

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0170 of 26 November 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Upat Anchor Bolt MAX

Mechanical anchor for use in concrete

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

18 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-10/0170 issued on 7 May 2015

European Technical Assessment ETA-10/0170

Page 2 of 18 | 26 November 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z70148.18 8.06.01-138/16

European Technical Assessment ETA-10/0170

Page 3 of 18 | 26 November 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Upat Anchor bolt MAX is an anchor made of galvanised steel (MAX) or made of stainless steel (MAX A4) or high corrosion resistant steel (MAX C) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1			
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2			
Displacements (static and quasi-static loading)	See Annex C 5			
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 4 and C 5			

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Class A1			
Resistance to fire	see Annex C 3			

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD Nr. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z70148.18 8.06.01-138/16

European Technical Assessment ETA-10/0170 English translation prepared by DIBt

5

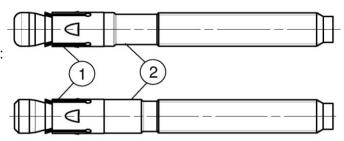
Page 4 of 18 | 26 November 2018

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

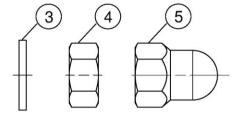
Technical details necessary for the implementation of the AVCP system, as provided for

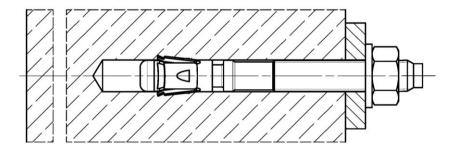
Issued in Berlin on 26 November 2018 by Deutsches Institut für Bautechnik

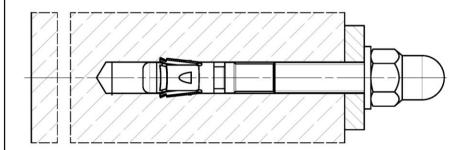
in the applicable European Assessment Document


BD Dipl.-Ing. Andreas Kummerow Head of Department

*beglaubigt:*Baderschneider


Z70148.18 8.06.01-138/16

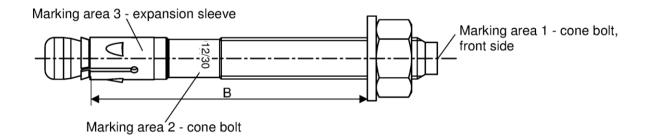

Cone bolt manufactured by cold - forming:



Cone bolt manufactured by turning:

- ① Expansion sleeve
- ② Cone bolt (cold formed or turned)
- 3 Washer
- 4 Hexagon nut
- ⑤ Upat MAX dome nut

(Fig. not to scaled)


Upat Anchor bolt MAX, MAX A4, MAX

Product description
Installed condition

Annex A 1

Product label and letter-code:

MAX: carbon steel, galvanized

MAX A4: stainless steel

MAX C: high corrosion resistant steel

Table A2.1: Letter - code at marking area 1:

Marking		(a)	(b)	(c)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(K)
Max. t _{fix}		5 10 15 20			5	10	15	20	25	30	35	40	45	50	
M6 -			45	50	55	60	65	70	75	80	85	90			
	M8	40	45		-	50	55	60	65	70	75	80	85	90	95
	M10	45	50	55	60	65	70	75	80	85	90	95	100	105	110
B ≥ [mm]	M12	55	60	65	70	75	80	85	90	95	100	105	110	115	120
	M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
	M20					105	110	115	120	125	130	135	140	145	150
	M24	-				130	135	140	145	150	155	160	165	170	175

Marking		(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix}		60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M6	100	110	120	130	140	160	180	200	220	240	290	340	390	440
	M8	105	115	125	135	145	165	185	205	225	245	295	345	395	445
	M10	120	130	140	150	160	180	200	220	240	260	310	360	410	460
B ≥ [mm]	M12	130	140	150	160	170	190	210	230	250	270	320	370	420	470
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485
	M20	160	170	180	190	200	220	240	260	280	300	350	400	450	500
	M24	185	195	205	215	225	245	265	285	305	325	375	425	475	525

Calculation existing her for installed fasteners:

existing $h_{ef} = B_{(according to table A2.1)} - existing t_{fix}$

Thickness of the fixture t_{fix} including thickness of fastener plate t and e.g. thickness of grout layer t_{grout} or other non-structural layers

(Fig. not to scaled)

Upat Anchor bolt MAX, MAX A4, MAX

Product description

Product label and letter code

Annex A 2

Product dimensions

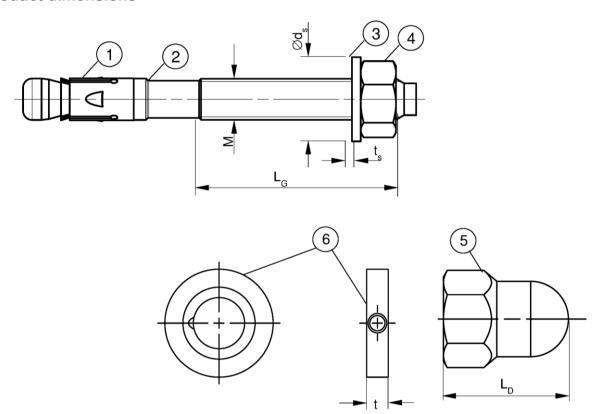


Table A3.1: Dimensions [mm]

Part	Designation				MAX, MAX A4, MAX C									
ran	Designation			М6	М8	M10	M12	M16	M20	M24				
1	Expansion sleeve	Sheet thickne	ss	0,8	1,3	1,4	1,6	2,4	4	3,0				
2 Cone bolt		Thread	size M	6	8	10	12	16	20	24				
2 Cone	Cone boil	L _G		10	19	26	31	40	50	57				
3	Washer	ts	≥	1	,4	1,8	2,3	2,7		3,7				
ס	vvasner	\emptyset d _s		11	15	19	23	29	36	43				
4 & 5	Hexagon nut / Upat MAX	Wrench	n size	10	13	17	19	24	30	36				
5	dome nut	L_D	≥		-	22	27	33		-				
6	Upat filling disc FFD	t	=		6	6		7	8	10				

(Fig. not to scaled)

Upat Anchor bolt MAX, MAX A4, MAX

Product description
Dimensions

Annex A 3

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

Specifications of intended use										
Anchorages subject to:	Anchorages subject to:									
Size		MAX, MAX A4, MAX C								
Size		М6	M8	M10	M12	M16	M20	M24		
Static and quasi-static loads										
Cracked and uncracked concrete		✓								
Fire exposure										
Seismic performance	C1	- /				·				
category	C2 ¹⁾		-			/		-		

¹⁾ MAX C: Only valid for cold-formed version (according to Annex A1)

Base materials:

- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206; 2013
- Strength classes C20/25 to C50/60 according to EN 206: 2013

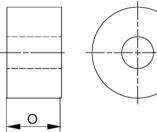
Use conditions (Environmental conditions):

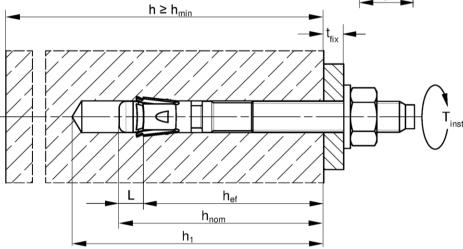
- Structures subject to dry internal conditions (MAX, MAX A4, MAX C)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (MAX A4, MAX C)
- Structures subject to external atmospheric exposure and permanently damp internal condition, if other particular aggressive conditions exist (MAX C)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or
 to supports, etc.)
- Design of fastenings according to EN 1992-4: 2018 and Technical Reoprt TR 055
- For effective embedment depth h_{ef} < 40 mm and $h_{min} \ge 80$ mm and < 100 mm only statically indeterminate fixings (e.g. light-weight suspended ceilings with internal exposure) are covered by the ETA


Upat Anchor bolt MAX, MAX A4, MAX	
Intended Use Specifications	Annex B 1



רן	able	B2.1:	Installation	parameters
----	------	-------	--------------	------------

			MAX, MAX A4, MAX C							
Size										
			М6	M8	M10	M12	M16	M20	M24	
Nominal drill hole diameter	$d_0 =$		6	8	10	12	16	20	24	
Maximum bit diameter with hammer or hollow drilling	d	[mm]	6,40	8,45	10,45	12,5	16,5	20,55	24,55	
Maximum bit diameter with diamond drilling	d _{cut,max}		-	8,15	10,45	12,25	16,45	20,50	24,40	
	$h_{nom} \ge$		46,5	44,5	52,0	63,5	82,5	120	148,5	
Overall fastener embedment depth in the concrete	(L)	[mm]	(6,5)	(9,5)	(12)	(13,5)	(17,5)	(20)	(23,5)	
- Constitution		[mm]	Existing $h_{ef} + L = h_{nom}$							
Depth of drill hole to deepest point	$h_1 \geq$				$h_{nom} + 5$			h _{nom}	+ 10	
Diameter of clearance hole in the fixture	$d_f \leq$	[mm]	7	9	12	14	18	22	26	
Required setting torque	$T_{inst} =$	[Nm]	8	20	45	60	110	200	270	
Excess length after hammering-in the cone bolt (for Upat dome nut applications according to Annex B6)	O =	[mm]		-	12	16	20		-	

Setting gauge MAX SL-H for anchor with Upat MAX dome nut:

h_{ef} = Effective embedment depth

 t_{fix} = Thickness of the fixture

electronic copy of the eta by dibt: eta-10/0170

h₁ = Depth of drill hole to deepest point
 h = Thickness of the concrete member

 $h_{min} = Minimum thickness of concrete member$

 h_{nom} = Overall fastener embedment depth in the concrete

 T_{inst} = Required setting torque

(Fig. not to scaled)

Upat Anchor bolt MAX, MAX A4, MAX

Intended Use
Installation parameters

Annex B 2

Table B3.1: Minimum thickness of concrete members, minimum spacing and minimum edge distance

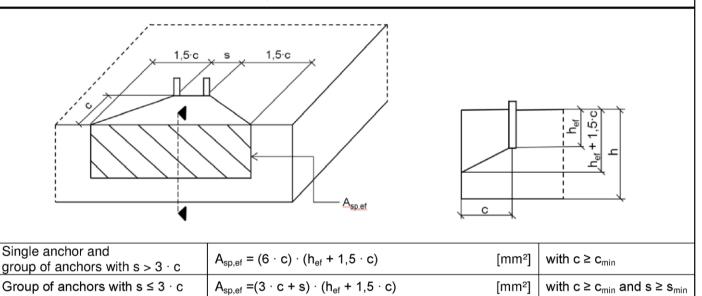
Cina			MAX, MAX A4, MAX C										
Size			М6	М8	M10	M12	M16	M20	M24				
Minimum edge distance													
Uncracked concrete	C .		45	40	45	55	65	95	135				
Cracked concrete	— C _{min}		7	40			05	85	100				
Minimum spacing	S _{min}	[mm]	according to Annex B4										
Minimum thickness of concrete member	h _{min}	. ,		80		100	140	160	200				
Thickness of concrete member	h≥			max. {h _{mi}	_n ; h ₁ ¹⁾ + 3	max. {	2 · d _o }						
Minimum spacing													
Uncracked concrete	_ 。		35	40	40	50	65	95	100				
Cracked concrete	— S _{min}		33	35	40	30	05	95	100				
Minimum edge distance	C _{min}	[mm]	according to Annex B4										
Minimum thickness of concrete member	h _{min}		80			100	140	160	200				
Thickness of concrete member	h≥		max. $\{h_{min}; h_1^{(1)} + 30\}$			0}	max. {	h _{min} ; h₁¹) ⊦	- 2 · d _o }				
Minimal splitting area													
Uncracked concrete	Δ	[·1000	5,1	18	37	54	67	100	117,5				
Cracked concrete	— A _{sp,req}	mm²]	1,5	12	27	40	50	77	87,5				

¹⁾ h₁ according to Annex B2

Splitting failure applied for minimum edge distance and spacing in dependence of the hef

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

$$A_{sp,req} < A_{sp,ef}$$


 $A_{\text{sp,req}} = \text{required splitting area}$

 $A_{sp,ef}$ = effective splitting area (according to Annex B4)

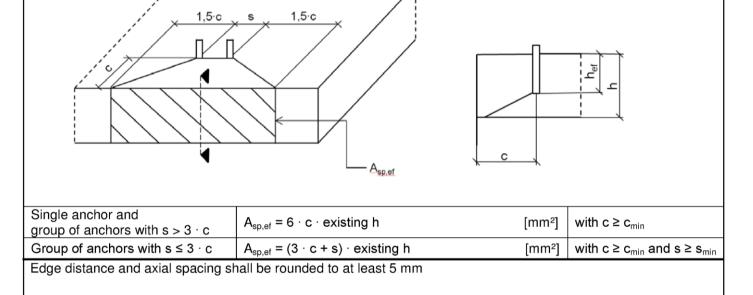

Upat Anchor bolt MAX, MAX A4, MAX	
Intended Use Minimum thickness of member, minimum spacing and edge distance	Annex B 3

Table B4.1: Effective splitting area $A_{sp,ef}$ with member thickness $h > h_{ef} + 1.5 \cdot c$ and $h \ge h_{min}$

Table B4.2: Effective splitting area $A_{sp,ef}$ with member thickness $h \le h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Intended Use
Minimum thickness of member, minimum spacings and edge distances

Annex B 4

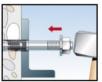
(Fig. not to scaled)

Installation instructions:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor Exception: Upat MAX dome nut.
- · Hammer, hollow or diamond drilling according to Annex B5
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

Installation instructions: Drilling and cleaning the hole

Types of drills and cleaning


Hammer drill	B440000000	1: Drill the hole	2: Clean the hole
Hollow drill		1: Drill the hole with automatic cleaning	-
Diamond drill, for non seismic applications only and ≥ drill Ø 8		1: Drill the hole	2: Clean the hole

Upat Anchor bolt MAX, MAX A4, MAX	
Intended Use Installation instructions	Annex B 5

Installation instructions: Installation of the anchor

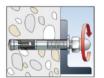
HEXAGON NUT:

3: Set the fastener

4: Apply Tinst

5: Installed fastener

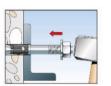
Upat MAX DOME NUT:


Option 1: Push through installation with setting gauge SL-H:

3: Set the fastener using setting gauge

4: Check offset

5: Turn on the washer and Upat MAX dome nut



6: Apply Tinst

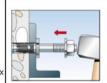
7: Installed fastener

Option 2: Push through installation with hexagon nut:

3: Set the fastener

4: check setting position: Visible one turn of a thread

4.1: Remove nut


Upat FILLING DISC FFD optional for seismic C2 application or minimizing the annular gap:

Optional

The gap between bolt and fixture may be filled with mortar (compressive strength ≥ 50 N/mm² e.g. UPM 33) after step 7 (for eliminating the annular gap).

The filling disc is additional to the standard washer.

The thickness of the filling disc must be considered for definition of $t_{\rm fix}$ Countersunk of the filling disc in direction to the anchor plate.

Upat Anchor bolt MAX, MAX A4, MAX

Intended Use

Installation instructions

Annex B 6

Z71692.18

Table C1.1: Characteristic tens	sion resis	tance u	ındeı	static	anc	d quasi	-static	action		
Size						MAX, N	1AX A4,	MAX C	;	
			М6	M	3	M10	M12	M16	M20	M24
Steel failure										
Characteristic resistance MAX	— N _{Rk,s}	[kN]	7,6	16	,6	28,3	43,2	67,0	123,3	176,7
MAX A4/C	,	[[(, 4]	11,4	17	,0	29,0	44,3	70,6	124,9	183,6
Partial factor for steel failure	$\gamma_{Ms}^{\qquad 1)}$	[-]					1,5			
Pullout failure										
Effective embedment depth for	h_{ef}	[mm]	40	35 -	45	40 -	50 -	65 -	100	125
calculation		[]		< 45		60	70	85		
Characteristic resistance in cracked concrete C20/25			1,5	5,5	8	13	20		2)	
Characteristic resistance in	$$ $N_{Rk,p}$	[kN]	10.5			-00	00		- 2)	
uncracked concrete C20/25			10,5	14	•	20	22			
		C25/30					1,12			
		C30/37	1,22							
Increasing factors for N _{Rk,p} for)// -	C35/45	1,32							
cracked and uncracked concrete	Ψc_	C40/50	1,41							
	_	C45/55	1,50							
		C50/60					1,58			
Installation factor	γ_{inst}	[-]					1,0			
Concrete cone and splitting failure										
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]					11,0			
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]					7,7			
Characteristic spacing	S _{cr,N}	[mm]					$3 \cdot h_{\text{ef}}$			
Characteristic edge distance	$C_{cr,N}$	[]					1,5 · h _{ef}			
Spacing	S _{cr,sp}						2 · c _{cr,sp}			
Edge distance for $h = 80$				2,4·	h _{ef}	2·h _{ef}	-			
Edge distance for $h = 100$	_					2,4·h _{ef}	2·h _{ef}		-	
Edge distance for h = 120	- 0	[mm]	40				2,1·h _{ef}			
Edge distance for h = 140	- C _{cr,sp}		40	2∙h	ef	1 0.h				-
Edge distance for h = 160	_					1,9·h _{ef}	1,5·h _{ef}	2·h _{ef}	2,4·h _{ef} -	-
Edge distance for h = 200									2,4'11 _{ef}	2,2·h _{ef}

¹⁾ In absence of other national regulations 2) Pullout failure not relevant

Upat Anchor bolt MAX, MAX A4, MAX	
Performances Characteristic values of resistance under tension loads	Annex C 1

Table C2.1: Characteristic valu	ies of sheai	r resis	tance	under	static	and q	uasi-st	tatic ad	ction		
Cina				MAX, MAX A4, MAX C							
Size				М6	М8	M10	M12	M16	M20	M24	
Steel failure without lever arm											
Characteristic resistance MA	X	$V^0_{ m Rk,s}$	[LAJ]	5,9	13,6	21,4	30,6	55,0	81,4	110,1	
MA	X A4/C	V Rk,s	[kN]	8,8	16,8	26,5	38,3	69,8	106,3	148,5	
Partial factor for steel failure		γ _{Ms} 1)	r 1				1,25				
Ductility factor		k ₇	[-]				1,0				
Steel failure with lever arm and Co	ncrete pryou	t failure	е								
Effective embedment depth for calcul	lation	h_{ef}	[mm]	40	45	60	70	85	100	125	
	MAX	N 40	[N.Lean]	11,4	26	52	92	233	513	865	
Characteristic bending resistance	MAX A4/C	$M^0_{Rk,s}$	[INIII]	10,7	29	59	100	256	519	898	
Factor for pryout failure		k ₈	[-]	2,6	2,8	3	,2	3,0	2,6	2,4	
Effective embedment depth for calcu	lation	h _a ,	[mm]		35 -	40 -	50 -	65 -			
			[]		< 45	< 60	< 70	< 85			
Characteristic bending resistance -	MAX	${\sf M^0}_{\sf Rk,s}$	[Nm]	-	20	44	92	184		-	
Characteristic behaving resistance	MAX A4/C	IVI RK,S	[, 4,]		21	45	100	193			
Factor for pryout failure		k_8	[-]		2,5	2,6	3,1	3,2			
Partial factor for steel failure		$\gamma_{Ms}^{}1)}$					1,25				
Ductility factor		k_7	[-]				1,0				
Concrete edge failure											
Effective anchor length		$I_f =$	[mm]				h_{ef}				
Outside diameter of a fastener		d _{nom}	- 1	6	8	10	12	16	20	24	

1) In absence of other national regulation	tions
--	-------

Upat Anchor bolt MAX, MAX A4, MAX	
Performances Characteristic values of resistance under shear loads	Annex C 2

Table C3.1: Characteristic values of tension resistance under fire exposure											
Size				MAX, MAX A4, MAX C							
Size		М6	М8	M10	M12	M16	M20	M24			
		h _{ef} ≥	[mm]	40	35 / 45	40 / 60	50 / 70	65 / 85	100	125	
Characteristic resistance steel failure		R30		$0.6^{1)} / 0.9^{2)}$	1,4	2,8	5,0	9,4	14,7	21,1	
	NI	R60		$0.4^{1)} / 0.9^{2)}$	1,2	2,3	4,1	7,7	12,0	17,3	
	$N_{Rk,s,fi}$ -	R90		$0.3^{1)} / 0.9^{2)}$	0,9	1,9	3,2	6,0	9,4	13,5	
Steer failure		R120		$0,2^{1)} / 0,7^{2)}$	0,8	1,6	2,8	5,2	8,1	11,6	
Characteristic resistance	N _{Rk,c,fi}	R30 - R90	[kN]		7,7 ·	h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} /	200 / 1000			
Concrete cone failure	,•,	R120			7,7 · h _e	f ^{1,5} · (20) ^{0,5}	$^{5} \cdot h_{\rm ef} / 20^{-1}$	0 / 1000 · 0	,8		
Characteristic resistance pullout failure	N _{Rk,p,fi}	R30 R60 R90		0,4	0,9 / 2,0 0,8 / 2,0 0,5 / 2,0	2,2 / 3,3	3,0 / 5,0	4,5 / 6,8	8,6	12,0	
punout lanute		R120		0,3	0,3 / 1,6	1,7 / 2,6	2,4 / 4,0	3,6 / 5,4	6,9	9,6	

Table C3.2: Characteristic values of shear resistance under fire exposure

Size			R3	30	R60			
MAX, MAX	44, MAX	C	$V_{Rk,s,fi,30}[kN]$ $M^{0}_{Rk,s,fi,30}[Nm]$		$V_{Rk,s,fi,60}$ [kN]	$M^0_{Rk,s,fi,60}[Nm]$		
M6		40	$0.6^{1)}/0.9^{2)}$	$0.5^{1)}/0.2^{2)}$	$0,4^{1)}/0,9^{2)}$	$0,3^{1)}/0,1^{2)}$		
M8]	35	1,8	1,4	1,6	1,2		
M10		40	3,	6	2,9	3,0		
M12	h _{ef} ≥	50	6,3	7,8	4,9	6,4		
M16		65	11,7	19,9	9,1	16,3		
M20		100	18,2	39,0	14,2	31,8		
M24		125	26,3	67,3	20,5	55,0		

S	ize		R9	0	R1	20
MAX, MAX	A4, MA	XX C	$V_{Rk,s,fi,90}[kN]$	$M^0_{Rk,s,fi,90}[Nm]$	$V_{Rk,s,fi,120}$ [kN]	$M^0_{Rk,s,fi,120}\left[Nm\right]$
M6		40	$0.3^{1)}/0.9^{2)}$	$0,2^{1)}/0,1^{2)}$	$0,2^{1)}/0,7^{2)}$	$0,2^{1)}/0,1^{2)}$
M8		35	1,3	1,0	1,2	0,8
M10		40	2,2	2,4	1,9	2,1
M12	h _{ef} ≥	50	3,5	5,0	2,8	4,3
M16		65	6,6	12,6	5,3	11,0
M20		100	10,3	24,6	8,3	21,4
M24		125	14,8	42,6	11,9	37,0

¹⁾ MAX gvz

Table C3.3: Minimum spacings and minimum edge distances of anchors under fire exposure for tension and shear load

Size			MAX, MAX A4, MAX C									
Size			М6	M6 M8 M10 M12 M16 M20 M2								
Spacing	S _{min}			Annex B3								
Edge distance	C _{min}	[mm]		for fire ex	posure froi	$c_{min} = 2 \cdot m$		c _{min} ≥ 300	mm			

Upat Anchor bolt MAX, MAX A4, MAX

Performances

Characteristic values of resistance under fire exposure

Annex C 3

¹⁾ MAX gvz ²⁾ MAX A4 / C

²⁾ MAX A4 / C

Table C4.1: Characteristic values of tension and shear resistance under seismic action
category C1

outogory or									
0:					MAX, N	IAX A4,	MAX C		
Size			М6	M8	M10	M12	M16	M20	M24
Length of anchor	L_{max}			167	186	221	285	394	477
Effective embedment depth	h_{ef}	[mm]	-	45	40 - 60	50 - 70	65 - 85	100	125
Steel failure									
Characteristic resistance tension load C1	$N_{\text{Rk,s,eq,C1}}$	[kN]	-	16,0	27,0	41,0	66,0	111,0	150,0
Partial factor for steel failure	γ _{Ms,C1}	[-]				1	,5		
Pullout failure									
Characteristic resistance tension load in cracked concrete C1	$N_{\text{Rk,p,eq,C1}}$	[kN]	-	4,6	8,0	16,0	28,2	36,0	50,3
Installation factor	γinst	[-]				1,	,0		
Steel failure without lever arm									
Characteristic resistance shear load C1	$V_{Rk,s,eq,C1}$	[kN]	·	11	17	27	47	56	69
Partial factor for steel failure	$\gamma_{Ms,C1}^{\qquad 1)}$	[-]	-	·	·	1,	25		

¹⁾ In absence of other national regulations

Table C4.2: Characteristic values of tension and shear resistance under seismic action category C2 MAY MAY A4 MAY C1)

0:			MAX, MAX A4, MAX C						
Size			М6	М8	M10	M12	M16	M20	M24
Length of anchor	L_{max}	[mm]		-	186	221	285	394	-
Steel failure									
Characteristic resistance tension load C2	$N_{Rk,s,eq,C2}$	[kN]			27	41	66	111	_
Partial factor for steel failure	γ _{Ms,C2} 2)	[-]				1	,5		
Pullout failure									
	h _{ef}	[mm]			60	70	85	100	
Characteristic resistance tension load in cracked concrete C2	$N_{Rk,p,eq,C2}$	[kN]			5,1	7,4	21,5	30,7	-
		[mm]	-		40-59	50-69	65-84		
	$N_{Rk,p,eq,C2}$	[kN]			2,7	4,4	16,4		•
Installation factor	γinst	[-]				1,0			
Steel failure without lever arm									
	h _{ef}	[mm]			60	70	85	100	
Characteristic resistance shear load	$V_{\rm Rk,s,eq,C2}$	[kN]			10,0	17,4	27,5	39,9	_
C2	h _{ef}	[mm]]	-	40-59	50-69	65-84		
	$V_{Rk,s,eq,C2}$	[kN]			7,0	12,7	22,0		-
Partial factor for steel failure	$\gamma_{\rm Ms,C2}^{2)}$	[-]				1,25			
Factor for annular gap	$lpha_{\sf gap}$	[-]				0,5 (1,0)	3)		

¹⁾ MAX C: Only valid for cold-formed version (according to Annex A1) 2) In absence of other national regulations

³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special Upat filling Disc FFD is required.

Upat Anchor bolt MAX, MAX A4, MAX	
Performances Characteristic values of resistance under tension and shear loads under seismic action	Annex C 4

Table C5.1: Displacements under tension loads	Table C5.1:	Displacements	under tension	loads
---	-------------	---------------	----------------------	-------

Sina	MAX, MAX A4, MAX C								
Size		M8	M10	M12	M16	M20	M24		
Displacement – factor for tensile load ¹⁾									
S factor	0,13	0,22	0,12	0,09	0,08	0,07	0,05		
δ_{N0} - factor [mm/k]	1,00	0,78	0,40	0,19	0,	09	0,07		
	0,16	0,07	0,05	0,	06	0,05	0,04		
$\delta_{N\infty}$ - factor	0,24	0,29	0,21	0,14	0,10	0,06	0,05		

Table C5.2: Displacements under shear loads

Cina		MAX								
Size			M8	M10	M12	M16	M20	M24		
Displacement – factor for shear load ²⁾										
S footor	[mm/kN]	0,6	0,35	0,37	0,27	0,10	0,09	0,07		
δ_{V0} - factor	[IIIII/KIN]	0,9	0,52	0,55	0,40	0,14	0,15	0,11		
		MAX A4, MAX C								
S footor [mm/kN]	[mm/kNI]	0,6	0,23	0,19	0,18	0,10	0,11	0,07		
$i_{V\infty}$ - factor [mm/kN]		0,9	0,27	0,22	0,16	0,11	0,05	0,09		

¹⁾ Calculation of effective displacement:

 $\delta_{N0} = \delta_{N0} - factor \cdot N_{ED}$

 $\delta_{N\infty} = \delta_{N\infty} - factor \cdot N_{ED}$

(N_{ED}: Design value of the applied tension force)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0} - factor \cdot V_{ED}$

 $\delta_{V\infty} = \delta_{V\infty} - factor \cdot V_{ED}$

(V_{ED}: Design value of the applied shear force)

Table C5.3: Displacements under **tension** loads for **seismic category C2** for all embedment depths

Size		MAX, MAX A4, MAX C							
		М6	М8	M10	M12	M16	M20	M24	
Displacement DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]			2,7	4	,4	5,6	
Displacement ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	-	•	11,5	13,0	12,3	14,4	-

Table C5.4: Displacements under **shear** loads for **seismic category C2** for all embedment depths

Size		MAX, MAX A4, MAX C								
		М6	М8	M10	M12	M16	M20	M24		
Displacement DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]			4,1	4,7	5,5	4,8		
Displacement ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]		-	6,2	7,8	10,1	11,2	-	

Upat Anchor bolt MAX, MAX A4, MAX

Performances
Displacements under tension and shear loads

Annex C 5