. \qquad V_{\text{R},k} = \min \left\{ \begin{array}{l} V_{\text{R},l,k} \\ V_{\text{R},k} \end{array} \right.$$

 $N_{R,I,k}$ and $V_{R,I,k}$ are given in Annex 4 and 5.

 $N_{R,II,k}$ and $V_{R,k}$ are given in the Annex of the fastening screw.

Component I made of aluminium alloy

The characteristic value of tension resistance is determined as follows:

 $N_{R,k} = min \begin{cases} N_{R,l,k} \\ N_{R,ll,k} \end{cases}$

N_{R,I,k} is determined according to EN 1999-1-4:2007 + AC:2009, equation (8.13). N_{B.II.k} is given in the Annex of the fastening screw.

Component II made of timber

The characteristic values of tension and shear resistance for other k_{mod} or p_k as indicated in the Annex of the fastening screw can be determined as follows:

 $N_{\text{R},k} = \min \left\{ \begin{array}{c} N_{\text{R},l,k} \\ N_{\text{R},l,k} & \star k_{\text{mod}} \end{array} \right. \qquad \qquad V_{\text{R},k} = \min \left\{ \begin{array}{c} V_{\text{R},l,k} \\ V_{\text{R},ll,k} & \star k_{\text{mod}} \end{array} \right.$

 $N_{\text{R},l,k}$ and $V_{\text{R},l,k}$ are given in the Annex of the fastening screw.

N_{R,II,k} is determined according to EN 1995-1-1:2004 + A1:2008, equation (8.40a), with f_{ax,k} given in the Annex of the fastening screw.

V_{R,II,k} is determined according to EN 1995-1-1:2004 + A1:2008, equation (8.9), with M_{V,Rk} and f_{h,k} given in the Annex of the fastening screw.

Additional provisions

Annex 3

Fastening screws for metal members and sheeting

Page 8 of European Technical Assessment ETA-10/0183 of 25 June 2018

English translation prepared by DIBt

	1.5	• 14 • 10,6	-			MaterialsFastener:stainless steel (1.4301) - EN 10088 Bi-metalWasher:stainless steel (1.4301) - EN 10088 Component I: S280GD, S320GD or S350GD - EN 10346 Component II: S280GD, S320GD or S350GD - EN 10346										
			3,2 Ø3,4	-		<u>Dril</u>	ling capa	acity	Σt _i ≤ 2,	00 mm						
	7,9					<u>Timber substructures</u> no performance determined										
	[mm]	0,40	0,50	0,55	0,6		0,75	0,88	1,00	1,13	1,25	1,50				
M	l _{t,nom}				3 N											
	0,40	0,57	0,71	0,77	0,8		1,05	1,05	1,05	1,05	1,05	1,05				
	0,50	0,57	0,88	0,94	1,0		1,05	1,05	1,05	1,05	1,05	1,05				
Ē	0,55	0,57	0,88	1,11	1,1		1,20	1,20	1,20	1,20	1,20	—				
1 =	0,63	0,57	0,88	1,11	1,3		1,34	1,34	1,34	1,34	1,34	-				
r t _N	0,75	0,57	0,88	1,11	1,3		1,61	1,61	1,61	1,61	1,61	-				
7 ¥	0,88 1,00	0,57 0,57	0,88 0,88	1,11 1,11	1,3 1,3		1,61 1,61	2,01	2,01	_	_	_				
돌	1,13	0,57	0,88 0,88	1,11	1,3		1,61	2,01	2,40	_	_	_				
V _{R.k} [kN] for t _{N.I} [mm]	1,13	0,57	0,88	1,11	1,3		1,61									
	1,50	0,57	0,88			_						 				
	1,75			_	_	-	_	_	_	_	_	_				
	0,40	0,35	0,45	0,51	0,6	32	0,81	1,04	1,29	1,49	1,49	1,49				
	0,50	0,35	0,45	0,51	0,6	62	0,81	1,04	1,29	1,49	1,49	1,49				
Ē	0,55	0,35	0,45	0,51	0,6		0,81	1,04	1,29	1,49	1,49	—				
<u> </u>	0,63	0,35	0,45	0,51	0,6		0,81	1,04	1,29	1,49	1,49	-				
t _{N,I}	0,75	0,35	0,45	0,51	0,6		0,81	1,04	1,29	1,49	1,49	-				
for	0,88	0,35	0,45	0,51	0,6		0,81	1,04	1,29	—	—	—				
N _{R.k} [kN] for t _{N.I} [mm]	1,00	0,35	0,45	0,51	0,6		0,81	1,04	1,29	—	-	-				
R, K	1,13	0,35	0,45	0,51	0,6		0,81	—	—	—	—	—				
Z	1,25	0,35	0,45	0,51	0,6	52	0,81	—	-	—	—	—				
	1,50	0,35	0,45	—	-	-	—	—	-	—	—	-				
	1,75	—	—	—	-	-	—	—	—	—	—	—				

OCWS 4,8 x L, OCWS 5,5 x L, OCS 5,5 x L, ONS 5,5 x L, ODWS 6,5 x L

OCWS-4,8

with hexagon head and sealing washer $\ge \emptyset 14 \text{ mm}$

Page 9 of European Technical Assessment ETA-10/0183 of 25 June 2018

English translation prepared by DIBt

∅ 16 ∅ 10,6	Materials
23	Fastener:
	Washer:
2,3	Component
\$5,5	Component
2'9 Ø 4	Drilling capa
4,3	
6'Z	<u>Timber subs</u> no performar

<u>Materials</u>	
Fastener:	stainless steel (1.4301) - EN 10088 Bi-metal
Washer:	stainless steel (1.4301) - EN 10088
Component I:	S280GD, S320GD or S350GD - EN 10346
Component II:	S235 or S275 - EN 10025-1 S280GD, S320GD or S350GD - EN 10346

acity

 $\Sigma t_i \leq 6,00 \text{ mm}$

structures

ince determined

	[mm]	1,0	00	1,1	3	1,2	25	1,5	50	1,7	75	2,0	00	2,5	50	3,0	00
N	t,nom	3 Nm						4,5 Nm									
	0,50	1,30	—	1,30	—	1,30	—	1,30	—	1,30	—	1,30	—	1,30	—	1,30	_
	0,55	1,36	—	1,36	—	1,36	—	1,36	—	1,36	—	1,36	—	1,36	—	1,36	— I
Ē	0,63	1,45	—	1,68	—	1,91	—	1,91	—	1,91	—	1,91	—	1,91	—	1,91	-
<u> </u>	0,75	1,69	_	1,88	—	2,08	—	2,13	—	2,18	—	2,18	—	2,18	—	2,18	— I
t _{N,I}	0,88	1,90	_	2,08	—	2,26	_	2,36	—	2,47	_	2,63	—	2,87	_	3,13	_
fe	1,00	2,11	_	2,24	—	2,42	_	2,59	_	2,74	_	3,08	—	3,57	_	4,08	-
Ŝ	1,13	2,11	_	2,24	—	2,42	—	2,71	—	2,99	—	3,40	—	4,13	—	4,88	-
V _{R,k} [kN] for t _{N,I} [mm]	1,25	2,11	_	2,24	—	2,42	_	2,83	—	3,23	_	3,72	—	4,70	—	5,68	-
>"	1,50	2,11	—	2,24	—	2,42	—	2,83	—	3,23	—	3,72	—	4,70	—	5,68	-
	1,75	2,11	_	2,24	—	2,42	—	2,83	—	3,23	—	3,72	—	4,70	—	5,68	-
	2,00	2,11	—	2,24	—	2,42	—	2,83	—	3,23	—	3,72	—	4,70	—	5,68	—
	0,50	0,80	Ι	1,06	-	1,29	_	1,67	_	1,67	_	1,67	-	1,67	_	1,67	—
	0,55	0,80	—	1,06	—	1,29	—	1,79	—	1,92	—	1,92	—	1,92	—	1,92	-
Ē	0,63	0,80	—	1,06	—	1,29	—	1,79	—	2,30	—	2,32	—	2,32	—	2,32	— I
Ē	0,75	0,80	—	1,06	—	1,29	—	1,79	—	2,30	—	2,81	—	2,93	—	2,93	-
t _{N,I}	0,88	0,80	—	1,06	—	1,29	—	1,79	—	2,30	—	2,81	—	3,61	—	3,61	-
fe	1,00	0,80	_	1,06	—	1,29	—	1,79	—	2,30	_	2,81	—	3,85	_	4,25	_
Î	1,13	0,80	—	1,06	—	1,29	—	1,79	—	2,30	—	2,81	—	3,85	—	4,25	-
N _{R,k} [kN] for t _{N,I} [mm]	1,25	0,80	—	1,06	—	1,29	_	1,79	_	2,30	_	2,81	—	3,85	_	4,25	_
لع ا	1,50	0,80	_	1,06	—	1,29	—	1,79	—	2,30	—	2,81	—	3,85	—	4,25	_
	1,75	0,80	_	1,06	—	1,29	_	1,79	_	2,30	_	2,81	_	3,85	_	4,25	-
	2,00	0,80	_	1,06	—	1,29	—	1,79	—	2,30	—	2,81	—	3,85	—	4,25	—

OCWS 4,8 x L, OCWS 5,5 x L, OCS 5,5 x L, ONS 5,5 x L, ODWS 6,5 x L

OCWS-5,5

with hexagon head and sealing washer $\geq \emptyset 16 \text{ mm}$

Annex 5

electronic copy of the eta by dibt: eta-10/0183

Page 10 of European Technical Assessment ETA-10/0183 of 25 June 2018

English translation prepared by DIBt

© 16 Ø 10,6 S S S S S S S S S S S S S									$\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
										<u>structu</u> ance d		ined					
t	[mm]	2 x (1.63	2 x (75	2 x (1.88	2 x 1		_	_	_	_		_		
	I _{t,nom}	2 ~ (,	2.		Nm	,,00	^	,00		-		-	_			
	0,50	1,17	_	1,17		1,17	_	1,17	_		_	_	_	_	_	_	
	0,55	1,17	_	1,17	_	1,17		1,17	_	_	_	_		_	_	_	_
	0,63	1,17	_	1,47	_	1,47	_	1,47	_	_	_	_	_	_	_	_	_
L L	0,75	1,17	_	1,47	_	1,60		1,74	_	_	_	_	_	_	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	0,88	1,17	_	1,47	_	1,60	_	1,74	_	_	_	_	_	_	_	_	_
ort	1,00	1,17	_	1,47	_	1,60	_	1,74	_	_	_	_	_	_	_	_	_
Ξ	1,13	1,17	_	1,47	_	1,60	_	1,74	_	_	_	_	_	_	_	_	_
× Z	1,25	1,17	_	1,47	_	1,60		1,74	_	_	_	_	_	_	_	_	_
<	1,50	1,17	_	1,47	_	1,60	_	1,74	_	_	_	_	_	_	_	_	_
	1,75	1,17	_	1,47	_	1,60	_	1,74	_	_	_	_	_	_	_	—	_
	2,00	1,17	_	1,47	_	1,60	_	1,74	_	_	_	_	—	—	_	—	_
	0,50	1,03	_	1,41	_	1,67	_	1,67	_	—	_	_	_	—	_	—	—
	0,55	1,03	—	1,41	—	1,90	_	1,92	—	—	—	—	—	—	_	-	— I
Ē	0,63	1,03	—	1,41	—	1,90	—	2,32	—	—	—	—	—	—	—	—	— I
르	0,75	1,03	—	1,41	—	1,90	—	2,42	—	—	—	—	—	—	—	—	— I
t _{N,I}	0,88	1,03	—	1,41	—	1,90	—	2,42	—	—	—	—	—	—	—	-	— I
for	1,00	1,03	—	1,41	—	1,90	_	2,42	—	—	—	—	—	—	_	—	— I
KN	1,13	1,03	—	1,41	—	1,90	—	2,42	—	-	—	—	—	-	—	-	— I
N _{R,k} [kN] for t _{N,I} [mm]	1,25	1,03	—	1,41	—	1,90	—	2,42	—	—	—	—	—	—	—	—	— I
Ž	1,50	1,03	—	1,41	—	1,90	—	2,42	—	-	—	—	—	-	—	-	— I
	1,75	1,03	—	1,41	—	1,90	—	2,42	-	-	—	—	—	-	—	-	-
	2,00	1,03	—	1,41	_	1,90	—	2,42	—	—	—	—	—	—	_	—	—

OCWS 4,8 x L, OCWS 5,5 x L, OCS 5,5 x L, ONS 5,5 x L, ODWS 6,5 x L

OCWS-5,5

with hexagon head and sealing washer $\ge Ø16$ mm

Page 11 of European Technical Assessment ETA-10/0183 of 25 June 2018

English translation prepared by DIBt

	Materials
\$ \$ \$ \$ \$ \$ \$	Fastener: stainless steel (1.4301) - EN 10088 Bi-metal
~ ∅ 0,20	Washer: stainless steel (1.4301) - EN 10088
5	Component I: S280GD, S320GD or S350GD - EN 10346
· <i>○</i> 4,85 · ·	Component II: S235 or S275 - EN 10025-1 S280GD, S320GD or S350GD - EN 10346
	<u>Drilling capacity</u> $\Sigma t_i \le 6,00 \text{ mm}$
4,2	Timber substructures
	performance determined with
o K	$M_{y,Rk} = 9,742 \text{ Nm}$ $f_{ax,k} = 11,070 \text{ N/mm}^2 \text{ for } I_{ef} \ge 25,0 \text{ mm}$

t _{N,II}	[mm]	1,50 2,00		2,5	50	3,0	00	4,0	00	5,0	00	—								
M	t,nom						51	Nm								\bigvee				
	0,40	1,02		1,02	—	1,02	—	1,02	—	1,02	—	1,02	-		—	1,02				
	0,50	1,34	—	1,34	—	1,34	—	1,34	—	1,34	—	1,34	—	—	—	1,34				
Ξ	0,55	1,47	—	1,47	—	1,47	—	1,47	—	1,47	—	1,47	—	—	—	1,47	e.			
<u> </u>	0,63	1,71	—	1,71	—	1,71	—	1,71	—	1,71	—	1,71	—	—	—	1,71	resistance iponent l			
t _{N,I}	0,75	2,23	—	2,23	—	2,23	—	2,23	—	2,23	—	2,23	—	—	—	2,23	earing resistan of component			
Į Į	0,88	2,86	—	2,86	—	2,86	—	2,86	—	2,86	—	2,86	—	—	—	2,86	er of			
Ź	1,00	3,52	—	3,52	—	3,52	—	3,52	—	3,52	—	3,52	—	—	—	3,52	ing			
V _{R,k} [kN] for t _{N,I} [mm]	1,13	3,52	—	3,52	—	3,52	—	3,52	—	3,52	—	—	—	—	—	3,52	bearing of com			
× ا	1,25	3,52	—	3,52	—	3,52	—	3,52	—	3,52	—	—	—	—	—	3,52	٩ 			
	1,50	3,52	—	3,52	—	3,52	—	3,52	—	3,52	—	—	—	—	—	3,52				
	1,75	3,52	—	3,52	—	3,52	—	3,52	—	3,52	—	—	—	_	—	3,52				
	0,40	1,18	Ι	1,18	_	1,18	_	1,18	_	1,18	_	1,18	Ι		_	1,18				
	0,50	1,67	—	1,67	—	1,67	—	1,67	—	1,67	—	1,67	—	—	—	1,67				
Ξ	0,55	1,92	—	1,92	—	1,92	—	1,92	—	1,92	—	1,92	—	—	—	1,92	nce			
<u> </u>	0,63	2,32	—	2,32	—	2,32	—	2,32	—	2,32	—	2,32	—	—	—	2,32	sta nt l			
t _{N,I}	0,75	2,80	—	2,80	—	2,80	—	2,80	—	2,80	—	2,80	—	—	—	2,93	esi			
for	0,88	2,80	—	2,80	—	2,80	—	2,80	—	2,80	—	2,80	—	—	—	3,61	- hg			
N _{R,k} [kN] for t _{N,I} [mm]	1,00	2,80	—	2,80	—	2,80	—	2,80	—	2,80	—	2,80	—	—	—	4,25	pull-through resistance of component I			
2,k []	1,13	2,80	—	2,80	—	2,80	—	2,80	—	2,80	—	—	—	—	—	4,25	of -			
ľź	1,25	2,80	—	2,80	—	2,80	—	2,80	—	2,80	—	—	—	—	—	4,25	Ind			
1	1,50	2,80	—	2,80	—	2,80	—	2,80	—	2,80	—	—	—	—	—	4,25				
	1,75	2,80	—	2,80	—	2,80	_	2,80	—	2,80	_	—	—	—	—	4,25				

The values listed above in dependence on the screw-in length I_{ef} are valid for $k_{mod} = 0.90$ and timber strength grade C24 ($\rho_a = 350 \text{ kg/m}^3$). For other combinations of k_{mod} and timber strength grades see Annex 3 (Component II made of timber).

OCWS 4,8 x L, OCWS 5,5 x L, OCS 5,5 x L, ONS 5,5 x L, ODWS 6,5 x L

ODWS-6,5 with hexagon head and sealing washer $\geq \emptyset 16 \text{ mm}$

Page 12 of European Technical Assessment ETA-10/0183 of 25 June 2018

English translation prepared by DIBt

Ø 16 Ø 10,6 Ø 5,5 V Ø V Ø								F \ (Comp	ner: er: onent	Bi st I: S2 II: S2 S2	235 or 280GE	l 5, S3 2, S27 2, S3 0, S3	el (1.4 20GD 5 - EN	301) or S 100 or S	- EN ⁻ 350GI 25-1	10088 D - El			
6'E										<u>Timber substructures</u> performance determined with $M_{y,Rk} = 6,310 \text{ Nm}$ $f_{ax,k} = 10,860 \text{ N/mm}^2$ for $l_{ef} \ge 25,0 \text{ mm}$										
	t _{N,II} [mm] 1,00 1,13 1,25					1,	50	1,7		2,0	00	2,5		3,0	00		\sim			
M	t,nom	1.04		4 N	Im	1.04		1.04		4,5		1.04	1 21				Nm			
$V_{R,k}$ [kN] for $t_{N,i}$ [mm]	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00	1,21 1,29 1,42 1,60 1,76 1,88 1,88 1,88 1,88 1,88 1,88		1,21 1,29 1,42 1,60 1,76 1,88 1,88 1,88 1,88 1,88 1,88		1,21 1,29 1,42 1,60 1,76 1,88 1,88 1,88 1,88 1,88 1,88		1,21 1,29 1,50 1,75 2,01 2,24 2,62 2,62 2,62 2,62 2,62		1,21 1,29 1,57 1,90 2,26 2,59 2,98 3,37 3,37 3,37 3,37		1,21 1,29 1,57 1,90 2,26 2,59 2,98 3,37 3,37 3,37 3,37		1,21 1,29 1,57 1,90 2,26 2,70 3,20 3,70 3,70 3,70 3,70		1,21 1,29 1,57 1,90 2,26 2,81 3,42 4,03 4,03 4,03 4,03		1,23 1,29 1,57 2,15 2,26 2,81 3,42 4,03 4,03 4,03 4,03	bearing resistance of component I	
$N_{R,k}$ [kN] for $t_{\text{N},i}$ [mm]	0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00		1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17		1,34 1,34 1,34 1,34 1,34 1,34 1,34 1,34		1,67 1,71 1,71 1,71 1,71 1,71 1,71 1,71		1,67 1,92 2,14 2,14 2,14 2,14 2,14 2,14 2,14 2,1		1,67 1,92 2,32 2,60 2,60 2,60 2,60 2,60 2,60		1,67 1,92 2,32 2,93 3,61 3,68 3,68 3,68 3,68 3,68		1,67 1,92 2,32 2,93 3,61 4,25 4,25 4,25 4,25		1,67 1,92 2,32 2,93 3,61 4,25 4,25 4,25 4,25	pull-through resistance of component l	

electronic copy of the eta by dibt: eta-10/0183

The values listed above in dependence on the screw-in length I_{ef} are valid for $k_{mod} = 0.90$ and timber strength grade C24 ($\rho_a = 350 \text{ kg/m}^3$). For other combinations of k_{mod} and timber strength grades see Annex 3 (Component II made of timber).

2,14

2,14

2,60

2,60

3,68

3,68

4,25

4,25

OCWS 4,8 x L, OCWS 5,5 x L, OCS 5,5 x L, ONS 5,5 x L, ODWS 6,5 x L

OCS-5,5 with hexagon head and sealing washer $\geq \emptyset 16 \text{ mm}$

1,17

1,17

1,34

1,34

1,71

1,71

Annex 8

4,25

4,25

1,75

2,00

1,00

1,00

Page 13 of European Technical Assessment ETA-10/0183 of 25 June 2018

English translation prepared by DIBt

Ø 16 Ø 10,6 8 1 0 5,5 Ø 4 1 2 8								MaterialsFastener:stainless steel (1.4301) - EN 10088 Bi-metalWasher:stainless steel (1.4301) - EN 10088 Component I:S280GD, S320GD or S350GD - EN 10346 Component II:S280GD, S320GD or S350GD - EN 10346 S280GD, S320GD or S350GD - EN 10346									
		~						Drilling	g capa	acity	2	Σt _i ≤ 6,	00 mr	n			
									<u>Timber substructures</u> no performance determined								
t _{N,II}	[mm]	2 x (),63	2 x (2 x (0,88	2 x 1	1,00	_	_	_	-	_	_	_	-
M	1 _{t,nom}				4	Nm								_			
	0,50		—	1,23	—	1,23	—	1,23	—	—	—	—	—	—	—	—	-
	0,55	1,23	—	1,23	—	1,23	—	1,23	—	-	—	—	—	—	—	—	-
Ē	0,63	1,23	—	1,51	—	1,51	—	1,51	—	—	—	—	—	—	—	—	-
트	0,75		—	1,51	—	1,83	—	2,15	—	—	—	—	—	—	—	—	-
r t _N	0,88		—	1,51	—	1,83	—	2,15	—	—	—	—	—	—	—	—	-
] 20	1,00		_	1,51	—	1,83	_	2,15	_	-	_	_	_	—	_	—	-
¥]	1,13		_	1,51	—	1,83	_	2,15	_	_	_	_	_	_	_	_	-
V _{R,k} [kN] for t _{N,I} [mm]	1,25 1,50	1,23 1,23	_	1,51 1,51	_	1,83 1,83	_	2,15 2,15	_						_	_	
1	1,50		_	1,51	_	1,83	_	2,15	_						_		
	2,00		_	1,51	_	1,83	_	2,15	_	_					_	_	_
	0,50		_	1,33	_	1,66	_	1,67	_	_	_	_	_	_	_	_	_
	0,55		_	1,33	_	1,66	_	1,92	_	_	_	_	_	_	_	_	_
																	I
3	0,63	0,98	—	1,33	—	1,66	_	1,93		_	—	—	—	—	—	—	— I
[mm	0,63 0,75		_	1,33 1,33	_	1,66 1,66	_	1,93	_	_	_	_	_	_	_	_	_
t _{N,I} [mm							_										_ _ _
for t _{N,I} [mm	0,75	0,98		1,33		1,66		1,93						 			
kN] for t _{N,I} [mm	0,75 0,88 1,00 1,13	0,98 0,98 0,98 0,98	 	1,33 1,33 1,33 1,33	 	1,66 1,66 1,66 1,66		1,93 1,93 1,93 1,93	_ _ _		 	 	 		 	 	
_{ձ,k} [kN] for t _{N,I} [mm	0,75 0,88 1,00 1,13 1,25	0,98 0,98 0,98 0,98 0,98	 	1,33 1,33 1,33 1,33 1,33	_	1,66 1,66 1,66 1,66 1,66		1,93 1,93 1,93 1,93 1,93 1,93	_								
N _{R,k} [kN] for t _{N,I} [mm]	0,75 0,88 1,00 1,13 1,25 1,50	0,98 0,98 0,98 0,98 0,98 0,98		1,33 1,33 1,33 1,33 1,33 1,33 1,33		1,66 1,66 1,66 1,66 1,66 1,66	 	1,93 1,93 1,93 1,93 1,93 1,93 1,93	—								
N _{R,k} [kN] for t _{N,I} [mm	0,75 0,88 1,00 1,13 1,25	0,98 0,98 0,98 0,98 0,98 0,98 0,98	_	1,33 1,33 1,33 1,33 1,33	_	1,66 1,66 1,66 1,66 1,66		1,93 1,93 1,93 1,93 1,93 1,93	_								

OCWS 4,8 x L, OCWS 5,5 x L, OCS 5,5 x L, ONS 5,5 x L, ODWS 6,5 x L

OCS-5,5 with hexagon head and sealing washer $\geq \emptyset 16 \text{ mm}$

Annex 9

electronic copy of the eta by dibt: eta-10/0183

Page 14 of European Technical Assessment ETA-10/0183 of 25 June 2018

English translation prepared by DIBt

	¢ 10,6	\$ 5,15 Q	<u>Materi</u> Faster Washe Compo	ner: er: onent	Bi-r stai 1: S28 11: S23	netal inless 30GD 35 or 3	S275 -	(1.430 GD o EN 1	01) - El r S350 0025-	N 100 GD - 1	88		
	¢4 5	»	$\label{eq:star} \begin{array}{l} \underline{\text{Drilling capacity}} & \Sigma t_i \leq 12,00 \text{ mm} \end{array}$										
t _{n,II} [mm]							00	9,0)0	10	,0	11	,0
M _{t,nom}					71	Nm							
0,50	1,38 —	1,38 —	1,38 —	1,38	_	1,38	_	1,38	_	1,38	—	1,38	—
0,55	1,53 —	1,53 —	1,53 —	1,53	—	1,53	—	1,53	—	1,53	—	1,53	-
Ē ^{0,63}	1,85 —	1,85 —	1,85 —	1,85	—	1,85	—	1,85	—	1,85	—	1,85	-
트 0,75	2,18 —	2,18 —	2,18 —	2,18	—	2,18	—	2,18	—	2,18	—	2,18	-
[2,76 —	2,76 —	2,76 —	2,76	—	2,76	—	2,76	—	2,76	—	2,76	-
<u>क</u> 1,00	3,22 —	3,22 —	3,22 —	3,22	—	3,22	—	3,22	—	3,22	—	3,22	-
2 1,13	3,55 —	3,55 —	3,55 —	3,55	—	3,55	—	3,55	—	3,55	—	-	-
1,25	3,90 —	5,87 —	5,87 —	5,87	—	5,87	—	5,87	—	5,87	—	—	-
.,	4,53 —	6,63 —	6,63 —	6,63	—	6,63	—	6,63	—	6,63	—	—	-
1,75	5,05 —	7,39 —	7,39 —	7,39	—	7,39	—	7,39	—	7,39	—	-	-
2,00	5,45 —	8,16 —	8,16 —	8,16	—	8,16	—	8,16	—	8,16	—	—	_
0,50	1,67 —	1,67 —	1,67 —	1,67	—	1,67	—	1,67	—	1,67	—	1,67	-
0,55		1,92 —	1,92 —	1,92	—	1,92	—	1,92	—	1,92	—	1,92	-
Ē 0,63		2,32 —	2,32 —	2,32	—	2,32	—	2,32	—	2,32	—	2,32	-
트 0,75	2,93 —	2,93 —	2,93 —	2,93	—	2,93	—	2,93	—	2,93	—	2,93	-
1, 2, 0,88	2,96 —	3,30 —	3,30 —	3,30	—	3,30	—	3,30	—	3,30	—	3,30	-
<u>ē</u> 1,00	2,96 —	3,30 —	3,30 —	3,30	—	3,30	—	3,30	—	3,30	—	3,30	-
0,63 0,75 ↓ 0,75 ↓ 0,88 ↓ 0 1,00 N 1,13 ↓ 1,25 N 1.50	2,96 —	3,30 —	3,30 —	3,30	—	3,30	—	3,30	—	3,30	—	-	-
1,25	2,96 —	3,30 —	3,30 —	3,30	—	3,30	—	3,30	—	3,30	—	—	-
.,	2,96 —	3,30 —	3,30 —	3,30	—	3,30	—	3,30	—	3,30	—	-	-
1,75	2,96 —	3,30 —	3,30 —	3,30	—	3,30	—	3,30	—	3,30	—	—	-
2,00	2,96 —	3,30 —	3,30 —	3,30	—	3,30	—	3,30	—	3,30	—	—	—

OCWS 4,8 x L, OCWS 5,5 x L, OCS 5,5 x L, ONS 5,5 x L, ODWS 6,5 x L

ONS-5,5

with hexagon head and sealing washer $\geq \emptyset 16 \text{ mm}$

Annex 10

electronic copy of the eta by dibt: eta-10/0183

Page 15 of European Technical Assessment ETA-10/0183 of 25 June 2018

English translation prepared by DIBt

\$ 10,6 5 5 5 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7									MaterialsFastener:stainless steel (1.4301) - EN 10088 Bi-metalWasher:noneComponent I:S280GD, S320GD or S350GD - EN 10346 S280GD, S320GD or S350GD - EN 10346									
		16,5						Drilling	g cap	acity		Σt _i ≤ 12	2,00 n	nm				
		Ø4	5															
								<u>Timbe</u>	er sub	structu	res							
								no per	rforma	ance d	eterm	ined						
		6'/	$\langle \mathfrak{S} \rangle$)														
			Y	/														
t _{N.II}	[mm]	4,0	00	5,0	00	6,0	00	7,0	00	8,0	00	9,0	00	10	,0	11	,0	
M	l _{t,nom}								7	Nm								
	0,50	1,38	—	1,38	—	1,38	—	1,38	—	1,38	—	1,38	—	1,38	—	1,38	-	
	0,55	1,53	—	1,53	—	1,53	—	1,53	—	1,53	—	1,53	—	1,53	—	1,53	-	
۲ ۳	0,63	1,85	_	1,85	_	1,85	_	1,85	_	1,85	_	1,85	_	1,85	—	1,85	-	
	0,75 0,88	2,18 2,76	_	2,18 2,76	_	2,18 2,76	_	2,18 2,76	_	2,18 2,76	_	2,18 2,76	_	2,18 2,76	_	2,18 2,76		
ort	1,00	3,22	_	3,22	_	3,22	_	3,22	_	3,22	_	3,22	_	3,22	_	3,22		
Ξ	1,13	3,55	_	3,55	_	3,55	_	3,55	_	3,55	_	3,55	_	3,55	_			
V _{R,k} [kN] for t _{N,I} [mm]	1,25	3,90	_	5,87	_	5,87	_	5,87		5,87		5,87		5,87	_	_	_	
>	1,50	4,53	_	6,63	_	6,63	_	6,63	_	6,63		6,63	_	6,63	_	—	— I	
	1,75	5,05	—	7,39	—	7,39	—	7,39	_	7,39	_	7,39	—	7,39	—	-	— I	
	2,00	5,45	—	8,16	_	8,16	—	8,16	_	8,16	—	8,16	—	8,16	_	—	_	
	0,50	1,40	—	1,40	—	1,40	—	1,40	—	1,40	—	1,40	—	1,40	—	1,40	-	
	0,55	1,57	—	1,57	_	1,57	_	1,57	—	1,57	—	1,57	—	1,57	—	1,57	-	
E L	0,63 0,75	1,81 2,09	_	1,81 2,09	_	1,81 2,09	_	1,81 2,09	_	1,81 2,09	_	1,81 2,09	_	1,81	_	1,81		
- I	0,75 0,88	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	2,09 2,09	_	2,09 2,09		
ort	1,00	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	2,09		
Ĩ	1,13	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	2,00	_	2,09	_		_	
N _{R,k} [kN] for t _{N,I} [mm]	1,25	2,09	_	2,09		2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	_	_	
L Z	1,50	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	_	_	
	1,75	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	-	_	
	2,00	2,09		2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	2,09	_	_	_	

OCWS 4,8 x L,	OCWS 5,5 x L, OCS 5,5 x L, ONS 5,5 x L,	
ODWS 6,5 x L		

ONS-5,5 with hexagon head