

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0354 of 16 May 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

TP Injection System VSF for concrete

Bonded fastener for use in concrete

TEAM PRO GROUP HOLDING SAL Dimetry El Hayek Street Edwan Building, GF SIN EL FIL LEBANON

TEAM PRO, Plant1 Germany

25 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

European Technical Assessment ETA-10/0354

Page 2 of 25 | 16 May 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z34623.18 8.06.01-553/18

European Technical Assessment ETA-10/0354

Page 3 of 25 | 16 May 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "TP Injection system VSF for concrete" is a bonded anchor consisting of a cartridge with injection mortar TP VSF and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter $\emptyset 8$ to $\emptyset 32$ mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4 and C 6
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5 and C 7
Displacements	See Annex
(static and quasi-static loading)	C 8 to C 10
Characteristic resistance for seismic performance	See Annex
category C1	C 2, C 3, C 6 and C 7
Characteristic resistance and displacements for seismic performance category C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z34623.18 8.06.01-553/18

European Technical Assessment ETA-10/0354

Page 4 of 25 | 16 May 2018

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

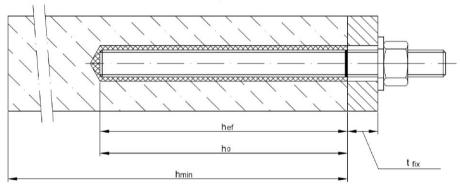
In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

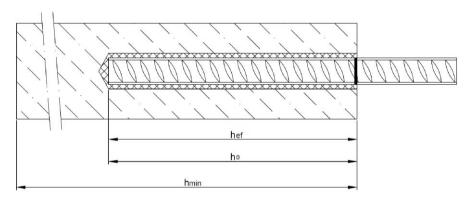
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

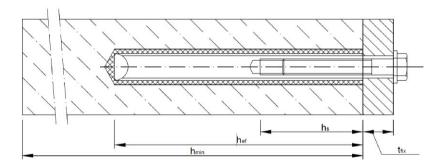
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 16 May 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider


Z34623.18 8.06.01-553/18


Installation threaded rod M8 up to M30

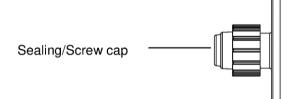
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

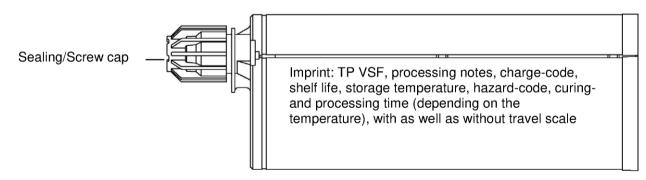
 t_{fix} = thickness of fixture

 h_{ef} = effective anchorage depth

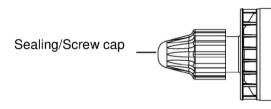
 n_0 = depth of drill hole


 h_{min} = minimum thickness of member

TP Injection System VSF for concrete	
Product description Installed condition	Annex A 1

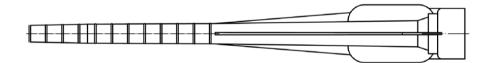

Cartridge: TP VSF

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: TP VSF, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing-and processing time (depending on the temperature), with as well as without travel scale

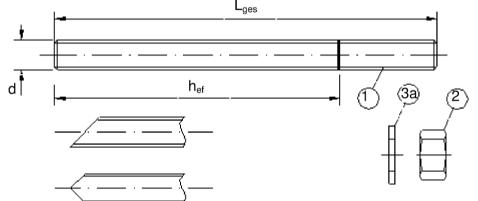
235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")



165 ml and 300 ml cartridge (Type: "foil tube")

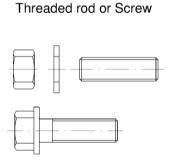
Imprint: TP VSF, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

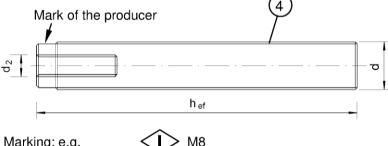
Static Mixer


TP Injection System VSF for concrete

Product description
Injection system

Annex A 2



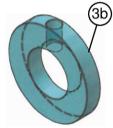


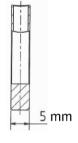
Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Internal Internal threaded anchor rod IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20

Marking: e.g.


Marking Internal thread


Mark

M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

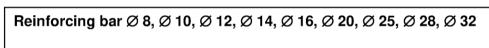
Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture

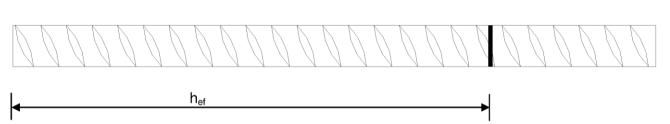
TP Injection System VSF for concrete

Product description

Threaded rod, internal threaded rod and filling washer

Annex A 3


Page 8 of European Technical Assessment ETA-10/0354 of 16 May 2018


English translation prepared by DIBt

	Designation	Material		
Stee	I, zinc plated (Steel acc. to EN 100	87:1998 or EN 10263	:2001)	
				40 μm acc. to EN ISO 1461:2009 and
EN IS	SO 10684:2004+AC:2009 or sherard	ized ≥ 40 μm acc. to DI		
			4.6	f_{uk} =400 N/mm ² ; f_{yk} =240 N/mm ² ; $A_5 > 8\%$ fracture elongation
		Property class	4.8	f_{uk} =400 N/mm ² ; f_{yk} =320 N/mm ² ; $A_5 > 8\%$ fracture elongation
1	Anchor rod	acc. to	5.6	f_{uk} =500 N/mm ² ; f_{yk} =300 N/mm ² ; $A_5 > 8\%$ fracture elongation
		EN ISO 898-1:2013	5.8	f_{uk} =500 N/mm ² ; f_{yk} =400 N/mm ² ; $A_5 > 8\%$ fracture elongation
			8.8	f_{uk} =800 N/mm ² ; f_{yk} =640 N/mm ² ; $A_5 > 8\%$ fracture elongation
		Property class	4	for anchor rod class 4.6 or 4.8
2	Hexagon nut	acc. to	5	for anchor rod class 5.6 or 5.8
		EN ISO 898-2:2012	8	for anchor rod class 8.8
3a 3b	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer	Steel, zinc plated, hot-	dip gal	vanised or sherardized
30	I lilling washel	Property class	5.8	f_{uk} =500 N/mm ² ; f_{vk} =400 N/mm ² ; $A_5 > 8\%$ fracture elongation
4	Internal threaded anchor rod	acc. to		f_{uk} =800 N/mm ² ; f_{vk} =640 N/mm ² ; A_5 > 8% fracture elongation
		EN ISO 898-1:2013	8.8	1 7/1
Stair and	nless steel A2 (Material 1.4301 / 1.	4303 / 1.4307 / 1.4567	oder 1	.4541, acc. to EN 10088-1:2014)
	nless steel A4 (Material 1.4401 / 1.	4404 / 1.4571 / 1.4362	or 1.45	578, acc. to EN 10088-1:2014)
, tuii		Property class	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 8\%$ fracture elongation
1	Anchor rod ¹⁾³⁾	acc. to EN ISO 3506-1:2009	70	f_{uk} =700 N/mm²; f_{yk} =450 N/mm²; A_5 > 8% fracture elongation
·			80	f _{uk} =800 N/mm ² ; f _{vk} =600 N/mm ² ; A ₅ > 8% fracture elongation
		Property class	50	for anchor rod class 50
2	Hexagon nut 1)3)	acc. to	70	for anchor rod class 70
		EN ISO 3506-1:2009	80	for anchor rod class 80
3a 3b	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾			/ 1.4307 / 1.4567 or 1.4541, EN 10088-1:2014 / 1.4571 / 1.4362 or 1.4578, EN 10088-1:2014
		Property class	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 8\%$ fracture elongatio
4	Internal threaded anchor rod 1)2)	acc. to EN ISO 3506-1:2009	70	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; $A_5 > 8\%$ fracture elongation
ligh	corrosion resistance steel (Mate	rial 1.4529 or 1.4565, a	icc. to	EN 10088-1: 2014)
		Property class	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 8\%$ fracture elongation
1	Anchor rod ¹⁾	acc. to	70	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; $A_5 > 8\%$ fracture elongation
		EN ISO 3506-1:2009	80	f_{uk} =800 N/mm ² ; f_{yk} =600 N/mm ² ; $A_5 > 8\%$ fracture elongation
		Property class	50	for anchor rod class 50
2	Hexagon nut 1)	acc. to	70	for anchor rod class 70
		EN ISO 3506-1:2009	80	for anchor rod class 80
3a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.45	565, ac	c. to EN 10088-1: 2014
3b	Filling washer	Daniel II		T
4	Internal threaded anchor rod 1) 2)	Property class acc. to	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; A_5 > 8% fracture elongation
		EN ISO 3506-1:2009	70	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; $A_5 > 8\%$ fracture elongation
2) .	Property class 70 for anchor rods up to More IG-M20 only property class 50 Property class 70 only for stainless steel Filling washer only with stainless steel A	A4	anchor	rods up to IG-M16,

TP Injection System VSF for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

L			
	Part	Designation	Material
	Reinf	orcing bars	
	1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

electronic copy of the eta by dibt: eta-10/0354

TP Injection System VSF for concrete	
Product description	Annex A 5
Materials reinforcing bar	

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- The Anchorages are designed in accordance to:
 - FprEN 1992-4:2017 and Technical Report TR055

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

TP Injection System VSF for concrete	
Intended Use Specifications	Annex B 1

Z34798.18 8.06.01-553/18

electronic copy of the eta by dibt: eta-10/0354

Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective encharage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Rebar size		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Outer diameter of anchor	d_{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	$d_0 [mm] =$	12	14	16	18	20	24	32	35	40
Effective anchorage depth	$h_{ef,min}$ [mm] =	60	60	70	75	80	90	100	112	128
	$h_{ef,max}$ [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

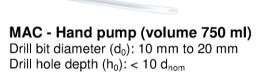
Table B3: Installation parameters for internal threaded anchor rod

Size internal threaded anchor rod		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of anchor 1)	d _{nom} [mm] =	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 [mm] =$	12	14	18	22	28	35
Effective anchorage depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Effective affichorage depth	$h_{ef,max}$ [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length Min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]	$h_{ef} + 30 \text{ mm}$ $h_{ef} + 2d_0$					
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150

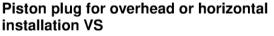
¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

TP Injection System VSF for concrete	
Intended Use	Annex B 2
Installation parameters	

Table B4: Parameter cleaning and setting tools



		21									
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA	d Brus		d _{b,min} min. Brush - Ø	Piston plug	Installation direction and of piston plug			
(mm)	(mm)	(mm)	(mm)		(mm)	(mm)		1	→	1	
M8			10	RBT10	12	10,5	-	-	-	-	
M10	8	IG-M6	12	RBT12	14	12,5	-	-	-	1	
M12	10	IG-M8	14	RBT14	16	14,5	-	-	-	1	
	12		16	RBT16	18	16,5	-	-	-	-	
M16	14	IG-M10	18	RBT18	20	18,5	VS18				
	16		20	RBT20	22	20,5	VS20				
M20	20	IG-M12	24	RBT24	26	24,5	VS24	h . >	h _{ef} >		
M24		IG-M16	28	RBT28	30	28,5	VS28	h _{ef} >		all	
M27	25		32	RBT32	34	32,5	VS32	250 mm	250 mm		
M30	28	IG-M20	35	RBT35	37	35,5	VS35				
	32		40	RBT40	41,5	40,5	VS40				



Only in non-cracked concrete

CAC - Rec. compressed air tool (min 6 bar)Drill bit diameter (d₀): all diameters

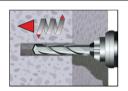
Drill bit diameter (d_0): 18 mm to 40 mm

Steel brush RBT

Drill bit diameter (d₀): all diameters

TP Injection	System	VSF fo	r concrete
--------------	--------	--------	------------

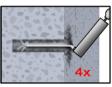
Intended Use


Cleaning and setting tools

Annex B 3

Installation instructions

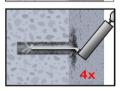
Drilling of the bore hole



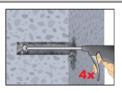
1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.

In case of aborted drill hole: the drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.


MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)

2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump ¹⁾ (Annex B 3) a minimum of four times.



2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.
If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times.
If the bore hole ground is not reached with the brush, a brush extension must be used.

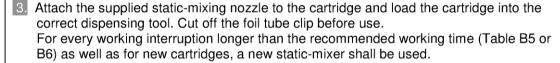
2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

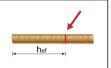
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

TP Injection System VSF for concrete

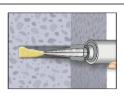
Intended Use

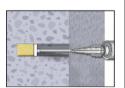
Installation instructions

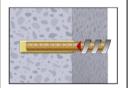

Annex B 4


¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.

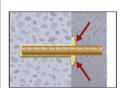
Installation instructions (continuation)



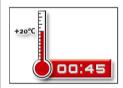

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Observe the gel-/ working times given in Table B5 or B6.



- 7. Piston Plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit- \emptyset d₀ \ge 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.


The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5 or B6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

TP Injection System VSF for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5: Maximum Working time and minimum curing time TP VSF

Concre	te tem _l	perature	Gelling- / working time	Minimum curing time in dry concrete 1)
0 °C	to	+4°C	45 min	7 h
+5 °C	to	+9°C	25 min	2 h
+ 10 °C	to	+19°C	15 min	80 min
+ 20 °C	to	+29°C	6 min	45 min
+ 30 °C	to	+34°C	4 min	25 min
+ 35 °C	to	+39°C	2 min	20 min
	+40°C		1,5 min	15 min
Cartrido	ge tem	perature	+5°C to	+40°C

¹⁾ In wet concrete the curing time must be doubled.

TP Injection System VSF for concrete	
Intended Use Curing time	Annex B 6

electronic copy of the eta by dibt: eta-10/0354

Z34798.18

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods

				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Chara	cteristic tension resistance, Steel failure					'					
Steel,	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Steel,	Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel,	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Stainle	ess steel A2, A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Stainle	ess steel A2, A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
Stainle	ess steel A4 and HCR, Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
Chara	cteristic tension resistance, Partial factor		•								
Steel,	Property class 4.6	γ _{Ms,N} 1)	[-]				2	,0			
Steel,	Property class 4.8	γ _{Ms,N} 1)	[-]				1	,5			
Steel,	Property class 5.6	γMs,N 1)	[-]				2	,0			
Steel,	Property class 5.8	γ _{Ms,N} 1)	[-]				1	,5			
Steel,	Property class 8.8	γ _{Ms,N} 1)	[-]				1	,5			
Stainle	ess steel A2, A4 and HCR, Property class 50	γ _{Ms,N} 1)	[-]	2,86							
Stainle	ess steel A2, A4 and HCR, Property class 70	γ _{Ms,N} 1)	[-]	1,87							
Stainle	ess steel A4 and HCR, Property class 80	γMs,N 1)	[-]	1,6							
Chara	cteristic shear resistance, Steel failure										
	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9	14	20	38	59	85	110	135
Without lever arm	Steel, Property class 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
ever	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
ont le	Stainless steel A2, A4 and HCR, Property class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
With	Stainless steel A2, A4 and HCR, Property class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
	Stainless steel A4 and HCR, Property class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
E	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
With lever arm	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
h h	Stainless steel A2, A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
Š	Stainless steel A2, A4 and HCR, Property class 70	M ^o _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 and HCR, Property class 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896	-	-
Chara	cteristic shear resistance, Partial factor										
Steel,	Property class 4.6	γMs,V 1)	[-]				1,	67			
Steel,	Property class 4.8	γ _{Ms,V} 1)	[-]				1,	25			
Steel,	Property class 5.6	γMs,v 1)	[-]				1,	67			
Steel,	Property class 5.8	γMs,V 1)	[-]				1,	25			
Steel,	Property class 8.8	γMs,V 1)	[-]				1,	25			
Stainle	ess steel A2, A4 and HCR, Property class 50	γMs,V 1)	[-]				2,	38			
O	ess steel A2, A4 and HCR, Property class 70	γ _{Ms,V} 1)	[-]	1,56							

¹⁾ in absence of national regulation

TP Injection System VSF for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

electronic copy of the eta by dibt: eta-10/0354

English translation prepared by DIBt

Anchor size threaded	rod			M 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel failure											
Characteristic tension re	esistance	N _{Rk,s}	[kN]	see Table C1 1,0 • N _{Rks}							
Partial factor		N _{Rk,s, eq}	[kN]				see Ta				
	d aanarata falleera	γMs,N	[-]				see 18	IDIE C I			
Combined pull-out and											
	stance in non-cracked co		[N1/2]	10	10	10	10	10		10	
Temperature range I: 40°C/24°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²] [N/mm ²]	7,5	12 8,5	12 8,5	12 8,5	12	11	10 Determine	9
	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,5	9	9	9	9	8.5	7,5	6,5
Temperature range II: 80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	_	-,-	Determine	
Temperature range III:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5.0
120°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	4.0	5,0	5,0	5,0	- , -		Determine	,
	stance in cracked concre	,	[[]	1,5	5,5	5,5	3,3	1			
onarastonono pona roo		τ _{Rk,cr}	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6.5
Temperature range I:	dry and wet concrete	τ _{Rk,eq}	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C		τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5		-,-	Determine	,
	flooded bore hole	τ _{Rk,eq}	[N/mm²]	2,5	2,5	3,7	3,7			Determine	
	due and west series	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:	dry and wet concrete	$ au_{Rk,eq}$	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	flooded bare bala	$ au_{Rk,cr}$	[N/mm²]	2,5	3,0	4,0	4,0	No Perf	ormance	Determine	d (NPD
	flooded bore hole	$ au_{Rk,eq}$	[N/mm ²]	1,6	1,9	2,7	2,7	No Perf	ormance	Determine	d (NPD
	dry and wat concrete	$ au_{Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III:	dry and wet concrete	$ au_{Rk,eq}$	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0	No Perf	ormance	Determine	d (NPD
	llooded bore fible	$ au_{Rk,eq}$	[N/mm ²]	1,3	1,6	2,0	2,0	No Perf	ormance	Determine	d (NPD
		C25/30						02			
Increasing factors for co	norete	C30/37						04			
(only static or quasi-stat		C35/45						07			
Ψς	,	C40/50						08			
		C45/55						09			
Concrete cone failure		C50/60	,				1,	10			
Non-cracked concrete		k _{ucr.N}	r_1				11	1,0			
		,.	[-]								
Cracked concrete		k _{cr,N}	[-]				7				
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]				2 0	cr,N			
Splitting											
	h/h _{ef} ≥ 2,0						1.0	h _{ef}			
	,	1							\		
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			2	$2 \cdot h_{ef} = 2$	$5 - \frac{h}{1}$			
•							e)	h_{ef})		
	h/h _{ef} ≤ 1,3						2,4	h _{ef}			
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation factor		γinst	[-]	1,0				1,2			
(dry and wet concrete)		1 mar		1,5				<u> </u>			
Installation factor (floode	ed bore hole)	γ inst	[-]		1,	,4		No Perf	ormance	Determine	d (NPD
TP Injection Sys	stem VSF for con	crete									
Performances	s of tension loads unde							\dashv	Ann	ex C	2

Table C3: Characteristic values seismic action (per					tatic,	quasi-	static	actior	n and			
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30		
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]	see Table C1									
Characteristic shear resistance	$V_{Rk,s,eq}$	[kN]	0,70 • V ⁰ _{Rk,s}									
Partial factor	γMs, V	[-]				see Ta	ible C1					
Ductility factor	k ₇	[-]				1	,0					
Steel failure with lever arm		•	•									
Characteristic bending moment		[Nm]	see Table C1									
Characteristic bending moment	M ⁰ _{Rk,s, eq}	[Nm]	n] No Performance Determined (NPD)									
Partial factor	γMs, V	[-]				see Ta	ıble C1					
Concrete pry-out failure												
Factor	k ₈	[-]				2	,0					
Installation factor	γinst	[-]				1	,0					
Concrete edge failure												
Effective length of fastener	l _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$									
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 16 20 24 27 3						30			
Installation factor	γinst	[-]				1	,0					
Factor for annular gap	α_{gap}	[-]				0,5 (1,0) ¹⁾					

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

TP Injection System VSF for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)	Annex C 3

	readed anchor rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure ¹⁾									
Characteristic tension res Steel, strength class 5.8	sistance,	$N_{Rk,s}$	[kN]	10	17	29	42	76	123
Partial factor		γMs,N	[-]			1	,5		
Characteristic tension res Steel, strength class 8.8	sistance,	$N_{Rk,s}$	[kN]	16	27	46	67	121	196
Partial factor		γMs,N	[-]			1	,5		
Stainless Steel A4, Stren	Characteristic tension resistance, Stainless Steel A4, Strength class 70			14	26	41	59	110	124
Partial factor		γMs,N	[-]			1,87			2,86
Combined pull-out and									
Characteristic bond resist	tance in non-cracked concre	ete C20/25							
- omporataro rango n	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	12	12	12	12	11	9
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,5	No Perform	ance Determ	ined (NPD)
. cporataro rango m	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	9	9	9	9	8,5	6,5
	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5		ance Determ	ined (NPD)
	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	6,5	6,5	5,0
	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	5,0	5,0	5,0	No Perform	ance Determ	ined (NPD)
Characteristic bond resis	tance in cracked concrete C	20/25							
. oporataro rarigo ii	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	5,0	5,5	5,5	5,5	5,5	6,5
	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	4,0	5,5	5,5	No Perform	ance Determ	ined (NPD)
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	3,5	4,0	4,0	4,0	4,0	4,5
	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	3,0	4,0	4,0	No Perform	ance Determ	ined (NPD)
. oporataro rango im	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5
120°C/72°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	2,5	3,0	3,0	No Perform	ance Determ	ined (NPD)
		С	25/30			1,	02		
		С	30/37	1,04					
Increasing factors for con	ncrete	С	35/45	1,07					
ψ_{c}		C	40/50	1,08					
		C	45/55	1,09					
		С	50/60			1,	10		
Concrete cone failure									
Non-cracked concrete		k _{ucr,N}	[-]			11	1,0		
Cracked concrete		k _{cr,N}	[-]			7	,7		
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}		
Axial distance		S _{cr,N}	[mm]				C _{cr,N}		
Splitting failure									
-	h/h _{ef} ≥ 2,0					1,0) h _{ef}		
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{e\!f} \Biggl(2,\! 5 - rac{h}{h_{e\!f}} \Biggr)$					
h/h _{ef} ≤ 1,3						2,4	h _{ef}		
Axial distance		S _{cr,sp}	[mm]		2 c _{cr,sp}				
	Installation factor (dry and wet concrete)								
Installation factor (dry and	d wet concrete)	γinst	[-]			1	,2		

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

²⁾ For IG-M20 strength class 50 is valid

TP Injection System VSF for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 4

Table C5: Characteristi	c values	of shea	ar loads	under st	atic and	quasi-st	atic actio	on
Anchor size for internal threaded anch	or rods		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm1)								
Characteristic shear resistance, Steel, strength class 5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Partial factor	γMs,V	[-]			1,	25		
Characteristic shear resistance, Steel, strength class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor	γMs,V	[-]			1,	25		
Characteristic shear resistance, Stainless Steel A4, Strength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor	γMs,V	[-]			1,56			2,38
Ductility factor	k ₇	[-]			1	,0		
Steel failure with lever arm1)								
Characteristic bending moment, Steel, strength class 5.8	$M^{o}_{Rk,s}$	[Nm]	8	19	37	66	167	325
Partial factor	γMs,V	[-]			1,	25		
Characteristic bending moment, Steel, strength class 8.8	M ^o _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor	γMs,V	[-]			1,	25		
Characteristic bending moment, Stainless Steel A4, Strength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor	γMs,V	[-]			1,56			2,38
Concrete pry-out failure								
Factor	k ₈	[-]			2	,0		
Installation factor	γinst	[-]			1	,0		
Concrete edge failure								
Effective length of fastener	l _f	[mm]			l _f = min(h	n _{ef} ; 8 d _{nom})		
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30
Installation factor	γ inst	[-]			1	,0		

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

TP Injection System VSF for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 5

For IG-M20 strength class 50 is valid

Anchor size reinforcin		· \(\frac{1}{1}\)	rformar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø3	
Steel failure	ig bai				20	210	212	2 14	2 10	W 20	D 23	2 20	1 2 3	
Ob an atamiatic tamaian m	!-+		N _{Rk,s}	[kN]					A _s • f _{uk}					
Characteristic tension re	esistance		N _{Rk,s, eq}	[kN]				1,	0 ⋅ A _s ⋅ f	: 1) uk				
Cross section area			As	[mm ²]	50	79	113	154	201	314	491	616	804	
Partial factor			γMs,N	[-]					1,4 ²⁾					
Combined pull-out and														
Characteristic bond resi			ncrete C20.											
Temperature range I: 40°C/24°C	dry and wet		$ au_{Rk,ucr}$	[N/mm²]	10	12	12	12	12	12 No Dorf	11	10	8,	
	flooded bordery and wet		τ _{Rk,ucr}	[N/mm²] [N/mm²]	7,5 7,5	8,5 9	8,5 9	8,5 9	8,5 9	9	ormance 8.0	7,0	6.0	
Temperature range II: 80°C/50°C	flooded bor		$ au_{ m Rk,ucr}$	[N/mm²]	5,5	6.5	6.5	6,5	6.5		ormance			
Temperature range III:	dry and wet		τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,	
120°C/72°C	flooded bor		$ au_{ m Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0	No Perf	ormance	Determine	ed (NP	
Characteristic bond resi	stance in cra	cked concre	te C20/25		•			•		•				
	dry and wet	concrete	$ au_{Rk,cr}$	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,	
Temperature range I:	dry and wet	Control	$\tau_{Rk,eq}$	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,	
40°C/24°C	flooded bore	e hole	$ au_{ m Rk,cr}$	[N/mm²]	4,0	4,0	5,5	5,5	5,5		ormance			
			$ au_{ m Rk,eq}$	[N/mm²]	2,5 2,5	2,5 3,5	3,7 4,0	3,7 4,0	3,7		ormance		Ť	
Tamparatura ranga II.	dry and wet	concrete	τ _{Rk,cr}	[N/mm²] [N/mm²]	1,6	2,2	2,7	2,7	4,0 2,7	4,0 2,7	4,0 2,8	4,5 3,1	3,	
Temperature range II: 80°C/50°C			$ au_{ m Rk,eq}$ $ au_{ m Rk,cr}$	[N/mm²]	2,5	3.0	4,0	4,0	4,0		ormance			
	flooded bor	e hole	τ _{Rk,eq}	[N/mm²]	1,6	1,9	2,7	2,7	2,7		ormance			
	du		τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,	
Temperature range III:	dry and wet	concrete	$\tau_{Rk,eq}$	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,	
120°C/72°C	20°C/72°C flooded bore hole		$ au_{Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	No Perf	ormance	Determine	ed (NP	
	nooded bon		$ au_{Rk,eq}$	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	No Perf	ormance	Determin	ed (NP	
				5/30					1,02					
Increasing factors for co	oncrete		C30/37 1,04 C35/45 1,07											
(only static or quasi-stat	tic actions)			0/50					1,07					
ψ_{c}				5/55	1,09									
			C50	0/60					1,10					
Concrete cone failure														
Non-cracked concrete			$k_{\text{ucr},N}$	[-]					11,0					
Cracked concrete			$k_{cr,N}$	[-]					7,7					
Edge distance			C _{cr,N}	[mm]					$1,5 h_{ef}$					
Axial distance			S _{cr,N}	[mm]					2 c _{cr,N}					
Splitting														
	h/h _{ef} ≥ 2,0								1,0 h _{ef}					
										h				
Edge distance	2,0> h/h _{ef} >	1,3	C _{cr,sp}	[mm]				$2 \cdot h$	$_{ef}$ 2,5 $-$	$\frac{h}{h_{ef}}$				
	l-/l								0.4.5	ref)				
	h/h _{ef} ≤ 1,3								2,4 h _{ef}					
Axial distance			S _{cr,sp}	[mm]					2 c _{cr,sp}	_				
Installation factor (dry a			γinst	[-]	1,0		4.4		1	,2 No Dorf		Datawain	l /NIC	
Installation factor (flood			γinst	[-]	re		1,4			No Peri	ormance	Determine	ea (INF	
1) f _{uk} shall be tak 2) in absence of	national reg	gulation	ons or rein	norcing ba	115									
		,												
TP Injection Sys	etam VCE	for con	crete											
ir injection sys	stem vər	TOT CON	crete											
Performances										_	Δ	ex C	6	

Table C7: Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)											
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]				0,5	0 • A _s •	f _{uk} 1)			
Characteristic shear resistance	V _{Rk,s, eq}	[kN]	0,35 • A _s • f _{uk} ¹⁾								
Cross section area	As	[mm²]	50	79	113	154	201	214	491	616	804
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	? • W _{el} • 1	f _{uk} 1)			
Characteristic bending moment	M ⁰ _{Rk,s, eq}	[Nm]	No Performance Determined (NPD)								
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]					1,52)				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of fastener	l _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$								
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 25 28 32						32		
Installation factor	γinst	[-]	1,0								
Factor for annular gap	$lpha_{ ext{gap}}$	[-]				(),5 (1,0) ⁻	1)			

TP Injection System VSF for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)	Annex C 7

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Table C8: Di	splaceme	nts under tensio	n load ¹⁾	(threa	aded ro	od)				
Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Non-cracked conc	rete C20/25					•				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70		
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05			0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Displacements under shear load¹⁾ (threaded rod) Table C9:

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30	
For non-cracked c											
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	$\delta_{V\infty}\text{-}factor$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
For cracked concr	For cracked concrete C20/25										
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07	
	$\delta_{V_\infty}\text{-factor}$	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10	

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \quad V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \quad V; \end{split}$$
V: action shear load

TP Injection System VSF for concrete	
Performances	Annex C 8
Displacements (threaded rods)	

Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/2	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25										
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90				0,070			
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05				0,105			
Temperature range II:	δ_{No} -factor	[mm/(N/mm²)]	0,2	219				0,170			
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,2	255				0,245			
Temperature range III:	δ_{No} -factor	[mm/(N/mm²)]	0,2	219				0,170			
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255	0,245						

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Table C11: Displacement under shear load 1) (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond											
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	C20/25										
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

 $[\]begin{array}{l} ^{1)} \mbox{ Calculation of the displacement} \\ \delta_{V0} = \delta_{V0}\mbox{-factor} \ \cdot \mbox{ V}; \\ \delta_{V\infty} = \delta_{V\infty}\mbox{-factor} \ \cdot \mbox{ V}; \end{array}$

V: action shear load

TP Injection System VSF for concrete	
Performances Displacements (rebar)	Annex C 9

Table C12: Dis	splacement	s under tension	load ¹⁾ (lı	nternal t	hreaded	anchor	rod)	
Anchor size Interna	al threaded an	chor rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked concret	te C20/25 under	static and quasi-stati	c action		•	•		
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172
Cracked concrete C2	0/25 under stati	c and quasi-static ac	tion					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,090			0,070		
40°C/24°C	$\delta_{N_{\infty}}\text{-factor}$	[mm/(N/mm²)]	0,105			0,105		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,219			0,170		
80°C/50°C	$\delta_{N_{\infty}}\text{-factor}$	[mm/(N/mm²)]	0,255			0,245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,219			0,170		
120°C/72°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,255			0,245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \tau; \qquad \tau \text{: action bond stress for tension}$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \quad \tau;$

Table C13: Displacements under shear load¹⁾ (Internal threaded anchor rod)

Anchor size Internal threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked an	d cracked cond	rete C20/25 un	der static a	nd quasi-s	tatic actior	1		
All temperature	δ _{v0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	δ _{V∞} -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor} \quad V;$

TP Injection System VSF for concrete	
Performances Displacements (Internal threaded anchor rod)	Annex C 10