

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0167 of 16 May 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Deutsches Institut für Bautechnik

Soudal Injection System VE-SF for concrete

Bonded fastener for use in concrete

SOUDAL N.V. Everdongenlaan 18-20 2300 Turnhout BELGIEN

Soudal NV, Plant1 Germany

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of 25 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-10/0167

Page 2 of 25 | 16 May 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 16 May 2018

European Technical Assessment ETA-10/0167 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Soudal Injection system VE-SF for concrete" is a bonded anchor consisting of a cartridge with injection mortar Soudafix VE400-SF and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4 and C 6
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5 and C 7
Displacements	See Annex
(static and quasi-static loading)	C 8 to C 10
Characteristic resistance for seismic performance	See Annex
category C1	C 2, C 3, C 6 and C 7
Characteristic resistance and displacements for seismic performance category C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-10/0167

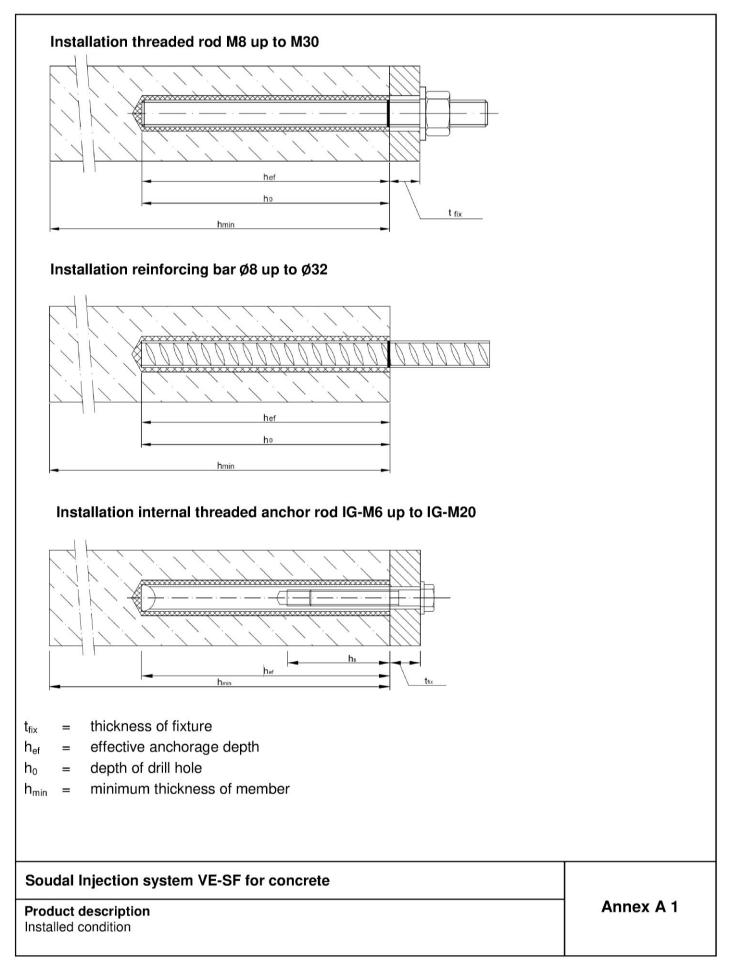
Page 4 of 25 | 16 May 2018

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

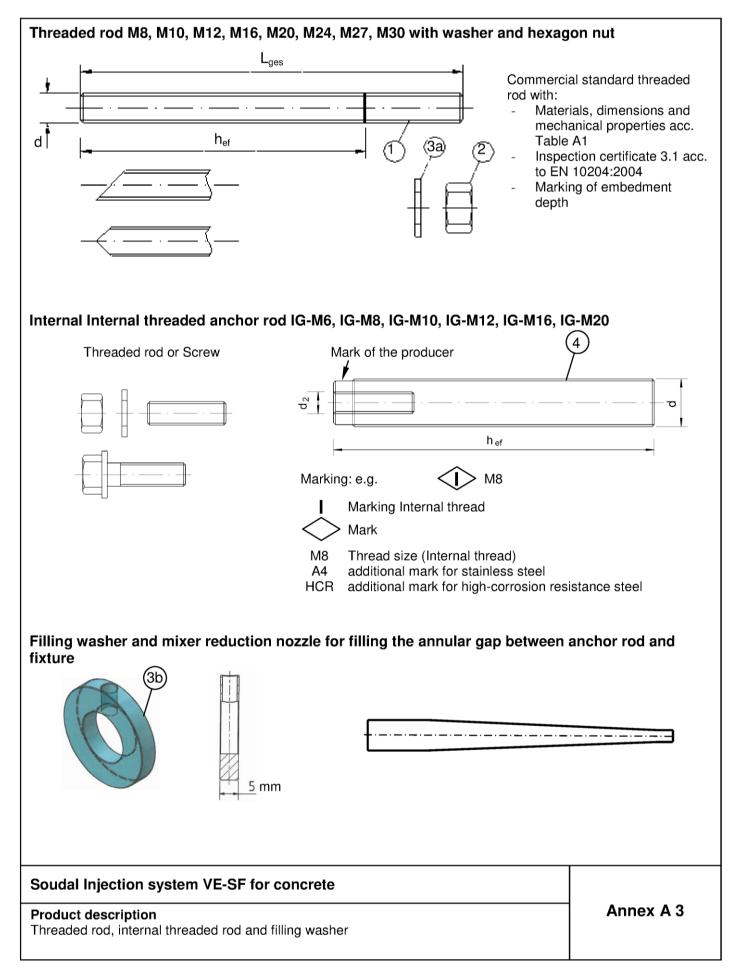
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 16 May 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider



Page 6 of European Technical Assessment ETA-10/0167 of 16 May 2018

Cartridge: Soudafix VE400-SF 150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: c	oaxial)
Sealing/Screw cap Sealing/Screw cap	nperature, hazard- (depending on the
235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")	
Sealing/Screw cap	berature, hazard- lepending on the
165 ml and 300 ml cartridge (Type: "foil tube")	
Sealing/Screw cap Imprint: Soudafix VE400-SF, process code, shelf life, storage temperature curing- and processing time (dependent temperature), with as well as without	hazard-code, ling on the
Static Mixer	
Soudal Injection system VE-SF for concrete	Annex A 2
Product description Injection system	

	ble A1: Materials	Material			
too	I, zinc plated (Steel acc. to EN 10		.2001)		
	plated $\geq 5 \ \mu m$ acc. to EN ISO 4042:				9 and
	SO 10684:2004+AC:2009 or sherard				Jana
			4.6	f _{uk} =400 N/mm ² ; f _{yk} =240 N/mm ² ; A	$\Lambda_5 > 8\%$ fracture elongation
		Drenerty clean	4.8	f _{uk} =400 N/mm ² ; f _{yk} =320 N/mm ² ; A	-
1	Anchor rod	Property class acc. to	5.6	f _{uk} =500 N/mm ² ; f _{yk} =300 N/mm ² ; A	-
'		EN ISO 898-1:2013		f _{uk} =500 N/mm ² ; f _{yk} =400 N/mm ² ; A	
			5.8	f _{uk} =800 N/mm ² ; f _{vk} =640 N/mm ² ; A	· •
			8.8		$\Lambda_5 > 8\%$ fracture elongation
		Property class	4	for anchor rod class 4.6 or 4.8	
2	Hexagon nut	acc. to	5	for anchor rod class 5.6 or 5.8	
		EN ISO 898-2:2012	8	for anchor rod class 8.8	
	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, hot-	dip gal	vanised or sherardized	
3b	Filling washer	Property class	5.8	f _{uk} =500 N/mm ² ; f _{vk} =400 N/mm ²	$\Delta_{z} > 8\%$ fracture elementic
4	Internal threaded anchor rod	acc. to		, , , ,	0
		EN ISO 898-1:2013	8.8	f _{uk} =800 N/mm ² ; f _{yk} =640 N/mm ²	; $A_5 > 8\%$ fracture elongation
tair	nless steel A2 (Material 1.4301 / 1.	4303 / 1.4307 / 1.4567	oder 1	.4541, acc. to EN 10088-1:2014	4)
٦d					
tair	less steel A4 (Material 1.4401 / 1.				
	1)3)	Property class	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A	- <u></u>
1	Anchor rod ¹⁾³⁾	acc. to EN ISO 3506-1:2009	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ; A	
			80	f _{uk} =800 N/mm ² ; f _{yk} =600 N/mm ² ; A	$\Lambda_5 > 8\%$ fracture elongation
-		Property class	50	for anchor rod class 50	
2 Hexagon nut ¹⁾³⁾		acc. to EN ISO 3506-1:2009	70	for anchor rod class 70	
		EN 180 3506-1:2009	80	for anchor rod class 80	
	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾			/ 1.4307 / 1.4567 or 1.4541, EN / 1.4571 / 1.4362 or 1.4578, EN	
		Property class	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ²	A ₅ > 8% fracture elongation
4	Internal threaded anchor rod ¹⁾²⁾	acc. to		,	
		EN ISO 3506-1:2009	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ²	; $A_5 > 8\%$ fracture elongation
igh	corrosion resistance steel (Mate	rial 1.4529 or 1.4565, a	acc. to	EN 10088-1: 2014)	
		Property class	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A	A ₅ > 8% fracture elongation
1	Anchor rod ¹⁾	acc. to	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ; A	$\Lambda_5 > 8\%$ fracture elongation
		EN ISO 3506-1:2009	80	f _{uk} =800 N/mm ² ; f _{yk} =600 N/mm ² ; A	$\Lambda_5 > 8\%$ fracture elongation
		Property class	50	for anchor rod class 50	
2	Hexagon nut ¹⁾	acc. to	70	for anchor rod class 70	
		EN ISO 3506-1:2009	80	for anchor rod class 80	
a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.4	565, ac	c. to EN 10088-1: 2014	
3b	Filling washer				
4	Internal threaded anchor rod ^{1) 2)}	Property class acc. to	50	$f_{uk}=500 \text{ N/mm}^2$; $f_{yk}=210 \text{ N/mm}^2$	-
		EN ISO 3506-1:2009	70	$f_{uk}=700 \text{ N/mm}^2$; $f_{yk}=450 \text{ N/mm}^2$	$n_5 > 0\%$ fracture elongati
2). 3)	Property class 70 for anchor rods up to M for IG-M20 only property class 50 Property class 70 only for stainless steel Filling washer only with stainless steel A	A4	anchor	rods up to IG-M16,	
So	udal Injection system VE-S	F for concrete			

Reir	nforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 10	6, Ø 20, Ø 25, Ø 28, Ø 32	
	h _{ef}		
	 Minimum value of related rip area f_{R,min} ac Rib height of the bar shall be in the range 	-	
	(d: Nominal diameter of the bar; h: Rip hei		
Tab	le A2: Materials		
Part	Designation	Material	
Reinf	orcing bars	1	
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA:2013
Sou	dal Injection system VE-SF for concret	te	
Proc	luct description		Annex A 5
Mate	rials reinforcing bar		

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- · Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The Anchorages are designed in accordance to:
 FprEN 1992-4:2017 and Technical Report TR055

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Soudal Injection system VE-SF for concrete

Intended Use Specifications

Deutsches Institut DIBt für Bautechnik

Anchor size			M 8	M 1	0 1	M 12	M 16	M 20) М	24	M 27	M 30	
Outer diameter of anchor	d _{nom} [mn	n] =	8	10)	12	16	20	2	24	27	30	
Nominal drill hole diameter	d _o [mn	n] =	10	12	2	14	18	24	2	28	32	35	
Effective enclosure denth	h _{ef,min} [mn	n] =	60	60)	70	80	90	ę	96	108	120	
Effective anchorage depth	h _{ef,max} [mn	n] =	160	20	0	240	320	400	4	80	540	600	
Diameter of clearance hole in the fixture	d _f [mn	n] ≤	9	12	2	14	18	22	2	26	30	33	
Diameter of steel brush	d _b [mn	n]≥	12	14		16	20	26	;	30	34	37	
Maximum torque moment	T _{inst} [Nn	T _{inst} [Nm] ≤		20)	40	80	120	1	60	180	200	
Minimum thickness of membe	er h _{min} [n	h _{min} [mm] h _{ei}		30 mm	≥ 100) mm			h _{ef} ·	+ 2d ₀			
Minimum spacing	s _{min} [n	nm]	40	50)	60	80	100	1	20	135	150	
Minimum edge distance	c _{min} [n	nm]	40	50)	60	80	100	1	20	135	150	
Rebar size Outer diameter of anchor	d _{nom} [mm] =		9 8 4	ð 10 10	Ø 12	Ø 1				Ø 25 25	Ø 28	Ø 32	
Nominal drill hole diameter	$d_{nom} [mm] = d_0 [mm] =$	_	2	14	16	18				32	35	40	
Nominal unit note diameter	h _{ef,min} [mm] =		50	60	70	75				100	112	128	
Effective anchorage depth	h _{ef,max} [mm] =	_		200	240	280				500	580	640	
Diameter of steel brush	d _b [mm] ≥		4	16	18	20				34	37	41,5	
Minimum thickness of member		$\frac{h_{ef} + 30}{h_{min} [mm]}$					h _{ef} +	2d ₀		1			
Minimum spacing	s _{min} [mm]	s _{min} [mm] 40		50	60	70	80	10	0	125	140	160	
Minimum edge distance			-0	50	60	70	80	10	0	125	140	160	
Table B3: Installatio	on parameter	's fo	or inte	ernal	hrea	aded	ancho	r rod					
Size internal threaded anchor	rod		1	G-M 6	IG	-M 8	IG-M 1	0 IG-	M 12	IG-I	M 16	IG-M 20	
Internal diameter of anchor		[mm		6		8	10		12		6	20	
Outer diameter of anchor ¹⁾	d _{nom}			10	12		16	_	20	_	24	30	
Nominal drill hole diameter		[mm	-	12		14	18		22		28	35	
Effective anchorage depth	h _{ef,min} h _{ef,max}			60 200		70 40	80 320	_	90 •00		96 80	120 600	
Diameter of clearance hole in the fixture		[mm		7		9	12		14	1	8	22	
Maximum torque moment	T _{inst}	t [Nm	l] ≤	10		10	20		40	6	60	100	
Thread engagement length Min/max	l _{IG}	[mm] =	8/20		/20	10/25	12	2/30	16	/32	20/40	
Min/max			ml	h _{ef} + 30 mm									
Minimum thickness of member				≥ 10	0 mm				··er				
Minimum thickness of member Minimum spacing	Sn	_{nin} [m _{nin} [m	im]	≥ 10 50	_	1 60	80	1	00	-	20	150	

Soudal Injection system VE-SF for concrete

Intended Use Installation parameters

Threaded Rod Reb. (mm) (mn M8 (mn M10 8 M12 10 12 10 M12 20 M16 14 M20 20 M24 32 M30 28	Anchor ro m) (mm) 3 IG-M6 0 IG-M8 2 4 IG-M10 6 5 IG-M12 1G-M16	d Drill bit - Ø HD, HDB, CA (mm) 10 12 14 14 16 18 20 24 24 28		(mm) 12 14 16 18 20 22	d _{b,min} min. Brush - Ø (mm) 10,5 12,5 14,5 16,5 18,5 20,5	Piston plug - - - VS18		on direction f piston plu - - - - -	
M8 M10 8 M12 10 12 10 M16 14 M16 14 M20 20 M24 20 M30 28	IG-M6 DIG-M8 2 4 IG-M10 6 DIG-M12 IG-M16 5	10 12 14 16 18 20 24	RBT12 RBT14 RBT16 RBT18 RBT20	12 14 16 18 20 22	10,5 12,5 14,5 16,5 18,5	- - - VS18	-	-	-
M10 8 M12 10 12 112 M16 14 16 14 M20 20 M24 12 M30 28	D IG-M8 2 4 IG-M10 6 5 1G-M12 1G-M16	12 14 16 18 20 24	RBT12 RBT14 RBT16 RBT18 RBT20	14 16 18 20 22	12,5 14,5 16,5 18,5	- - - VS18	-	-	-
M12 10 12 12 M16 14 16 16 M20 20 M24 10 M27 25 M30 28	D IG-M8 2 4 IG-M10 6 5 1G-M12 1G-M16	14 16 18 20 24	RBT14 RBT16 RBT18 RBT20	16 18 20 22	12,5 14,5 16,5 18,5	- - VS18	-	-	-
12 M16 14 16 16 M20 20 M24 10 M27 25 M30 28	2 4 IG-M10 6 0 IG-M12 IG-M16 5	16 18 20 24	RBT16 RBT18 RBT20	18 20 22	14,5 16,5 18,5	- VS18			
M16 14 16 16 M20 20 M24 10 M27 25 M30 28	2 4 IG-M10 6 0 IG-M12 IG-M16 5	18 20 24	RBT16 RBT18 RBT20	18 20 22	16,5 18,5	VS18	-	-	-
16 M20 20 M24 M27 25 M30 28	6 IG-M12 IG-M16 5	20 24	RBT20	22	18,5				
M20 20 M24	0 IG-M12 IG-M16 5	24			20.5	1/000			
M24 M27 25 M30 28	IG-M16 5		RBT24	26	-0,0	VS20			
M27 25 M30 28	5	28		20	24,5	VS24		b >	
M30 28		20	RBT28	30	28,5	VS28	- h _{ef} >	h _{ef} >	all
		32	RBT32	34	32,5	VS32	250 mm	250 mm	
32	8 IG-M20	35	RBT35	37	35,5	VS35			
		40	RBT40	41,5	40,5	VS40			
MAC - Hand pu Drill bit diameter (Drill hole depth (h Only in non-crack	(d ₀): 10 mm to 2 h ₀): < 10 d _{nom}			CAC Drill k	: - Rec. com bit diameter (d	presser d ₀): all dia	d air tool (ameters	(min 6 bar)

Steel brush RBT

Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation VS Drill bit diameter (d₀): 18 mm to 40 mm

Soudal Injection system VE-SF for concrete

Intended Use Cleaning and setting tools

Drilling of the bore	hole	
	1. Drill with hammer drill a hole into the base material to the size and required by the selected anchor (Table B1, B2, or B3), with hammor compressed air (CD) drilling. The use of a hollow drill bit is only sufficient vacuum permitted. In case of aborted drill hole: the drill hole shall be filled with morta	ner (HD), hollow (HDB) y in combination with a
	Attention! Standing water in the bore hole must be removed bef	ore cleaning.
MAC: Cleaning for b	pore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (und	cracked concrete only!
4x	 2a. Starting from the bottom or back of the bore hole, blow the hole c (Annex B 3) a minimum of four times. 	lean by a hand pump ¹⁾
<u>*********</u> **	 Check brush diameter (Table B4). Brush the hole with an appropried d_{b,min} (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extraction 	
	2c. Finally blow the hole clean again with a hand pump (Annex B 3) a	a minimum of four times.
4x	mbedment depth up to	
CAC: Cleaning for a	Il bore hole diameter in uncracked and cracked concrete	
4x	2a. Starting from the bottom or back of the bore hole, blow the hole c compressed air (min. 6 bar) (Annex B 3) a minimum of four times stream is free of noticeable dust. If the bore hole ground is not recent extension must be used.	until return air
<u>*********</u> ***	 Check brush diameter (Table B4). Brush the hole with an appropriate d_{b,min} (Table B4) a minimum of four times. If the bore hole ground is not reached with the brush, a brush external structure. 	
4x	2c. Finally blow the hole clean again with compressed air (min. 6 bar minimum of four times until return air stream is free of noticeable ground is not reached an extension must be used.	
	After cleaning, the bore hole has to be protected against re-ca an appropriate way, until dispensing the mortar in the bore ho the cleaning has to be repeated directly before dispensing the In-flowing water must not contaminate the bore hole again.	ole. If necessary,
Soudal Injection	system VE-SF for concrete	

Installation inst	ructions (continuation)	
	 Attach the supplied static-mixing nozzle to the cartridge and load the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended work B6) as well as for new cartridges, a new static-mixer shall be used 	ing time (Table B5 or
ter and the second seco	Prior to inserting the anchor rod into the filled bore hole, the position depth shall be marked on the anchor rods.	on of the embedment
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a r strokes and discard non-uniformly mixed adhesive components unt consistent grey colour. For foil tube cartridges it must be discarded strokes.	il the mortar shows a
	Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static r hole fills to avoid creating air pockets. For embedment larger than 1 nozzle shall be used. Observe the gel-/ working times given in Table	mixing nozzle as the 90 mm an extension
	 ✓ Piston Plugs and mixer nozzle extensions shall be used according following applications: Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 2 Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 	(vertical downwards 50mm
	Push the threaded rod or reinforcing bar into the anchor hole while ensure positive distribution of the adhesive until the embedment de The anchor shall be free of dirt, grease, oil or other foreign material	pth is reached.
	9. Be sure that the anchor is fully seated at the bottom of the hole and visible at the top of the hole. If these requirements are not maintain to be renewed. For overhead application the anchor rod shall be fix	ned, the application has
+20°C	10. Allow the adhesive to cure to the specified time prior to applying an not move or load the anchor until it is fully cured (attend Table B5 of	
Tinst.	11. After full curing, the add-on part can be installed with up to the max (Table B1 or B3) by using a calibrated torque wrench. It can be op gap between anchor and fixture with mortar. Therefor substitute th washer and connect the mixer reduction nozzle to the tip of the mix filled with mortar, when mortar oozes out of the washer.	tional filled the annular e washer by the filling
Soudal Injection	system VE-SF for concrete	
Intended Use	ons (continuation)	Annex B 5

Table B5:	Table B5: Maximum Working time and minimum curing time Soudafix VE400-SF									
Concrete	e temp	perature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾						
0 °C	to	+4°C	45 min	7 h						
+5 °C	to	+9°C	25 min	2 h						
+ 10 °C	to	+19°C	15 min	80 min						
+ 20 °C	to	+29°C	6 min	45 min						
+ 30 °C	to	+34°C	4 min	25 min						
+ 35 °C	to	+39°C	2 min	20 min						
+	40°C		1,5 min	15 min						
Cartridge			+5°C to	+40°C						

¹⁾ In wet concrete the curing time must be doubled.

Soudal Injection system VE-SF for concrete

Intended Use Curing time

Tab		racteristic values for s stance of threaded rod		on res	istar	ice a	nd si	teel s	sheai	r		
Size					M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Chara	acteristic tension res	istance, Steel failure										
Steel,	Property class 4.6 an	d 4.8	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel,	Property class 5.6 an	d 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel,	Property class 8.8		N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Stainl	ess steel A2, A4 and I	ICR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Stainl	ess steel A2, A4 and I	HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
Stainl	ess steel A4 and HCR	, Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
Chara	acteristic tension res	istance, Partial factor										
Steel,	Property class 4.6		γ _{Ms,N} 1)	[-]				2	,0			
Steel,	Property class 4.8	γ _{Ms,N} ¹⁾	[-]				1	,5				
Steel,	Property class 5.6	γ _{Ms,N} ¹⁾	[-]				2	,0				
Steel,	Property class 5.8	γ _{Ms,N} ¹⁾	[-]				1	,5				
Steel,	Property class 8.8	γ _{Ms,N} ¹⁾	[-]	1,5								
Stainl	ess steel A2, A4 and I	γ _{Ms,N} 1)	[-]	2,86								
Stainl	ess steel A2, A4 and I	γ _{Ms,N} ¹⁾	[-]				1,	87				
Stainl	ess steel A4 and HCR	γ _{Ms,N} ¹⁾	[-]				1	,6				
Chara	acteristic shear resis	tance, Steel failure		•								
	Steel, Property class	3 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	9	14	20	38	59	85	110	135
arm	Steel, Property class	5.6 and 5.8	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Without lever arm	Steel, Property class	8.8	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
	Stainless steel A2, A	4 and HCR, Property class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Nithe	Stainless steel A2, A	4 and HCR, Property class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
-	Stainless steel A4 ar	nd HCR, Property class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-
	Steel, Property class	4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
E	Steel, Property class	5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
With lever arm	Steel, Property class	8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
h lev	Stainless steel A2, A	4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
Wit	Stainless steel A2, A	4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 ar	nd HCR, Property class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	-	-
Chara	cteristic shear resis	tance, Partial factor										
Steel,	Property class 4.6		γ _{Ms,V} 1)	[-]				1,	67			
Steel,	Property class 4.8		γ _{Ms,V} 1)	[-]				1,	25			
Steel,	Property class 5.6		γ _{Ms,V} 1)	[-]				1,	67			
Steel,	Property class 5.8		γ _{Ms,V} 1)	[-]				1,	25			
Steel,	Property class 8.8		γ _{Ms,V} 1)	[-]				1,	25			
Stainl	ess steel A2, A4 and I	HCR, Property class 50	γ _{Ms,V} 1)	[-]				2,	38			
Stainl	ess steel A2, A4 and I	HCR, Property class 70	γ _{Ms,V} 1)	[-]				1,	56			
Stainl	ess steel A4 and HCR	, Property class 80	γ _{Ms,V} 1)	[-]				1,	33			
	¹⁾ in absence of nat	ional regulation										

¹⁾ in absence of national regulation

Soudal Injection system VE-SF for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Anchor size threaded	rod			M 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel failure											
Characteristic tension re	esistance	N _{Rk,s}	[kN]	see Table C1							
		N _{Rk,s, eq}	[kN]	1,0 • N _{Rk,s}							
Partial factor		γMs,N	[-]				see Ta	ble C1			
Combined pull-out and											
Characteristic bond resi	stance in non-cracked co	ncrete C20/25									
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	10	12	12	12	12	11	10	9
40°C/24°C	flooded bore hole	$ au_{\text{Rk,ucr}}$	[N/mm ²]	7,5	8,5	8,5	8,5			Determine	<u>`</u>
Temperature range II: 80°C/50°C	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5			Determine	<u>`</u>
Temperature range III: 120°C/72°C	dry and wet concrete flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5 4,0	6,5 5,0	6,5 5,0	6,5 5,0	6,5 No Porfe	6,5	5,5 Determine	
	stance in cracked concre	$\tau_{\rm Rk,ucr}$		4,0	5,0	5,0	5,0	Noren	mance	Determine	
			[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
	dry and wet concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]	2,5	3,1	5,5 3,7	5,5 3,7	5,5 3,7	3,8	4,5	4,5
Temperature range I: 40°C/24°C		$ au_{ m Rk,eq}$ $ au_{ m Rk,cr}$	[N/mm ²]	4,0	4,0	5,7	5,5	,	,	Determine	,
	flooded bore hole	τ _{Rk.eq}	[N/mm ²]	2,5	2,5	3,7	3,7			Determine	
		τ _{Rk,cr}	[N/mm ²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,eq}$	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	flaadad bara bala	τ _{Rk.cr}	[N/mm ²]	2,5	3,0	4,0	4,0	No Perfo	rmance	Determine	d (NPD
	flooded bore hole	$\tau_{\rm Rk,eq}$	[N/mm ²]	1,6	1,9	2,7	2,7	No Perfo	rmance	Determine	d (NPD
	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,eq}}$	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
20°C/72°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0	No Perfo	ormance	Determine	d (NPD
		$\tau_{\text{Rk},\text{eq}}$	[N/mm ²]	1,3	1,6	2,0	2,0		ormance	Determine	d (NPD
		C25/30		1,02							
Increasing factors for co	oncrete		0/37	1,04							
(only static or quasi-stat			5/45 0/50	1,07							
Ψc			5/55	1,08							
			0/60	1,09							
Concrete cone failure		000	0/00								
Non-cracked concrete		k _{ucr.N}	[-]				11	.0			
Cracked concrete		k _{or,N}	[-]				7,	,			
Edge distance		C _{cr,N}	[mm]				-	h _{ef}			
Axial distance		S _{cr,N}	[mm]				2 c	cr,N			
Splitting		1									
	h/h _{ef} ≥ 2,0						1,0	h _{ef}			
		-					($\begin{bmatrix} & h \end{bmatrix}$			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{ef} 2,$	$\left(5-\frac{h}{h_{ef}}\right)$			
		-					(
	h/h _{ef} ≤ 1,3			2,4 h _{ef}							
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation factor			[-]	1,0				1,2			
(dry and wet concrete)		γinst		1,0				1,2			
Installation factor (flood	ed bore hole)	γinst	[-]		1	,4		No Perfo	rmance	Determine	d (NPD

Soudal Injection system VE-SF for concrete

Performances

Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1) $\,$

Table C3: Characteristic seismic action					static,	quasi-	static	actior	n and	
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
	V ⁰ _{Rk,s}	[kN]				see Ta	able C1			
Characteristic shear resistance	$V_{Rk,s,eq}$	[kN]				0,70 ·	V ⁰ _{Rk,s}			
Partial factor	γms,∨	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm	l									
Characteristic banding moment	M ⁰ _{Rk,s}	[Nm]				see Ta	able C1			
Characteristic bending moment	M ⁰ _{Rk,s, eq}	[Nm]			No Perfe	ormance [Determine	ed (NPD)		
Partial factor	γ _{Ms,V} [-] see Table C1									
Concrete pry-out failure										
Factor	k ₈	[-]				2	,0			
Installation factor	γinst	[-]				1	,0			
Concrete edge failure										
Effective length of fastener	l _f	[mm]				l _f = min(h	l _{ef} ; 8 d _{nom})			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]			-	1	,0			
Factor for annular gap	α_{gap}	[-]				0,5 (1,0) ¹⁾			

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Soudal Injection system VE-SF for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Anchor size internal th	hreaded anchor rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure ¹⁾									
Characteristic tension re Steel, strength class 5.8		N _{Rk,s}	[kN]	10	17	29	42	76	123
Partial factor		γMs.N	[-]			1	,5		
Characteristic tension re	esistance,			10	07		,_	101	100
Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor		γMs,N	[-]			1	,5		
Characteristic tension re Stainless Steel A4, Stre		N _{Rk,s}	[kN]	14	26	41	59	110	124
Partial factor		γMs.N	[-]			1,87			2,86
	d concrete cone failure	/ 1/15,14				.,			2,00
	istance in non-cracked concr	ete C20/25							
Femperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	12	12	12	12	11	9
10°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,5	8,5	No Perform	ance Determ	ined (NPD
Femperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	9	9	9	9	8,5	6,5
30°Ċ/50°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	No Perform	ance Determ	ined (NPD
Femperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	6,5	6,5	5,0
120°C/72°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	5,0	5,0	5,0	No Perform	ance Determ	ined (NPD
Characteristic bond resi	istance in cracked concrete (220/25							
Femperature range I:	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	5,0	5,5	5,5	5,5	5,5	6,5
10°C/24°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,0	5,5	5,5	No Perform	ance Determ	ined (NPD
Temperature range II:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	3,5	4,0	4,0	4,0	4,0	4,5
30°C/50°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	3,0	4,0	4,0	No Perform	ance Determ	ined (NPD
Temperature range III:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5
120°C/72°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	2,5	3,0	3,0	No Perform	ance Determ	ined (NPD
			25/30			,	02		
	reasing factors for concrete		30/37			,	04		
•			35/45			,	07		
Иc			40/50			1,08			
			45/55			-			
Concrete cone failure		U	50/60			1,	10		
Non-cracked concrete		k	[]				,0		
Cracked concrete		K _{ucr,N}	[-]				,7		
Edge distance		k _{cr,N}	[mm]				, / i h _{ef}		
Axial distance		C _{cr,N}	[mm]				Cr,N		
Splitting failure		S _{cr,N}	fund			2 (r,N		
	h/h _{ef} ≥ 2,0					1.0	h _{ef}		
	$\Pi/\Pi_{ef} \ge 2,0$					1,0	/ Tef		
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			$2 \cdot h_{ef} \Big 2$	$(5-\frac{h}{1})$		
						- (h_{ef}		
	h/h _{ef} ≤ 1,3					,	h _{ef}		
Axial distance		S _{cr,sp}	[mm]				cr,sp		
nstallation factor (dry a		γinst	[-]			1	,2		
nstallation factor (flood	ed bore hole)	γinst	[-]		1,4			-	
threaded rod	crews or threaded rods (incl. d. The characteristic tension r ening element. strength class 50 is valid								
Soudal Injectio	n system VE-SF for	concrete							

Anchor size for internal threaded anche	or rods		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm ¹⁾								
Characteristic shear resistance, Steel, strength class 5.8	$V^0_{Rk,s}$	[kN]	5	9	15	21	38	61
Partial factor	γms,v	[-]			1,	25		
Characteristic shear resistance, Steel, strength class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor	γms,v	[-]			1,	25		I
Characteristic shear resistance, Stainless Steel A4, Strength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor	γms,v	[-]			1,56			2,38
Ductility factor	k ₇	[-]			1	,0		
Steel failure with lever arm ¹⁾								
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial factor	γMs,V	[-]			1,	25		
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor	γms,v	[-]			1,	25		
Characteristic bending moment, Stainless Steel A4, Strength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor	γms,v	[-]			1,56			2,38
Concrete pry-out failure								
actor	k ₈	[-]			2	,0		
nstallation factor	γinst	[-]			1	,0		
Concrete edge failure								
Effective length of fastener	lf	[mm]			l _t = min(h	ef; 8 d _{nom})		
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30
nstallation factor	γinst	[-]			1	,0		
 Fastening screws or threaded threaded rod. The characterist and the fastening element. ²⁾ For IG-M20 strength class 50 in 	ic tension res							
Soudal Injection system VE	-SF for c	oncrete						

Anchor size reinforcin	ng bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure										•	•		
Characteristic tension re	esistance		$N_{Rk,s}$	[kN]					$A_s \cdot f_{uk}^{(1)}$				
	esistarice		N _{Rk,s, eq}	[kN]				1,	0 ∙ A _s ∙ f	1) uk			
Cross section area			As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor			γMs,N	[-]					1,4 ²⁾				
Combined pull-out an													
Characteristic bond res	1		oncrete C20/										
Temperature range I: 40°C/24°C	dry and wet		$\tau_{\text{Rk,ucr}}$	[N/mm ²]	10	12	12	12	12	12	11	10	8,5
	flooded bore		$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5 7,5	8,5 9	8,5 9	8,5 9	8,5 9	No Perf	ormance 8,0	Determine	<u>,</u>
Temperature range II: 80°C/50°C	dry and wet		τ _{Rk,ucr}	[N/mm ²] [N/mm ²]	5,5	6,5	6,5	9 6,5	6,5	-	,	Determine	6,0
Temperature range III:	dry and wet		$ au_{ m Rk,ucr}$ $ au_{ m Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore		τ _{Rk,ucr}	[N/mm ²]	4,0	5.0	5,0	5,0	5.0			Determine	,
Characteristic bond res					.,.	0,0	0,0	-,-	0,0				
			$\tau_{Rk,cr}$	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	dry and wet	concrete	$\tau_{Rk,eq}$	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore	hole	$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	4,0	5,5	5,5	5,5	No Perf	ormance l	Determine	ed (NPD
		noie	$\tau_{Rk,eq}$	[N/mm²]	2,5	2,5	3,7	3,7	3,7		ormance I	Determine	d (NPD)
	dry and wet	concrete	$\tau_{\text{Rk,cr}}$	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:			$ au_{Rk,eq}$	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	flooded bore	hole	$\tau_{Rk,cr}$	[N/mm ²]	2,5	3,0	4,0	4,0	4,0			Determine	
			$\tau_{Rk,eq}$	[N/mm ²]	1,6	1,9	2,7	2,7	2,7		1	Determine	<u> </u>
T	dry and wet	concrete	$\tau_{\rm Rk,cr}$	[N/mm ²] [N/mm ²]	2,0 1,3	2,5 1,6	3,0 2,0	3,0 2,0	3,0 2,0	3,0 2.0	3,0 2.1	3,5 2,4	3,5 2,4
Temperature range III: 120°C/72°C			$ au_{Rk,eq}$ $ au_{Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	,-	,	Determine	,
	flooded bore	hole	$\tau_{\rm Rk,eq}$	[N/mm ²]	1,3	1.6	2,0	2,0	2,0			Determine	
			C25		.,.	.,.	_,0	_,.	1,02				
			C30)/37					1,04				
Increasing factors for co (only static or quasi-stat			C35	5/45					1,07				
Vc			C40)/50					1,08				
			C45						1,09				
			C50)/60					1,10				
Concrete cone failure			1.										
Non-cracked concrete			k _{ucr,N}	[-]					11,0				
Cracked concrete			k _{cr,N}	[-]					7,7				
Edge distance			C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance			S _{cr,N}	[mm]					$2 c_{\text{cr,N}}$				
Splitting													
	h/h _{ef} ≥ 2,0								1,0 h_{ef}				
									(h			
Edge distance	2,0> h/h _{ef} > ⁻	1,3	C _{cr,sp}	[mm]				$2 \cdot h_{a}$	_{ef} 2,5 –	$\frac{1}{h}$			
	h/h < 1.0		-						0.4 h	ej j			
	h/h _{ef} ≤ 1,3								2,4 h _{ef}				
Axial distance			S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation factor (dry a		te)	γinst	[-]	1,0				1	,2			
Installation factor (flood		analfiaat	γinst	[-]			1,4			No Perf	ormance	Determine	ed (NPD)
¹⁾ f _{uk} shall be tak ²⁾ in absence of	national reg	ulation	ions of rein	forcing ba	irs								
Soudal Injectio	n system	VE-SF 1	for conci	rete									
Derfermenses										1	Anne	ex C 6	5
Performances													

8.06.01-144/18

	(performanc	g	<u> </u>	,					1		
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	$V^{0}_{\ Rk,s}$	[kN]				0,5	60 • A _s •	f _{uk} 1)			
	$V_{Rk,s,\;eq}$	[kN]		-		0,3	5 • A _s •	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	214	491	616	804
Partial factor	γms,v	[-]					1,5 ²⁾				
Ductility factor	k7	[-]					1,0				
Steel failure with lever arm											
Characteristic bending moment	$M^{o}_{Rk,s}$	[Nm]				1.2	₂ • W _{el} • †	f _{uk} 1)			
Characteristic bending moment	${\sf M}^0{}_{{\sf Rk},{\sf s},\;{\sf eq}}$	[Nm]			No Pe	erformar	nce Dete	rmined	(NPD)		
Elastic section modulus Wel [mm³] 50 98 170 269 402 785 153						1534	2155	3217			
Partial factor	γ _{Ms,V} [-] 1,5 ²⁾										
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of fastener	lf	[mm]	mm] $I_f = min(h_{ef}; 8 d_{nom})$								
Outside diameter of fastener	d _{nom}	[mm]	[mm] 8 10 12 14 16 20 25 28						28	32	
Installation factor	γinst	[-]					1,0				
Factor for annular gap	$lpha_{gap}$	[-]				(0,5 (1,0)	1)			

ed annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Anchor size thread	led rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Non-cracked conc	rete C20/25		I	1	1		L	1			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
40°C/24°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
80°C/50°C	$\delta_{N\infty}\text{-}factor$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete	C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,0	90			0,0)70			
40°C/24°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,1	05			0,1	05			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	70			
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255			0,2	245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	70			
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,2	0,255		0,245					

¹⁾ Calculation of the displacement $\delta_{N0} = \delta_{N0} \text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot \tau;$

Displacements under shear load¹⁾ (threaded rod) Table C9:

Anchor size thre	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked	l concrete C2	0/25								
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}\text{-}factor$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked con	crete C20/25									
All temperature	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10
$\delta_{V0} = \delta_{V0}$ -facto $\delta_{V\infty} = \delta_{V\infty}$ -facto	or · V;	V: action shear load								
Soudal Injecti	on system v	E-SF for concrete							•	•
Performances								An	nex C	8

Displacements (threaded rods)

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/2	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,0	90				0,070			
40°C/24°Cັ	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,1	05				0,105			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219				0,170			
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255				0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219				0,170			
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,2	255				0,245			
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C11: D	·τ; ·τ;	nent τ: action bond nent under sl			ebar)						
Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/	25									
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges											

Cracked concrete C20/25

All temperature	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	$\delta_{V_\infty}\text{-factor}$	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$; $V_{0} = \delta_{V\infty}$ -factor $\cdot V$;

V: action shear load

Soudal Injection system VE-SF for concrete

Performances Displacements (rebar)

Table C12: Dis	splacements	s under tension	load ¹⁾ (lı	nternal t	hreaded	anchor	rod)	
Anchor size Interna	al threaded and	chor rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked concret	e C20/25 under	static and quasi-stati	c action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,023	0,026	0,031	0,036	0,041	0,049
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172
Cracked concrete C2	0/25 under stati	c and quasi-static ac	tion					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,090			0,070		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,105			0,105		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,219			0,170		
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,255			0,245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,219			0,170		
120°C/72°Č	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,255			0,245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} \text{-factor} \quad \cdot \ \tau; \qquad \qquad \tau: \text{ action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \quad \tau;$

Table C13: Displacements under shear load¹⁾ (Internal threaded anchor rod)

	•			•			,	
Anchor size Int	ternal threaded	l anchor rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked a	nd cracked cor	ncrete C20/25 ur	der static a	and quasi-s	static action	n		
All temperature	δ_{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06
Soudal Inject Performances Displacements (I	tion system V	E-SF for conc	rete				Annex	0.40