

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0262 of 16 May 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Scell-IT Injection System X-PRO, X-PRO Nordic for concrete

Bonded fastener for use in concrete

SCELL-IT 28 Rue Paul Dubrule 59854 LESQUIN FRANKREICH

SCELL-IT, Plant1 Germany

25 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

European Technical Assessment ETA-10/0262

Page 2 of 25 | 16 May 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-10/0262

Page 3 of 25 | 16 May 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Scell-IT Injection system X-PRO, X-PRO Nordic for concrete" is a bonded anchor consisting of a cartridge with injection mortar X-PRO or X-PRO Nordic and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4 and C 6
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5 and C 7
Displacements	See Annex
(static and quasi-static loading)	C 8 to C 10
Characteristic resistance for seismic performance	See Annex
category C1	C 2, C 3, C 6 and C 7
Characteristic resistance and displacements for seismic performance category C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-10/0262

Page 4 of 25 | 16 May 2018

English translation prepared by DIBt

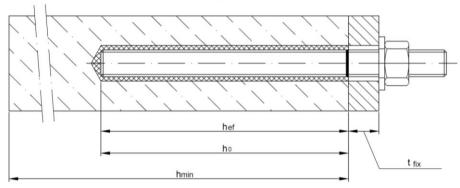
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

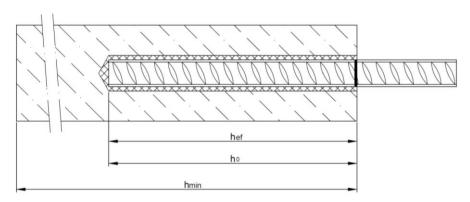
The system to be applied is: 1

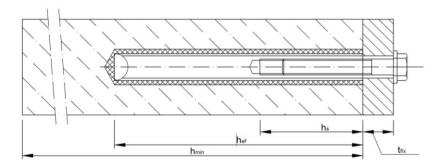
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 16 May 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

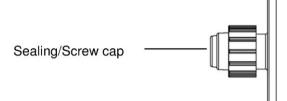
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

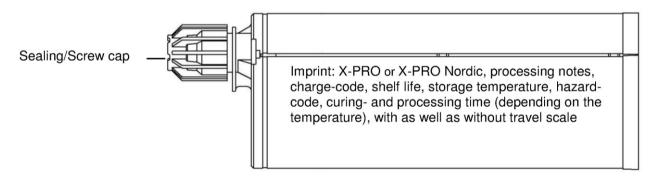
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

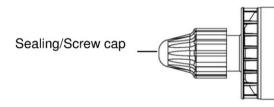
 n_0 = depth of drill hole


 h_{min} = minimum thickness of member

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Product description Installed condition	Annex A 1

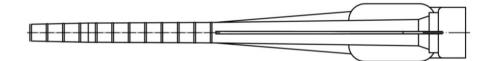

Cartridge: X-PRO or X-PRO Nordic

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: X-PRO or X-PRO Nordic, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

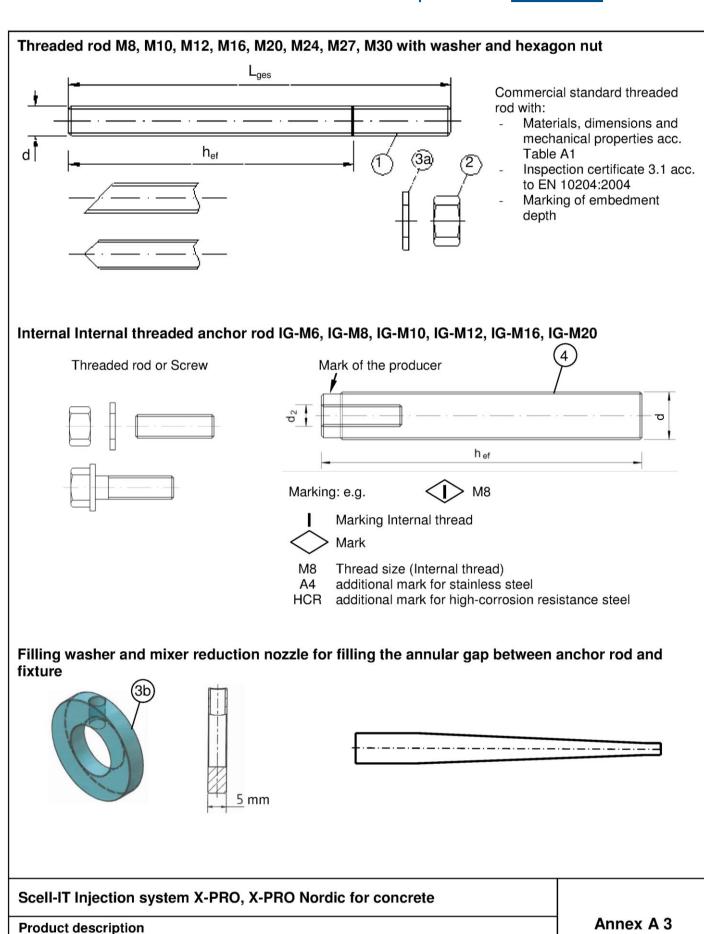
235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")



165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: X-PRO or X-PRO Nordic, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer


Scell-IT Injection system X-PRO, X-PRO Nordic for concrete

Product description

Injection system

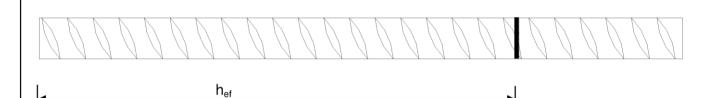
Annex A 2

Threaded rod, internal threaded rod and filling washer

Page 8 of European Technical Assessment ETA-10/0262 of 16 May 2018

English translation prepared by DIBt

	Designation	Material		
Stee	I, zinc plated (Steel acc. to EN 10		:2001)	
zinc	plated ≥ 5 µm acc. to EN ISO 4042:	1999 odr hot-dip galvan	ised ≥ ́4	40 μm acc. to EN ISO 1461:2009 and
EN I	SO 10684:2004+AC:2009 or sherard	lized ≥ 40 µm acc. to D	IN EN 1	
			4.6	f_{uk} =400 N/mm ² ; f_{yk} =240 N/mm ² ; $A_5 > 8\%$ fracture elongation
		Property class	4.8	f_{uk} =400 N/mm ² ; f_{yk} =320 N/mm ² ; $A_5 > 8\%$ fracture elongation
1	Anchor rod	acc. to	5.6	f_{uk} =500 N/mm ² ; f_{yk} =300 N/mm ² ; $A_5 > 8\%$ fracture elongation
		EN ISO 898-1:2013	5.8	f_{uk} =500 N/mm ² ; f_{yk} =400 N/mm ² ; $A_5 > 8\%$ fracture elongation
			8.8	f_{uk} =800 N/mm ² ; f_{yk} =640 N/mm ² ; $A_5 > 8\%$ fracture elongation
		Property class	4	for anchor rod class 4.6 or 4.8
2	Hexagon nut	acc. to	5	for anchor rod class 5.6 or 5.8
		EN ISO 898-2:2012	8	for anchor rod class 8.8
3a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer	Steel, zinc plated, hot-	dip galv	vanised or sherardized
3b	Filling washer	Property class	F 0	6 E00 N/mm², 6 400 N/mm², A
4	Internal threaded anchor rod	acc. to		f_{uk} =500 N/mm ² ; f_{yk} =400 N/mm ² ; $A_5 > 8\%$ fracture elongation
		EN ISO 898-1:2013	8.8	f_{uk} =800 N/mm ² ; f_{yk} =640 N/mm ² ; $A_5 > 8\%$ fracture elongation
and Stai	nless steel A4 (Material 1.4401 / 1.	.4404 / 1.4571 / 1.4362 Property class	or 1.45	578, acc. to EN 10088-1:2014) f _{uk} =500 N/mm²; f _{yk} =210 N/mm²; A ₅ > 8% fracture elongation
1	Anchor rod ¹⁾³⁾		50	$ I_{uk}=500 \text{ N/Hirs}, I_{yk}=210 \text{ N/Hirs}, A_5 > 6\%$ iracture elongation
1	Anchor rod ¹⁾³⁾	acc. to	70	f_{uk} =700 N/mm²; f_{yk} =450 N/mm²; $A_5 > 8\%$ fracture elongation
1	Anchor rod ¹⁾³⁾			,
1		acc. to EN ISO 3506-1:2009	70	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; $A_5 > 8\%$ fracture elongation
2	Anchor rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾	acc. to EN ISO 3506-1:2009 Property class acc. to	70 80 50 70	$\begin{aligned} &f_{uk}\!\!=\!\!700 \text{ N/mm}^2; f_{yk}\!\!=\!\!450 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &f_{uk}\!\!=\!\!800 \text{ N/mm}^2; f_{yk}\!\!=\!\!600 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &for anchor rod class 50 \\ &for anchor rod class 70 \end{aligned}$
	Hexagon nut 1)3)	acc. to EN ISO 3506-1:2009 Property class	70 80 50	$\begin{aligned} &f_{uk} = 700 \text{ N/mm}^2; & f_{yk} = 450 \text{ N/mm}^2; & A_5 > 8\% \text{ fracture elongation} \\ &f_{uk} = 800 \text{ N/mm}^2; & f_{yk} = 600 \text{ N/mm}^2; & A_5 > 8\% \text{ fracture elongation} \\ &for anchor rod class 50 \end{aligned}$
2 3a	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009	70 80 50 70 80	$\begin{aligned} &f_{uk}\!\!=\!\!700 \text{ N/mm}^2; f_{yk}\!\!=\!\!450 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &f_{uk}\!\!=\!\!800 \text{ N/mm}^2; f_{yk}\!\!=\!\!600 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &for anchor rod class 50 \\ &for anchor rod class 70 \end{aligned}$
2	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000,	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1	70 80 50 70 80 .4303 / .4404 /	$\begin{split} &f_{uk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ fracture \ elongation} \\ &f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ fracture \ elongation} \\ &for \ anchor \ rod \ class \ 50 \\ &for \ anchor \ rod \ class \ 70 \\ &for \ anchor \ rod \ class \ 80 \\ \\ &1.4307 \ / \ 1.4567 \ or \ 1.4541, \ EN \ 10088-1:2014 \\ &1.4571 \ / \ 1.4362 \ or \ 1.4578, \ EN \ 10088-1:2014 \end{split}$
2 3a	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009	70 80 50 70 80 .4303 / .4404 /	$\begin{split} &f_{uk}\!\!=\!\!700 \text{ N/mm}^2; f_{yk}\!\!=\!\!450 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &f_{uk}\!\!=\!\!800 \text{ N/mm}^2; f_{yk}\!\!=\!\!600 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &for anchor rod class 50 \\ &for anchor rod class 70 \\ &for anchor rod class 80 \\ &1.4307 / 1.4567 \text{ or } 1.4541, \text{ EN } 10088\text{-}1:2014 \\ &1.4571 / 1.4362 \text{ or } 1.4578, \text{ EN } 10088\text{-}1:2014 \\ &f_{uk}\!\!=\!\!500 \text{ N/mm}^2; f_{yk}\!\!=\!\!210 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \end{split}$
2 3a 3b	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1	70 80 50 70 80 .4303 / .4404 /	$\begin{split} &f_{uk}\!\!=\!\!700 \text{ N/mm}^2; f_{yk}\!\!=\!\!450 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &f_{uk}\!\!=\!\!800 \text{ N/mm}^2; f_{yk}\!\!=\!\!600 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &for anchor rod class 50 \\ &for anchor rod class 70 \\ &for anchor rod class 80 \\ &1.4307 / 1.4567 \text{ or } 1.4541, \text{ EN } 10088\text{-}1\text{:}2014 \\ &1.4571 / 1.4362 \text{ or } 1.4578, \text{ EN } 10088\text{-}1\text{:}2014 \\ &f_{uk}\!\!=\!\!500 \text{ N/mm}^2; f_{yk}\!\!=\!\!210 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \end{split}$
2 3a 3b	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009	70 80 50 70 80 .4303 / .4404 /	$\begin{split} &f_{uk}\!\!=\!\!700 \text{ N/mm}^2; f_{yk}\!\!=\!\!450 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &f_{uk}\!\!=\!\!800 \text{ N/mm}^2; f_{yk}\!\!=\!\!600 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &for anchor rod class 50 \\ &for anchor rod class 70 \\ &for anchor rod class 80 \\ \\ &1.4307 / 1.4567 \text{ or } 1.4541, \text{ EN } 10088\text{-}1:2014 \\ &1.4571 / 1.4362 \text{ or } 1.4578, \text{ EN } 10088\text{-}1:2014 \\ \\ &f_{uk}\!\!=\!\!500 \text{ N/mm}^2; f_{yk}\!\!=\!\!210 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &f_{uk}\!\!=\!\!700 \text{ N/mm}^2; f_{yk}\!\!=\!\!450 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \end{split}$
2 3a 3b	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rial 1.4529 or 1.4565, a	70 80 50 70 80 .4303 / .4404 /	$\begin{split} &f_{uk}\!\!=\!\!700 \text{ N/mm}^2; f_{yk}\!\!=\!\!450 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &f_{uk}\!\!=\!\!800 \text{ N/mm}^2; f_{yk}\!\!=\!\!600 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &for anchor rod class 50 \\ &for anchor rod class 70 \\ &for anchor rod class 80 \\ \\ &1.4307 / 1.4567 \text{ or } 1.4541, \text{ EN } 10088\text{-}1:2014 \\ &1.4571 / 1.4362 \text{ or } 1.4578, \text{ EN } 10088\text{-}1:2014 \\ \\ &f_{uk}\!\!=\!\!500 \text{ N/mm}^2; f_{yk}\!\!=\!\!210 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &f_{uk}\!\!=\!\!700 \text{ N/mm}^2; f_{yk}\!\!=\!\!450 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \end{split}$
2 3a 3b	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rial 1.4529 or 1.4565, a Property class acc. to	70 80 50 70 80 .4303 / .4404 / 50 70	$\begin{split} &f_{uk}\!\!=\!\!700 \text{ N/mm}^2; f_{yk}\!\!=\!\!450 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &f_{uk}\!\!=\!\!800 \text{ N/mm}^2; f_{yk}\!\!=\!\!600 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &for anchor rod class 50 \\ &for anchor rod class 70 \\ &for anchor rod class 80 \\ &1.4307 / 1.4567 \text{ or } 1.4541, \text{ EN } 10088\text{-}1\text{:}2014 \\ &1.4571 / 1.4362 \text{ or } 1.4578, \text{ EN } 10088\text{-}1\text{:}2014 \\ &f_{uk}\!\!=\!\!500 \text{ N/mm}^2; f_{yk}\!\!=\!\!210 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &f_{uk}\!\!=\!\!700 \text{ N/mm}^2; f_{yk}\!\!=\!\!450 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongation} \\ &EN 10088\text{-}1\text{:} 2014) \end{split}$
2 3a 3b 4	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rial 1.4529 or 1.4565, a Property class	70 80 50 70 80 .4303 / .4404 / 50 70 acc. to 50 70 80	$\begin{array}{l} f_{uk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ \hline 1.4307 \ / \ 1.4567 \ \text{or } 1.4541, \ \text{EN } 10088\text{-}1\text{:}2014 \\ 1.4571 \ / \ 1.4362 \ \text{or } 1.4578, \ \text{EN } 10088\text{-}1\text{:}2014 \\ \hline f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{EN } 10088\text{-}1\text{:} 2014 \\ \hline \textbf{I}_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 800 \text{ N/mm}^2; \ \textbf{f}_{yk} = 800 $
2 3a 3b 4 High	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rial 1.4529 or 1.4565, a Property class acc. to	70 80 50 70 80 .4303 / .4404 / 50 70 acc. to 70 80 50	$\begin{array}{l} f_{uk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ \hline 1.4307 \ / \ 1.4567 \ \text{or } 1.4541, \ \text{EN } 10088\text{-}1:2014 \\ 1.4571 \ / \ 1.4362 \ \text{or } 1.4578, \ \text{EN } 10088\text{-}1:2014 \\ \hline f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \text{fuk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{f}_{or anchor rod class } 50 \\ \hline \end{array}$
2 3a 3b 4	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009	70 80 50 70 80 .4303 / .4404 / 50 70 80 50 70	$\begin{array}{l} f_{uk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ fracture \ elongation \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ fracture \ elongation \\ for \ anchor \ rod \ class \ 50 \\ for \ anchor \ rod \ class \ 70 \\ for \ anchor \ rod \ class \ 80 \\ \hline \\ 1.4307 \ / \ 1.4567 \ or \ 1.4541, \ EN \ 10088-1:2014 \\ \hline \\ 1.4571 \ / \ 1.4362 \ or \ 1.4578, \ EN \ 10088-1:2014 \\ \hline \\ f_{uk} = 500 \ N/mm^2; \ f_{yk} = 210 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 500 \ N/mm^2; \ f_{yk} = 450 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 500 \ N/mm^2; \ f_{yk} = 210 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 450 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{$
2 3a 3b 4 ligh	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class	70 80 50 70 80 .4303 / .4404 / 50 70 acc. to 70 80 50	$\begin{array}{l} f_{uk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ fracture \ elongation \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ fracture \ elongation \\ for \ anchor \ rod \ class \ 50 \\ for \ anchor \ rod \ class \ 70 \\ for \ anchor \ rod \ class \ 80 \\ \hline \hline 1.4307 \ / \ 1.4567 \ or \ 1.4541, \ EN \ 10088-1:2014 \\ \hline 1.4571 \ / \ 1.4362 \ or \ 1.4578, \ EN \ 10088-1:2014 \\ \hline f_{uk} = 500 \ N/mm^2; \ f_{yk} = 210 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline EN \ 10088-1:2014 \\ \hline \hline f_{uk} = 500 \ N/mm^2; \ f_{yk} = 450 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline f_{uk} = 500 \ N/mm^2; \ f_{yk} = 210 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline f_{or} \ anchor \ rod \ class \ 50 \\ \hline \end{array}$
2 3a 3b 4 High 1 2 3a	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009	70 80 50 70 80 .4303 / .4404 / 50 70 80 50 70 80	$\begin{array}{l} f_{uk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ fracture \ elongation \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ fracture \ elongation \\ for \ anchor \ rod \ class \ 50 \\ for \ anchor \ rod \ class \ 70 \\ for \ anchor \ rod \ class \ 80 \\ \hline \\ 1.4307 \ / \ 1.4567 \ or \ 1.4541, \ EN \ 10088-1:2014 \\ \hline \\ 1.4571 \ / \ 1.4362 \ or \ 1.4578, \ EN \ 10088-1:2014 \\ \hline \\ f_{uk} = 500 \ N/mm^2; \ f_{yk} = 210 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 500 \ N/mm^2; \ f_{yk} = 450 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 500 \ N/mm^2; \ f_{yk} = 210 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 450 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{uk} = 800 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ \hline \\ f_{$
2 3a 3b 4 High 1	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000,	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.45	70 80 50 70 80 .4303 / .4404 / 50 70 80 50 70 80	$\begin{array}{l} f_{uk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ \hline 1.4307 \ / \ 1.4567 \ \text{ or } 1.4541, \ \text{EN } 10088\text{-}1\text{:}2014 \\ 1.4571 \ / \ 1.4362 \ \text{ or } 1.4578, \ \text{EN } 10088\text{-}1\text{:}2014 \\ \hline f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \text{fuk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \text{for anchor rod class } 50 \\ \hline \text{for anchor rod class } 80 \\ \hline \text{c. to EN } 10088\text{-}1\text{: } 2014 \\ \hline \end{array}$
2 3a 3b 4 High 1 2 3a	Hexagon nut ¹⁾³⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009	70 80 50 70 80 .4303 / .4404 / 50 70 80 50 70 80	$\begin{array}{l} f_{uk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ \hline 1.4307 / 1.4567 \text{ or } 1.4541, \text{ EN } 10088\text{-}1:2014 \\ 1.4571 / 1.4362 \text{ or } 1.4578, \text{ EN } 10088\text{-}1:2014 \\ \hline f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline \textbf{EN } 10088\text{-}1:2014) \\ \hline f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\% \ \text{fracture elongation} \\ \hline f_{or anchor rod class } 50 \\ \hline \text{for anchor rod class } 80 \\ \hline \end{array}$


⁴⁾ Filling washer only with stainless steel A4

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

²⁾ for IG-M20 only property class 50 ³⁾ Property class 70 only for stainless steel A4

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material
Rein	forcing bars	
1		Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete

Product description Materials reinforcing bar Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- The Anchorages are designed in accordance to:
 - FprEN 1992-4:2017 and Technical Report TR055

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete

Intended Use
Specifications

Annex B 1

Deutsches Institut für Bautechnik	DIBt

Table B1: Installation parameters for threaded rod											
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30		
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30		
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35		
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120		
Effective affichorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600		
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33		
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37		
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200		
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150		
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150		

Installation parameters for rebar Table B2:

Rebar size	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Outer diameter of anchor	d_{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	$d_0 [mm] =$	12	14	16	18	20	24	32	35	40
Effective anchorage depth	$h_{ef,min}$ [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	$h_{ef,max}$ [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm				h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

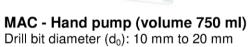
Table B3: Installation parameters for internal threaded anchor rod

Size internal threaded anchor rod		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of anchor 1)	d _{nom} [mm] =	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 [mm] =$	12	14	18	22	28	35
Effective anchorage depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Effective affictionage depth	$h_{ef,max}$ [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length Min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	- 2d ₀	
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150

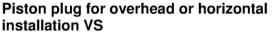
¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Intended Use Installation parameters	Annex B 2

Table B4: Parameter cleaning and setting tools



		200								
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA			d _{b,min} min. Brush - Ø	Piston plug	Installation direction and of piston plug		
(mm)	(mm)	(mm)	(mm)		(mm)	(mm)		1	→	1
M8			10	RBT10	12	10,5	-	-	-	-
M10	8	IG-M6	12	RBT12	14	12,5	-	-	-	-
M12	10	IG-M8	14	RBT14	16	14,5	-	-	-	-
	12		16	RBT16	18	16,5	-	-	-	-
M16	14	IG-M10	18	RBT18	20	18,5	VS18			
	16		20	RBT20	22	20,5	VS20			
M20	20	IG-M12	24	RBT24	26	24,5	VS24	h >	h >	
M24		IG-M16	28	RBT28	30	28,5	VS28	h _{ef} >	h _{ef} >	all
M27	25		32	RBT32	34	32,5	VS32	250 mm	250 mm	
M30	28	IG-M20	35	RBT35	37	35,5	VS35			
	32		40	RBT40	41,5	40,5	VS40			

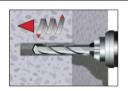

Drill hole depth (h_0) : < 10 d_{nom} Only in non-cracked concrete

CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

Drill bit diameter (d₀): 18 mm to 40 mm

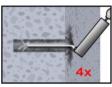
Steel brush RBT


Drill bit diameter (d₀): all diameters

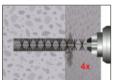
Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions

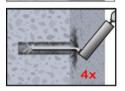
Drilling of the bore hole



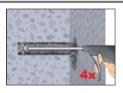
1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.


In case of aborted drill hole: the drill hole shall be filled with mortar

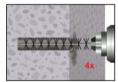
Attention! Standing water in the bore hole must be removed before cleaning.


MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)

2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump ¹⁾ (Annex B 3) a minimum of four times.



2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.
If the bore hole ground is not reached with the brush, a brush extension must be used.



2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times.
If the bore hole ground is not reached with the brush, a brush extension must be used.

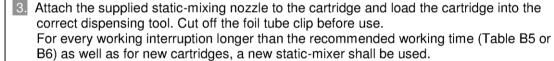
2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

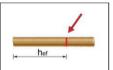
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete

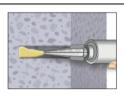
Intended Use

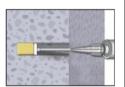
Installation instructions

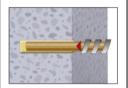

Annex B 4


¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.

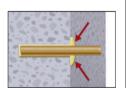
Installation instructions (continuation)



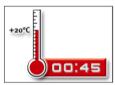

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

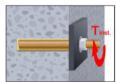
6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Observe the gel-/ working times given in Table B5 or B6.



- 7. Piston Plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit- \emptyset d₀ \ge 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.


The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5 or B6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5:	Maximum Working time and minimum curing time
	X-PRO

Concrete temperature		perature	Gelling- / working time	Minimum curing time in dry concrete 1)				
0 °C	to	+4°C	45 min	7 h				
+5 °C	to	+9°C	25 min	2 h				
+ 10 °C	+ 10 °C to +19°C		15 min	80 min				
+ 20 °C	to	+29°C	6 min	45 min				
+ 30 °C	to	+34°C	4 min	25 min				
+ 35 °C	to	+39°C	2 min	20 min				
+40°C			1,5 min	15 min				
Cartride	ge tem	perature	+5°C to	+40°C				

In wet concrete the curing time must be doubled.

Table B6: Maximum Working time and minimum curing time X-PRO Nordic

Concrete temperature		Gelling- / working time	Minimum curing time in dry concrete 1)				
0 °C to	+4°C	10 min	2,5 h				
+5 °C to	+9°C	6 min	80 Min				
+ 10 °C		6 min	60 Min				
Cartridge te	mperature	-20°C to +10°C					

In wet concrete the curing time must be doubled.

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Intended Use Curing time	Annex B 6

Steel, Property cl Steel, Property cl Steel, Property cl Stainless steel A2 Stainless steel A2 Characteristic te Steel, Property cl Stainless steel A2 Steel, Pro Steel, Pro Steel, Pro Stainless steel, Pro Stainless steel, Pro Stainless steel, Pro Steel, Property cl Steel, Property cl Steel, Property cl Steel, Property cl				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel, Property cl Steel, Property cl Steel, Property cl Stainless steel A2 Stainless steel A2 Stainless steel A2 Characteristic te Steel, Property cl Steel, Property cl Steel, Property cl Steel, Property cl Stainless steel A2 Steel, Pro Steel, Pro Steel, Pro Stainless steel, Pro Steel, Property cl Steel, Property cl Steel, Property cl Steel, Property cl	eristic tension resistance, Steel failure				1				11121		
Steel, Property cl Stainless steel A2 Steel, Property cl Stainless steel A2 Steel, Pro Steel, Pro Steel, Pro Stainless Steel, Pro Stainless Stainless Steel, Pro Steel, Property cl Steel, Property cl Steel, Property cl Steel, Property cl	roperty class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Steel, Property cl Stainless steel A2 Steel, Property cl Steel, Property cl Steel, Property cl Steel, Property cl Stainless steel A2 Stainless steel A2 Stainless steel A2 Characteristic sl Steel, Pro Steel, Pro Steel, Pro Steel, Pro Stainless steel, Pro Stainless steel, Pro Stainless steel, Pro Stainless steel, Pro Steel, Pro Steel, Pro Steel, Pro Steel, Pro Stainless steel, Pro Steel, Pro Steel, Pro Stainless steel, Pro Steel, Pro Steel, Pro Steel, Pro Stainless steel, Pro Steel, Property cl Steel, Property cl Steel, Property cl Steel, Property cl	roperty class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Stainless steel A2 Stainless steel A2 Stainless steel A2 Stainless steel A2 Characteristic te Steel, Property cl Steel, Property cl Steel, Property cl Stainless steel A2 Stainless steel, Pro Steel, Pro Stainless St	<u> </u>	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Stainless steel A2 Stainless steel A2 Characteristic te Steel, Property cl Stainless steel A2 Stainless steel A2 Stainless steel A2 Stainless steel A2 Characteristic sl Steel, Pro Steel, Pro Steel, Pro Stainless steel, Pro Steel, Pro Steel, Pro Steel, Pro Steel, Pro Steel, Pro Stainless steel, Pro Steel, Property cl	s steel A2, A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	28
Stainless steel Ad Characteristic teel, Property clesteel, Property cl	s steel A2, A4 and HCR, Property class 70	N _{Bk.s}	[kN]	26	41	59	110	171	247	-	-
Characteristic te Steel, Property cl Stainless steel A2 Stainless steel A2 Characteristic sl Stainless :	s steel A4 and HCR, Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
Steel, Property cl Stainless steel A2 Steel, Pro Steel, Pro Stainless	eristic tension resistance, Partial factor	111,0	1 . ,								
Steel, Property cl Steel, Property cl Steel, Property cl Steel, Property cl Stainless steel A2 Stainless steel A2 Stainless steel A2 Characteristic sl Steel, Pro Steel, Pro Stainless		γ _{Ms,N} 1)	[-]				2	,0			
Steel, Property cl Steel, Property cl Steel, Property cl Stainless steel A2 Stainless steel A2 Stainless steel A2 Characteristic sl Steel, Pro Steel, Pro Stainless St	· · ·	γMs,N 1)	[-]					,5			
Steel, Property cl Stainless steel A2 Stainless steel, Pro Steel, Pro Stainless	• •	γ _{Ms,N} 1)	[-]				2	,0			
Steel, Property cl Stainless steel A2 Stainless steel, Pro Steel, Pro Stainless	· ·	γMs,N 1)	[-]					,5			
Stainless steel A2 Stainless steel A2 Characteristic sl Steel, Pro Steel, Pro Stainless Stainless Stainless Steel, Pro Steel, Pro Steel, Pro Steel, Pro Steel, Pro Stainless	roperty class 8.8	γ _{Ms,N} 1)	[-]	1,5							
Stainless steel Ad Characteristic signs of the steel, Pro Steel, Pro Stainless of S	s steel A2, A4 and HCR, Property class 50	γ _{Ms,N} 1)	[-]	2,86							
Steel, Pro Steel, Pro Steel, Pro Stainless	Stainless steel A2, A4 and HCR, Property class 70 $\gamma_{Ms,N}$ [-] 1,87										
Steel, Pro Steel, Pro Stainless Stainless Steel, Pro Stainless Stainless Steel, Pro Steel, Pro Steel, Pro Stainless Stainless Stainless Stainless Stainless Stainless Stainless Steel, Property cl	Stainless steel A4 and HCR, Property class 80 $\gamma_{Ms,N}$ [-] 1,6										
Steel, Pro Stainless	eristic shear resistance, Steel failure	<u>'</u>	'								
Stainless Steel, Pro Steel, Pro Stainless Stainless Stainless Stainless Steel, Property cl	Steel, Property class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	9	14	20	38	59	85	110	13
Stainless Steel, Pro Steel, Pro Stainless Stainless Stainless Stainless Steel, Property cl	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	14
Stainless Steel, Pro Steel, Pro Stainless Stainless Stainless Stainless Steel, Property cl	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	184	22
Stainless Steel, Pro Steel, Pro Stainless Stainless Stainless Stainless Stainless Stainless Steel, Property cl	Stainless steel A2, A4 and HCR, Property class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	14
Stainless Steel, Pro Steel, Pro Stainless Stainless Stainless Stainless Steel, Property cl	Stainless steel A2, A4 and HCR, Property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
Steel, Pro Stainless Stainless Stainless Stainless Stainless Stainless Steel, Property cl	Stainless steel A4 and HCR, Property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	-	-
Steel, Pro Stainless:	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	90
Stainless : Stainless : Stainless : Stainless : Steel, Property cl Steel, Property cl Steel, Property cl Steel, Property cl	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	112
Stainless : Stainl	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	179
Stainless Stainless Stainless Stainless Stainless Stainless Steel, Property cl	Stainless steel A2, A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	112
Characteristic sl Steel, Property cl Steel, Property cl Steel, Property cl Steel, Property cl	Stainless steel A2, A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
Steel, Property cl Steel, Property cl Steel, Property cl Steel, Property cl	Stainless steel A4 and HCR, Property class 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896	-	-
Steel, Property cl Steel, Property cl Steel, Property cl	eristic shear resistance, Partial factor										
Steel, Property cl Steel, Property cl	roperty class 4.6	γ _{Ms,V} 1)	[-]	1,67							
Steel, Property cl	Steel, Property class 4.8 $\gamma_{Ms,V}^{1}$ [-] 1,25										
	roperty class 5.6	γ _{Ms,V} 1)	[-]				1,	67			
Stool Broporty of		γMs,V 1)	[-]	1,25							
	roperty class 8.8	γMs,V 1)	[-]					25			
	s steel A2, A4 and HCR, Property class 50	γMs,V 1)	[-]					38			
	s steel A2, A4 and HCR, Property class 70 s steel A4 and HCR, Property class 80	γ _{Ms,V} 1) γ _{Ms,V} 1)	[-]					56 33			

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

Anchor size threaded	rod			M 8	M 10	M 12	M 16	M 20	M24	M27	M30	
Steel failure												
Characteristic tension re	esistance	N _{Rk,s}	[kN] [kN]	see Table C1								
Partial factor		N _{Rk,s, eq}	[-]				, -	able C1				
Combined pull-out and	d concrete failure	γMs,N	[[7]				300 18	IDIC O I				
		poroto C20/25										
	stance in non-cracked co		[N]/mar=21	10	12	12	10	12	11	10	9	
Temperature range I: 40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	7,5	8,5	8,5	12 8,5			10 Determine	_	
	mperature range II: dry and wet concrete flooded bore hole dry and wet concrete dry and wet concrete dry and wet concrete		[N/mm ²]	7,5	9	9	9	9	8.5	7,5	6,5	
80°C/50°C	Size a		[N/mm²]	5,5	6,5	6,5	6,5		-,-	Determine		
		τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6.5	6,5	5,5	5.0	
120°C/72°C	flooded bore hole	T _{Rk.ucr}	[N/mm²]	4,0	5,0	5,0	5,0	- , -	,	Determine	,	
	stance in cracked concre	,	[[]	.,0	0,0	0,0	0,0	1		_ 5.5.111110	- (· • · ·	
		τ _{Rk,cr}	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5	
Temperature range I:	dry and wet concrete		[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4.5	
40°C/24°C		T _{Rk,eq}	[N/mm²]	4,0	4,0	5,5	5,5		,	Determine	,	
-	flooded bore hole	T _{Rk,eq}	[N/mm ²]	2,5	2,5	3,7	3,7			Determine		
		T _{Rk,cr}	[N/mm ²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5	
Temperature range II:	dry and wet concrete	TRk,eq	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2.8	3,1	3.	
80°C/50°C		τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0		, -	Determine	- /	
-	flooded bore hole	T _{Rk,eq}	[N/mm ²]	1,6	1,9	2,7	2,7			Determine		
		T _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3.0	3,0	3,0	3,5	3,5	
Temperature range III:	dry and wet concrete	T _{Rk,eq}	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4	
120°C/72°C		T _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0			Determine		
-	flooded bore hole	T _{Rk,eq}	[N/mm ²]	1,3	1,6	2,0	2,0			Determine		
		C25/30		-,-	.,-	_,-		02				
			C30/37 1,0									
Increasing factors for co							,07					
(only static or quasi-stat	ic actions)	C40/50		1,08)8			
Ψ¢		C45/55	.,-					09				
		C50/60)	1,10								
Concrete cone failure												
Non-cracked concrete		k _{ucr,N}	[-]				11	١,0				
Cracked concrete		k _{cr.N}	[-]	7,7								
Edge distance		2.,						h _{ef}				
		C _{cr,N}	[mm]									
Axial distance		S _{cr,N}	[mm]				2 0	cr,N				
Splitting	Т	T		<u> </u>								
	h/h _{ef} ≥ 2,0						1,0	h _{ef}				
		1					(h	<u> </u>			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			2	$2 \cdot h_{ef} = 2$	$5 - \frac{n}{b}$				
]						h _{ef})			
	h/h _{ef} ≤ 1,3						2,4	h _{ef}				
Axial distance	I	S _{cr,sp}	[mm]				20	cr,sp				
Installation factor		→cr,sp										
(dry and wet concrete)		γ inst	[-]	1,0				1,2				
Installation factor (floods	ed bore hole)	γinst	[-]		1	,4		No Perf	ormance	Determine	d (NPI	
(1120)	,		,	I		-					,	
On all IT looks and	V DDO	V DDC N	-!!- <i>(</i>									
Scell-IT Injectio	n system X-PRO,	X-PRO Nore	aic for c	concre	te							
								\dashv	Annex C 2			
Performances												

Table C3: Characteristic val seismic action (pe					tatic,	quasi-	static	action	and			
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30		
Steel failure without lever arm			•	•		•	•	•				
Characteristic shear resistance	$V^0_{Rk,s}$	[kN]	see Table C1									
Characteristic shear resistance	$V_{Rk,s,eq}$	[kN]				0,70	V ⁰ _{Rk,s}					
Partial factor	γMs,V	[-]				see Ta	able C1					
Ductility factor	k ₇	[-]				1	,0					
Steel failure with lever arm		•	•									
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	see Table C1									
Characteristic bending moment	M ⁰ _{Rk,s, eq}	[Nm]			No Perf	ormance (Determine	ed (NPD)				
Partial factor	γ _{Ms,V}	[-]				see Ta	able C1					
Concrete pry-out failure												
Factor	k ₈	[-]				2	,0					
Installation factor	γinst	[-]				1	,0					
Concrete edge failure												
Effective length of fastener	I _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$									
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30		
Installation factor	γinst	[-]				1	,0					
Factor for annular gap	$\alpha_{\sf gap}$	[-]				0,5 (1,0) ¹⁾					

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and	Annex C 3
seismic action (performance category C1)	

eta-10/0262
dibt: e
eta by
of the
copy
onic
electi

	Anchor size internal threaded anchor rods				IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure1)										
Characteristic tension re	,	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class 5.8			ļ , ,				-	. •		
Partial factor Characteristic tension re	pointanno	γMs,N	[-]			1	,5			
Steel, strength class 8.8		$N_{Rk,s}$	[kN]	16	27	46	67	121	196	
Partial factor		γ _{Ms,N}	[-]			1	,5			
Characteristic tension re		N _{Rk,s}	[kN]	14	26	41	59	110	124	
Stainless Steel A4, Stre	ngth class 70	™RK,s		14	20		33	110		
Partial factor		γMs,N	[-]			1,87			2,86	
<u> </u>	d concrete cone failure									
	stance in non-cracked concre	ete C20/25	Fh.1/	45 1	4.5	4.5	4.5	4.		
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	12	12	12	12	11	9	
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,5		nance Determ		
Temperature range II: 80°C/50°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	9	9	9	9	8,5	6,5	
	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	6,5	6,5	6,5		nance Determ		
Temperature range III: 120°C/72°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0	
	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,0	5,0	5,0	No Perform	nance Determ	ined (NPD)	
	stance in cracked concrete C		[N1/2]	5.0					0.5	
Temperature range I: 40°C/24°C	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	5,0	5,5	5,5	5,5	5,5	6,5	
	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	5,5	5,5		nance Determ		
Temperature range II: 80°C/50°C	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	3,5	4,0	4,0	4,0	4,0	4,5	
	flooded bore hole	τ _{Rk,cr}	[N/mm²]	3,0	4,0	4,0	3,0	nance Determ 3.0	, ,	
Temperature range III: 120°C/72°C	dry and wet concrete flooded bore hole	τ _{Rk,cr}	[N/mm²]	2,5 2,5	3,0	3,0 3,0	- / -	nance Determ	3,5	
120 0/12 0	nooded bore note	τ _{Rk,cr}	[N/mm²] 25/30	2,5	3,0	,	02	lance Determ	ilinea (NPD)	
			30/37							
Increasing factors for as	narata		B5/45	1,04						
Increasing factors for cc ψ_c	ricrete		10/50	1,07						
Ψ¢			15/55	1,09						
			50/60	1,10						
Concrete cone failure			70700			.,	10			
Non-cracked concrete		k _{ucr.N}	[-]			11	1,0			
Cracked concrete		k _{cr,N}	[-]				,7			
Edge distance		C _{cr,N}	[mm]				h _{ef}			
Axial distance		S _{cr,N}	[mm]				C _{cr,N}			
Splitting failure		-01,14	[]				-01,14			
<u> </u>	h/h _{ef} ≥ 2,0					1.0) h _{ef}			
	er = 2,0					/,0				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot \mathrm{h}_{\mathrm{ef}} \left(2.5 - rac{\mathrm{h}}{\mathrm{h}_{\mathrm{ef}}} ight)$						
h/h _{ef} ≤ 1,3						2,4	∤ h _{ef}			
Axial distance		S _{cr,sp}	[mm]			2 0	cr,sp			
Installation factor (dry a	nd wet concrete)	Yinst	[-]				,2			
Installation factor (floode		Yinst	[-]		1,4					
	22 2310 11010)				.,-	e material a				

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

For IG-M20 strength class 50 is valid

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Performances	Annex C 4
Characteristic values of tension loads under static and quasi-static action	

Table C5: Characteristi	Table C5: Characteristic values of shear loads under static and quasi-static action												
Anchor size for internal threaded anch	or rods		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20					
Steel failure without lever arm ¹⁾				•			•						
Characteristic shear resistance, Steel, strength class 5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61					
Partial factor	γMs,V	[-]	1,25										
Characteristic shear resistance, Steel, strength class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98					
Partial factor	γMs,V	[-]	1,25										
Characteristic shear resistance, Stainless Steel A4, Strength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40					
Partial factor	γMs,V	[-]	1,56 2,38										
Ductility factor	k ₇	[-]			1	,0							
Steel failure with lever arm ¹⁾		•	•										
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325					
Partial factor	γMs,∨	[-]			1,	25							
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519					
Partial factor	γMs,V	[-]			1,	25							
Characteristic bending moment, Stainless Steel A4, Strength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456					
Partial factor	γMs,V	[-]			1,56			2,38					
Concrete pry-out failure													
Factor	k ₈	[-]			2	,0							
Installation factor	γinst	[-]			1	,0							
Concrete edge failure		•											
Effective length of fastener	If	[mm]			l _f = min(h	l _{ef} ; 8 d _{nom})							
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30					
Installation factor	γinst	[-]		•	1	,0	•						

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 5

²⁾ For IG-M20 strength class 50 is valid

Anchor size reinforcin	g bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension re	noietanea		$N_{Rk,s}$	[kN]					$A_s \cdot f_{uk}^{-1}$				
Characteristic tension re	esistance		N _{Rk,s, eq}	[kN]				1,	0 ⋅ A _s ⋅ f	uk 1)			
Cross section area			As	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor			γMs,N	[-]					1,4 ²⁾				
Combined pull-out and	d concrete fa	ilure											
Characteristic bond resi			ncrete C20	1									
Temperature range I:	dry and wet		τ _{Rk,ucr}	[N/mm ²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore		$\tau_{Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5	8,5	_	ormance I		· , ,
Temperature range II:	flooded bore hole		τ _{Rk,ucr}	[N/mm ²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C			τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5		ormance I		<u> </u>
Temperature range III:	dry and wet		τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bor		τ _{Rk,ucr}	[N/mm ²]	4,0	5,0	5,0	5,0	5,0	No Perf	ormance I	Determine	ea (NPD)
Characteristic bond resi	stance in crad	ckea concre		[N]/page 21	10	5 0	E	E E	E		T = =	6.5	G E
Taman anatura assault	dry and wet	concrete	τ _{Rk,cr}	[N/mm ²] [N/mm ²]	4,0 2,5	5,0 3,1	5,5 3,7	5,5 3,7	5,5 3,7	5,5 3,7	5,5 3,8	6,5 4,5	6,5 4,5
Temperature range I: 40°C/24°C			$ au_{ m Rk,eq}$ $ au_{ m Rk,cr}$	[N/mm²]	4,0	4,0	5,5	5,5	5,5	-,-	ormance I		, -
40 0/24 0	flooded bore	flooded bore hole		[N/mm²]	2,5	2,5	3,7	3,7	3,7	_	ormance I		, ,
			τ _{Rk,eq}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:	dry and wet	concrete	T _{Rk,cr}	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C			τ _{Rk,eq}	[N/mm ²]	2,5	3,0	4,0	4,0	4,0		ormance I		
	flooded bore hole		τ _{Rk,eq}	[N/mm ²]	1,6	1,9	2,7	2,7	2,7		ormance I		, ,
			τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III: 120°C/72°C	dry and wet	dry and wet concrete		[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
			τ _{Rk,eq}	[N/mm ²]	2,0	2,5	3,0	3,0	3,0		ormance I		
	flooded bore	e hole	$\tau_{Rk,eq}$	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	No Perf	ormance I	Determine	ed (NPD)
				5/30					1,02				
			C30	0/37					1,04				
Increasing factors for co (only static or quasi-stat			C3	5/45	1,07								
Ψ _c	iic actions)		C40	0/50	1,08								
**			C45	5/55	1,09								
			C50	0/60					1,10				
Concrete cone failure													
Non-cracked concrete			k _{ucr,N}	[-]					11,0				
Cracked concrete			k _{cr,N}	[-]					7,7				
Edge distance			C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance			S _{cr,N}	[mm]					2 c _{cr,N}				
Splitting			- 0.,		I				- 0.111				
1	h/h _{ef} ≥ 2,0								1,0 h _{ef}				
			1						(L			
Edge distance	2,0> h/h _{ef} >	1,3	C _{cr,sp}	[mm]				$2 \cdot h_{o}$	_{ef} 2,5 -	$\frac{h}{h_{ef}}$			
	h/h _{ef} ≤ 1,3								2,4 h _{ef}				
Axial distance	•		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation factor (dry a	nd wet concre	ete)	γinst	[-]	1,0					,2			
Installation factor (dry and wet concrete) Installation factor (flooded bore hole)													

²⁾ in absence of national regulation

electronic copy of the eta by dibt: eta-10/0262

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Performances Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1)	Annex C 6

8.06.01-79/18

Z34796.18

Table C7: Characteristic seismic action					tatic,	quas	i-stat	ic ac	tion a	and	
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]				0,5	50 • A _s •	f _{uk} 1)			
Characteristic shear resistance	V _{Rk,s, eq}	[kN]				0,3	85 • A _s •	f _{uk} 1)			
Cross section area	As	[mm²]	50	79	113	154	201	214	491	616	804
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm											
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]				1.2	2 • W _{el} •	f _{uk} 1)			
Characteristic bending moment	M ⁰ _{Rk,s, eq}	[Nm]	No Performance Determined (NPD)								
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γms,v	[-]					1,5 ²⁾				
Concrete pry-out failure											
Factor	K ₈	[-]					2,0				
Installation factor	Yinst	[-]					1,0				
Concrete edge failure	·	·									
Effective length of fastener	l _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$								
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0				
Factor for annular gap	$\alpha_{\sf gap}$	[-]				(0,5 (1,0)	1)			

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars in absence of national regulation

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)	Annex C 7

³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25	i	•	•						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III: 120°C/72°C	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	105			0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Displacements under shear load¹⁾ (threaded rod) Table C9:

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30		
For non-cracked concrete C20/25												
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03		
	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05		
For cracked concrete C20/25												
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07		
	$\delta_{\text{V}_{\infty}}\text{-factor}$	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10		

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \ \cdot \ V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \ \cdot \ V; \end{split}$$
V: action shear load

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Performances	Annex C 8
Displacements (threaded rods)	

Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/2	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90				0,070			
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	05				0,105			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170			
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255				0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219				0,170			
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255	0,245						

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C11: Displacement under shear load (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32					
Non-cracked concrete C20/25																
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03					
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04					
Cracked concrete C20/25																
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06					
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10					

Calculation of the displacement $\begin{array}{l} \delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V; \\ \delta_{V\infty} = \delta_{V\infty}\text{-factor} \ \cdot \ V; \end{array}$

V: action shear load

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete	
Performances	Annex C 9
Displacements (rebar)	

Table C12: Dis	splacements	s under tension	load ¹⁾ (lı	nternal t	hreaded	anchor	rod)	
Anchor size Internal threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked concret	te C20/25 under	static and quasi-stati	c action	•			•	
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071
Temperature range II: 80°C/50°C	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172
Cracked concrete C2	0/25 under stati	c and quasi-static ac	tion					
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,090	0,070				
	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,105	0,105				
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,219	0,170				
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,255	0,245				
Temperature range III: 120°C/72°C	δ _{N0} -factor	[mm/(N/mm²)]	0,219	0,170				
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,255	0,245				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Table C13: Displacements under shear load¹⁾ (Internal threaded anchor rod)

Anchor size Internal threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Non-cracked and cracked concrete C20/25 under static and quasi-static action									
All temperature	δ_{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04	
ranges	δ _{V∞} -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor } \cdot V;$

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete				
Performances Displacements (Internal threaded anchor rod)	Annex C 10			